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Abstract: Significant portions of European cities’ population are still exposed to levels of air pollution
deemed harmful by the World Health Organization. Given the high impact of air pollution both on
human health and the economy, numerous low-cost electrochemical sensor monitoring systems are
being installed. The market is forced to develop new air quality monitoring systems to meet the needs
of providing forecasting services based on advanced technologies and protocols that utilize certain
characteristics such as high accuracy, real-time monitoring, daily and yearly statistics, data access
from both experts and simple users with the use of low-cost equipment. In this study, conducted in
Athens, Greece, a comparison is attempted between the findings from a low-cost electrochemical
sensor device and those of a static, fixed site measurement monitoring station; this comparison is
based on the data quality and Air Quality Index (AQI) concerning data accuracy and quality on
adverse health effects due to air pollution. With regard to the prediction of different AQI intervals,
TPR ranges from 35.2% up to 100.0%, FPR from 0.0% up to 36.1% and FNR from 0.0% up to 38.1%.
The outcome of this study reveals flexible and affordable alternatives adopted during the evaluation
and calibration of low-cost gas sensors for monitoring.

Keywords: air quality; air pollution measurements; electrochemical sensors; low-cost sensors; AQI
(Air Quality Index); Athens

1. Introduction

It is a fact that nowadays humanity finds itself facing critical decisions, deeply associ-
ated with the unfolding of the climate crisis and the emergence of global environmental and
health issues, such as the COVID-19 pandemic. Now, more than ever, the interplay between
social, health, economic and environment challenges the current norms of thinking and
stresses the need for immediate actions and structural changes. This often comes down to
simple expectations such as living in a healthy environment and appreciating a sufficient
healthcare system and the feeling of safety, accomplished through the adoption of effective
measures, both preventive and precautionary.

In forthcoming years, every society will be called to act with appropriate answers
to the global challenges of climate and the environment. The plethora of scientific and
non-scientific publications and reports demonstrate the seriousness and impact of the
situation so far. Sustainable solutions must be provided urgently and so must substantial
information on climate change, biodiversity loss, depletion of natural resources and the
environmental risks we are called upon to address.
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According to multiple scientific studies, a link between air pollution, meteorology
and human health impacts such as asthma, respiratory diseases, chronic bronchitis, heart
disease, lung cancer and generally reduced life expectancy and premature mortality has
been confirmed [1–3]. The World Health Organization [4] has estimated that in developing
countries, the increase in urban air pollution has led to more than 2 million deaths per
year, as well as to various respiratory illnesses [5,6]. Moreover, technological progress
and urbanization in developing and developed countries results in an increase of air
pollution [7–9] and due to local soil dust re-suspension from transportation higher dust
contribution is observed [10]. The appropriate decision-making in terms of strategies
and actions, in due course, depends on the recording and analysis of ambient air quality
parameters, which create the need for the development of a real-time monitoring network.

The use of multi-parameter monitoring systems to measure the quality of the atmo-
spheric environment enables a consequent detailed analysis of the major air pollutants,
biometeorological parameters and noise pollution. These integrated monitoring systems
are important components of the so-called “smart cities”, for air quality monitoring in
urban areas [11], but also for the monitoring of other environmental parameters that de-
termine to a significant extent the life quality of the city’s inhabitants. According to the
Directive 2008/50/EC [12] on ambient air quality and cleaner air for Europe, which clearly
designates the need for fixed monitoring stations for significant pollutants, the develop-
ment also of networks that consists of low-cost electrochemical sensors along with the
necessary precision and accuracy of air pollution and meteorological measurements, offer
an alternative to the problem. To that end, the use of electrochemical sensors compared
to fixed site measurement monitoring stations, is of great interest among researchers with
several studies putting forward methodologies similar to that currently adopted [13–19],
and with others [20], giving more focus on the use of electrochemical sensors to monitor
urban air quality, sensor design, laboratory and field performance. Environmental and
air quality data obtained by such systems are thought to be less reliable than individ-
ual instruments and, therefore, concrete information about the sensitivity, selectivity and
stability of sensors is necessary. Simultaneously, as most web applications and low-cost
sensors provide monitoring measurements reporting the AQI, there is also an interest in
the evaluation of the specific index in terms of how informative and reliable it can be.

Moreover, and due to the rapid expansion of low-cost sensors’ usage for air qual-
ity measurements from responsible authorities or individual citizens, development and
implementation recently of numerous platforms that provide public information is also
noted [21]. However, reliability, and whether these devices can actually contribute to the
correct communication and information, are still major concerns, since even now there
are no specific and clear protocols for the evaluation of low-cost sensors, substituted by
general guidelines alone [22,23].

In order to ensure adequate performance, one must be aware that each case is different
and performance may vary spatially and temporally [24], which makes it difficult for
a researcher to utilize the data received from the corresponding devices. It is common
and recommended when such devices with low-cost sensors are used, firstly to take
measurements and then compare the data with validated data that come from governmental
or research stationary monitors [17]. Similar measurements to those in this manuscript,
which were performed in Portugal during a two-week period, suggest that the overall
performance of the sensors in terms of statistical metrics and measurement profile can be
used for providing spatially and temporally useful information for air quality levels [15].
In a study that took place in Amsterdam, the Netherlands, the authors [25] suggest that
after using low-cost sensors for over 2 months in measurements, it is better to proceed in
validation through a comparison with steady air monitoring stations for an 8-day period.
Nevertheless, before using any data from low-cost sensors and obtaining trustworthy
values, a calibration procedure for all the parameters should be initially carried out [16]. In
the case in which better performance is sought from the sensors, then usage of artificial
neural networks and supervised learning techniques is suggested [20,26]. However, values
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obtained from on-site calibrations instead of laboratory ones are considered better and
it is crucial to avoid adopting the last case, when it comes to use data for real-world
measurements [27].

Therefore, the impact on the usage and research of low-cost electrochemical sensors
devices, is more than obvious as the literature is extremely extensive concerning this topic.
We have already reached the point where a plethora of such devices is at such a very low
cost that citizens own their own devices and use them [21].

The aim and the objectives of this study are to evaluate the final qualitative information
that can be obtained by any user. This information is determining the level of air quality.
Consequently, the main objective of this manuscript is the performance of an accuracy
evaluation analysis applying the AQI [28], between a low-cost sensor device for urban air
quality monitoring “Aether” and a static fixed site monitor station “NOA”, instead of focus-
ing on an in-depth analysis on absolute measuring values regarding sensitivity, selectivity
and stability of sensors, which have been described in detail elsewhere [20,29–33].

Restrictions and assumptions adopted during the research were the number of sites
and duration of measurements that took place. The study was conducted in a single location
during a typical Greek period (April) and for 18 days (24 h/day). It should be considered
at this point that for such measurements to be carried out, the portable equipment must
be in a controlled area or there must be staff for its usage and the fixed measuring station
must always be in its optimal operating condition (adding extra operational cost for gases
and calibration). Moreover, it should be mentioned that in the wider study area in Greece
and in the Athens historical center, there is only this specific site with a fixed station in a
perfectly working condition. Therefore, the major concern was whether the AQI value is
correctly determined or not, by using statistical indices as will be described later in detail.

In this study, two surveys were conducted for low-cost sensor devices. The first was
for the evaluation of air pollution data accuracy and the second for providing valuable
data concerning adverse health effects due to air pollution, through the evaluation of
the well-known AQI. In both cases, the evaluation was based on low-cost sensor device
measurements in comparison with a NOA air pollution monitoring station. AQI reports
daily air quality. AQI shows the relation between air quality and public health effects.
The US Environmental Protection Agency (USEPA) is an independent executive agency of
the United States federal government and calculates the AQI for five major air pollutants
regulated by the Clean Air Act: ground-level ozone, particle pollution (also known as
particulate matter), carbon monoxide, sulfur dioxide, and nitrogen dioxide. For each of
these pollutants, USEPA has established national air quality standards to protect public
health. Ground-level ozone and particle pollution are the two pollutants that pose the
greatest threat to human health in this country [34]. There are a substantial number of
different indexes to measure air quality for individual pollutants and even countries that
share the same legislation or sometimes areas/cities of the same country have different
indices, but in this study, the authors focus on the most commonly used index, AQI.

2. Field Data and Methodology

Recent research in the field of air pollution measurements using low-cost sensors is
now plentiful worldwide, and researchers are producing positive results. More specifically,
in Gateshead UK [35], CO and NO2 sensors were monitored and validated successfully,
during the development of a protocol where the data had to go through a dual network
transmission to reach the destination address.

In New Zealand a team of scientists [36], conducted a study in Auckland where high
pollution is produced because of the of the high circulation of diesel cars. The study took
place on a busy 2 km road, 4 km from the center. The researchers used 8 low-cost sensors
at distances of 100 to 1000 m near bus stops. Although the measured daily concentration of
NO2 did not exceed 20 µg/m3 the conclusions they drew highlight the very large deviations
for every 100 m [37].
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During 2016 the NO2 pollution of the atmosphere of Oslo in Norway was mapped,
with measurements taken from electrochemical sensors. While the chosen equipment did
not conclude with acceptable data accuracy at first, researchers combined the measurements
with data value deriving from forecasting programs and succeeded to achieve an accuracy
rate of 89%.

Similar methodology appears from researchers in Seoul, South Korea [38], as they
have used low-cost sensors in cells to measure PM2.5. They took a rather small sample of
measurements, a total of 169 h of data and exported it through a free geo-data editable map
(OpenStreetMap). Using algorithms and through machine learning models they optimized
the percentages of accuracy and chose the optimal ones.

In the Athens area by using low-cost PM sensors for over 5 months, strong correlations
appeared compared to reference-grade instrumentation [19]. The result of using this
equipment is positive and as the authors conclude low-cost sensors can provide useful
data to the research community.

Also, an acceptable method was used by Tasic et al. [39], where they used low-
cost sensors connected to an Arduino in order to measure PM2.5 indoors and through
measurement calibration software succeeded in achieving high accuracy.

On the other hand, in Sao Paulo, Brazil [40], researchers collected measurements
of CO, CO2, NO2 and O3 as well as temperature, humidity, altitude and velocity. The
measurements were taken in five different routes with cars equipped with electrochemical
sensors and they used geo-data map techniques to capture these measurements. Although
the idea was well established, they encountered several problems with the accuracy of the
pollutant measurements. It should be noted that using any type of device for air pollution
measurements in a car while travelling, has so many limitations and specific features that
it is extremely difficult to be safe concerning accuracy.

After evaluating different systems of low-cost sensor devices for urban air quality
monitoring on the market, the authors in collaboration with Progekta Europe P.C., an
Athens (GR)-based company, concluded in using the device called “Aether” (Figure 1).
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Figure 1. Aether low-cost sensor device for urban air quality monitoring.

The Aether was exclusively designed by the company and authors to be resistant
to external conditions, compact and lightweight, and thus convenient for users to carry
or install in specific urban spots. The Aether supports sensing of a variety gas concen-
trations using Alphasense Ltd. (UK) electrochemical sensors considered among the best
choices [41], for CO, H2S, NO, NO2, O3, SO2, photoionisation detection (PID) for VOCs,
non-dispersive infra-red (NDIR) for CO2. In addition, it incorporates the Alphasense opti-
cal particle counter (OPC) for PM1, PM2.5 and PM10 particulate matters. Air temperature,
relative humidity and atmospheric pressure are also measured. In more detail, Aether
weighs only 6 kg (including batteries) with housing dimensions of (mm) 290 × 230 × 160.
Alphasense analogue front-end (AFE) supports up to four electrochemical sensors, or three
electrochemical sensors in addition to PID. NDIR for CO2 sensing is provided via a separate
interface. The ultra-low-noise circuitry maximizes repeatability of electrochemical sensing.
For particulate monitoring, the AFE uses Alphasense OPC-N2, OPC-N3 or OPC-R1 particle



Atmosphere 2021, 12, 1246 5 of 17

counters. Temperature, relative humidity and atmospheric pressure are measured using
an enclosed Bosch Sensortec device. The communication can be achieved wired over a
waterproof ethernet RJ45 connector or wireless over a 2G/3G/4G cellular modem and GPS
receiver. The processor comes from BeagleBone Black Industrial and its internal real-time
clock (with battery backup) has time synchronization over a GPS receiver along with the
ability to accept a network time protocol or real-time clock. Aether is powered by 7 to
24 V DC and its internal battery backup provides up to 48 h operation. Environmental
operating temperature ranges from −15 ◦C to 60 ◦C and humidity levels from 10% to 80%
(non-condensing).

This study took place in central Athens, in the area of the National Observatory of
Athens (NOA) at Thissio (37◦58′ N, 23◦43′ E), between 12 and 28 April 2018 (specifically
392 consecutive hours). The specific point is located next to a park (Philopappou Hill)
and the distance from roads with mild traffic is more than 100 m. The access to the spot
where field data were collected is limited only to specific personnel, while this point was
chosen because it lies next to the historic center of Athens and at the same time a certified
urban background air pollution monitoring station is already installed there. It belongs
to NOA and its certified analyses comply with the prescribed calibration intervals. More
specifically, Horriba AP-360 series and the Thermo 49i automatic analyzers were operated
for monitoring of NOx (NO + NO2) and O3 respectively on 1 min resolution, averaged
on an hourly basis. A beta-radiation attenuation particulate matter measurement system
(Eberline Instruments, type FH-62) was operated for the continuous detection of PM10
levels. For the fine fraction of particulates, PM2.5 filter samples integrated over 24 h periods
with a Derenda low volume sampler were used. Finally, meteorological data (ambient
temperature and relative humidity) at the sampling site were recorded by NOA’s automatic
meteorological station at Thissio (1-min resolution). The Aether device was chosen to
measure NO2, O3, PM10, air temperature and relative humidity at 2 s intervals.

The methodology followed after the installation of the Aether device at Thissio area
consisted of three stages: data collection, processing and evaluation of the results. The first
step initially involved setting the time, date and synchronization between the Aether device
and NOA monitoring station, along with ensuring data communication from data loggers.
Each analyzer and instrument were set to take measurements and record in the minimum
interval (1–2 s) having the ability—in the next stage—to define the interval. In the second
stage, differences in the mode of operation of the fixed station and the electrochemical
sensors were taken into account. For data evaluated in short intervals, e.g., seconds,
considerable variations would arise, due to the different response pattern of the analyzers
and the Aether device. Hence, it was decided that the interval of the measurements should
be in hourly steps. At this stage the raw data from Aether were collected, filtered and sorted
with human intervention without the use of any other electronic device or automation
software. Simple data processing operations included validation and sorting and after all
the data were processed and analyzed they were stored in a common readable format.

3. Results
3.1. Data Accuracy Validation

Subsequently, the reliability of the Aether was examined, all the individual measure-
ments were checked and the validity of the data was evaluated by utilizing statistical
metrics [42–44] in Table 1. “N”, refers to the number of data points (average hourly value)
for each sensor. Its value comes from ratios derived from 1–2 s sampling times. For the
evaluation process, the coefficient of determination (R2) for each data set was calculated,
where array-1 was the worksheet range that holds the data of NOA station set and array-2
was the worksheet range that holds the Aether device data. The mean absolute error (MAE)
was calculated in order to indicate the average magnitude of the errors. Mean bias error
(MBE) quantifies the overall bias and detects whether Aether produces overestimation
(MBE > 0) or underestimation (MBE < 0); and, finally, the root mean square error (RMSE)
was calculated for the two data sets in order to aggregate them into a single measure of
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predictive power [45,46]. Final steps concerned the evaluation of the results in relation to
their correlation and statistical analysis.

Table 1. Evaluation statistical indices between NOA station and Aether device measurements.

NO2 O3 PM10 PM2.5 T RH

N
(Number of data
points—hours)

377 353 373 13 392 392

R2

(Coefficient of
determination)

0.702 0.510 0.637 0.562 0.959 0.936

MAE
(Mean Absolute Error)

8.64 (ppb) 18.38 (ppb)
15.47 (µgr/m3) 6.38 (µgr/m3) 0.56 (◦C) 2.42 (%)

16.5 (µgr/m3) 36.6 (µgr/m3)

MBE
(Mean Bias Error)

2.29 (ppb) 7.78 (ppb) −1.53 (µgr/m3) −0.93 (µgr/m3) −0.04 (◦C) −0.34 (%)4.4 (µgr/m3) 15.5 (µgr/m3)

RMSE
(Root Mean Square Error)

12.60 (ppb) 23.69 (ppb)
25.42 (µgr/m3) 10.30 (µgr/m3) 0.75 (◦C) 3.23 (%)24.1 (µgr/m3) 47.2 (µgr/m3)

According to the specific work and methodology described above, one can see the
results of the comparison between NOA station and the Aether device (Table 1). Typical
time series of average hourly measurements are presented. The scatterplot (Figure 2a) and
the time series (Figure 2b) reflect the comparison of NO2 measurements (ppb) with a data
completeness of 96.2%. As can be seen, the concentrations are ranging from 0 up to 62ppb
(117.0 µg/m3) according to NOA station and from 0 up to 89 ppb (167.0 µg/m3) according
to the Aether device. The coefficient of determination is equal to R2 = 0.702, explaining
70.2% of the variance of the data, indicating a very good agreement between NOA station
and Aether device measurements.
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Figure 2. Scatterplot (a) and time series (b) of nitrogen dioxide (NO2) records.

Furthermore, low values of MAE and RMSE provide a strong correlation for NO2
measurements between NOA monitoring stations and Aether device. Finally, it seems that
Aether device overestimates the air pollution (MBE > 0) in all cases and for all pollutants,
in comparison with NOA monitoring station measurements.

In Figure 3, the scatterplot and time series of ozone (O3) is provided with data com-
pleteness of 90.1%. The measurements range from 0 up to 62 ppb (122.0 µg/m3) according
to NOA station and from 0 up to 89 ppb (175.0 µg/m3) according to the Aether device. The
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coefficient of determination is equal to R2 = 0.510, along with relatively high values of MAE
and RMSE shows that there is a limited tolerable correlation between the measurements of
the NOA station and Aether device. In this case, although R2 seems relatively low, with
an adequate slope = 0.8579 and a positive intercept = 14.533, along with MBA = 7.78 ppb
(15.5 µgr/m3) a rather important overestimation appears. According to the above, accurate
data of local air quality, concerning O3, over long timescales should not be expected.
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The next data sets concern particulate matter PM10 and PM2.5. In particular, PM2.5
derived from weighed filters and not by an automatic analyzer, therefore data provided from
NOA in daily average values and not in hourly values. Figures 4 and 5 provide moderate
correlation results. In this case, data completeness was 95.2% and 81.3% respectively, with
values of the coefficient of determination equal to R2 = 0.637 and R2 = 0.562 respectively. Slope
in both equations (0.3628 and 0.5861) does not approach ideal values and intercepts reveal an
overestimation, especially in low real values.
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During the specific period, at least two major Sahara dust events occurred over Athens
(Figure 4b) and in such cases dust can be a significant component of PM [47,48]. In these
cases, it is clear that the Aether device could not adapt to these major fluctuations, along
with relatively high values of MAE and RMSE. For both pollutants, a slight value of
MBE < 0 indicates an underestimation of the real situation. It should be noted, however,
that these sensors are also highly affected by humidity phenomena, therefore with the
fluctuations low reliability was expected [49].

Finally, the comparison of air temperature and relative humidity measurements
(Figure 6) was conducted with data completeness of 100%. The Aether device showed high
correlations with the NOA station with R2 = 0.959 and R2 = 0.936, respectively, almost
excellent slope and intercept, for both temperature and humidity, along with low values of
MAE, MBE and RMSE (Table 1).
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Solutions for improving the reliability of the measurements and their accuracy are
specific. You may either correct values directly internally using software calculations on any
device with low-cost sensors, or use calibration algorithms using multi-linear regression
models, artificial neural network models, etc. to account for influences of other factors such
as temperature, humidity, solar radiation or for example ozone values when calibrating
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electrochemical sensors, after obtaining the values [20,26,33]. In both cases, correlation
coefficients between low-cost devices and reference instruments are improved.

Nevertheless, the need for better quality and accuracy of sensors measurements
concerning their spatial and temporal performance still remains questionable and the
important challenge is to provide valuable information for human health. Moreover, it is
a fact that the multitude of international collaborations and agencies such as companies,
universities and organizations that are involved and constantly contribute to the develop-
ment of quality improvement of low-cost sensors, such as the VAQUUMS project [50], CEN
Technical Committee [51], EveryAware project [52], EU-Sense project [53], Joint Research
Center [54] and others, improve constantly the reliability and the quality of measurements
by low-cost sensors, so that users can have reliable measurements. Therefore, it is empha-
sized through this paper that the duration of exposure along with the value of concentration
of any pollutant, are of major importance for human health, which means that besides the
value of every pollutant, air quality indexes are also important to highlight the effect on
human health.

3.2. Evaluation through Air Quality Index

Initially, the AQI value obtained from NOA station is compared to the Aether de-
vice’s corresponding value and then it is evaluated whether the AQI interval is correctly
determined or not by using appropriate statistical evaluation indices. The main reason
that has led researchers to determinate the air quality through AQI is practical. Most
people are unable to know a given value or indication which will be given in units such
as ppb or µgr/m3 and, even if they are familiar with the units, they will not be able to
evaluate the threshold value of every pollutant in order to understand air quality risks.
Therefore, AQI is useful for citizens and relevant authorities to inform about the quality of
air pollution in an adequate and understandable way, but also to be used to take a series
of predetermined measures [55,56]. There is a substantial number of different ways to
interpret air quality in real-time conditions. The most acceptable and common way to do
so is the use of an air quality index. Air quality indices are generally based on a number of
sub-indices for each individual pollutant. There is a wealth of air quality indices [57]. Early
and recently studies in several areas of the world adopt similar air quality indices. Some
of the differences between them can be explained by the local differences in the nature
of the air quality problems. Some other differences are due to fundamentally different
approaches. Cochran et al. [58] studied the ambient air quality standards of 21 nations
for eight commonly regulated substances and over 15 countries were studied in detail by
Monteiro et al. [57]. The major differences among the air quality indices are found in the
calculation functions, type and number of pollutants and the number of intervals based on
associated thresholds and health impacts.

AQI is a well-known and established index developed by the US Environmental
Protection Agency [28]. For each pollutant an AQI value of 100 generally corresponds to
an ambient air concentration that equals the level of the short-term national ambient air
quality standard for protection of public health. AQI values at or below 100 are generally
thought of as satisfactory. When AQI values are above 100, air quality is unhealthy:
at first for certain sensitive groups of people, then for everyone as AQI values become
higher. The AQI is divided into six categories. Each category corresponds to a different
level of health concern. Each category also has a specific color. The color makes it easy
for people to quickly determine whether air quality is reaching unhealthy levels in their
communities [28].

Therefore, an established categorization of AQI value with intervals of concern
(Good—air quality is satisfactory, and air pollution poses little or no risk (0–50); Moderate—air
quality is acceptable. However, there may be a risk for some people, particularly those who
are unusually sensitive to air pollution (51–100); Unhealthy for Sensitive Groups—members
of sensitive groups may experience health effects. The general public is less likely to be
affected (101–150); Unhealthy—some members of the general public may experience health
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effects; members of sensitive groups may experience more serious health effects (151–200);
Very Unhealthy—health alert: the risk of health effects is increased for everyone (201–300);
Dangerous—health warning of emergency conditions: everyone is more likely to be affected
(301–500)) and an appropriate chromatic scale is definitely useful [28]. According to pollutant-
specific sub-indices and cautionary statements for guidance on the AQI, every pollutant
should be calculated in different time series. NO2 should be calculated in mean hourly values,
O3 in 8 h moving average concentrations and lastly PM10 and PM2.5 in daily mean values.

In order to investigate the ability of the Aether device to determine the accurate
value of AQI for every interval of concern, appropriate statistical indices such us the true
predicted rate (TPR), the false negative rate (FNR) and the false positive rate (FPR) were
used.

Table 2 presents the validation statistical indices for different AQI intervals. In Table 2,
the number of hours, for both Aether device and NOA station, for each pollutant AQI value
is lying within the same interval (right AQI interval prediction), denoted as X. The number
of hours where AQI was calculated via the Aether device is lying within the previous
AQI interval, based on NOA measurements are denoted as Y, the number of hours where
AQI calculated via the Aether device is lying within the next AQI interval, based on NOA
measurements are denoted as Z, and N is the number of hours where AQI is lying within a
specific interval, based on NOA measurements.

Table 2. Statistical indices for the evaluation of the Aether device ability to predict the right interval
of Air Quality Index (AQI) in comparison with NOA measurements.

Pollutant AQI Interval X Y Z N TPR% FNR% FPR%

NO2
AQI (0–50) 329 0 37 366 89.9 0.0 10.1

AQI (51–100) 10 1 0 11 90.9 9.1 0.0

O3

AQI (0–50) 174 0 57 231 75.3 0.0 24.7

AQI (51–100) 38 31 39 108 35.2 28.7 36.1

AQI (101–150) 18 16 8 42 42.9 38.1 19.0

PM10
AQI (0–50) 241 0 10 251 96.0 0.0 4.0

AQI (51–100) 106 12 0 118 89.8 10.2 0.0

PM2.5

AQI (0–50) 2 0 0 2 100.0 0.0 0.0

AQI (51–100) 6 0 0 6 100.0 0.0 0.0

AQI (101–150) 4 0 0 4 100.0 0.0 0.0

AQI (151–200) 0 1 0 1 0.0 100.0 0.0

TPR represents the percentage (%) of correct cases over total cases with values from
0.0% to 100.0% and a perfect score equal to 100.0%, i.e., when AQI calculated via the
Aether device is lying within the same AQI interval, based on NOA measurements. FNR
represents the percentage (%) of negative false predictions, i.e., where AQI calculated via
the Aether device is lying within the previous AQI interval, based on NOA measurements,
with values from 0.0% to 100.0% and a perfect score equal to 0.0%. Finally, FPR represents
the percentage (%) of positive false predictions, i.e., where AQI calculated via the Aether
device is lying within the next AQI interval, based on NOA measurements, with values
from 0.0% to 100.0% and a perfect score equal to 0.0%.

According to Table 2, it seems that the Aether device shows a very good overall
accuracy in predicting AQI index by using mean hourly concentrations. More specifically,
the Aether device with the electrochemical sensors predicts correctly from 35.2% (O3—
Moderate level) up to 100% (PM2.5—Good, Moderate level) of observed exceedances. What
is argued to be both practical and important to obtain as an hourly basis information is,
if the AQI index will be correct and much more if the concentration level is above the
Good or Moderate level. This is due to the fact that the human body when exposed to
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high concentrations of air pollution for more than 8h during the day is at high unhealthy
risk [45]. More specifically, in Figures 7–10, the daily value of the AQI index derived from
average hourly values along with statistical indices for the evaluation of the Aether device
accuracy is presented in detail for every pollutant.
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It should be noted at this point that during the period of measurement, NO2 emissions
were in relatively low levels at ranges below 70 ppb (132 µg/m3). Therefore, according to
AQI calculations only the first 2 categories were explored (Good and Moderate) and the
results are very promising (Figure 7). It is of major interest to understand that even in cases
of different categories in AQI calculations considering NO2, with FPR 10.1% and 0.0% for
Good level and Moderate levels, respectively, the outcome is not prohibitive. The same
conclusions derive also for FNR (0.0% and 9.1% for Good level and Moderate AQI levels,
respectively).

Figure 8 depicts the daily AQI concerning O3 (8 h moving average concentration)
during the period examined where we can see that three different AQI levels (health
impact) appear. It is well known that in Athens and generally in Greece, O3 is one of the
key pollutants due to the high solar irradiation and number of sunny hours during the
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year. As can be seen the comparison between the mean daily AQI value derived via the
Aether device and the respectively NOA monitoring station measurements, may easily be
characterized as positive.

Correlations between ozone and each particulate component are considered to be weak
and, according to previous research, this situation varies by season and location [59,60].
Rapid meteorological fluctuations affecting air pollution formation, especially in rather
extreme events (like the Sahara dust event) along with ozone, produced by photochemical
reactions over large spatial scales, can and may promote ozone formation and modulation,
due to higher levels of primary pollutants, higher temperatures and different pressure
conditions [61]. Therefore, although the Aether seems to always overestimate the value of
AQI concerning O3, at these extreme weather conditions it appears not to follow the sharp
increase and, in such cases, it should not be trusted. Concerning PM10, the comparison
between daily AQI values derived via the Aether device and the corresponding values
derived via the NOA monitoring station leads to very similar values (Figure 9). For
16 consecutive days the daily AQI value is lying (for both the Aether device and the NOA
monitoring station) within the same health impact interval (100.0% success).

The same conclusions were derived for PM2.5. The comparison between daily AQI
values derived via the Aether device and the corresponding values derived via the NOA
monitoring station are almost identical (Figure 10). For 12 of the 13 consecutive days, the
AQI daily value lies (for both the Aether device and the NOA monitoring station) within
the same health impact interval (92.3% success). More specifically, for only 1 day the AQI
value according to NOA was marginally larger than 150 (Unhealthy) and at the same time
according to the Aether device was more than 50 and less than 100 (Unhealthy for Sensitive
Groups).

4. Discussion and Conclusions

A low-cost sensor device for urban air quality monitoring which was designed by a
private Athens-based company and the authors was tested and compared with a static,
fixed-site air pollution monitoring station. The device supports sensing of a variety gas
concentrations using Alphasense Ltd. (Great Notley, UK) electrochemical sensors and an
optical particle counter (OPC) for PM1, PM2.5 and PM10 particulate matter. Two surveys
were conducted for the low-cost sensing device. The first one explored the evaluation of
the measured concentrations and the second the worth of providing valuable information
concerning human health impact due to air pollution, in other words the evaluation of the
information through the application of the well-known air quality index AQI.

The evaluation of the performance of a device with electrochemical sensors, installed
in an urban environment took part in central Athens, Greece, in the area of the National
Observatory of Athens (Thissio). As the results may vary depending on the field conditions
and different applications, it was concluded that the main challenges of using such devices
with electrochemical sensors depend on to what extent the data quality as well as the
respective information through these data will be used. The main results of this study are
summarized below:

• There are differences concerning the absolute values between the Aether device and
the corresponding NOA monitoring station (reference measurements). Relatively high
values of MAE and RMSE were observed indicating poor performance. Furthermore,
positive values of MBE indicated an overestimation of air pollution by the use of the
Aether device.

• The comparison between the Aether device measurements and the NOA fixed-site
monitoring station’s corresponding measurements presents a coefficient of determi-
nation which ranges between 0.510 (O3) and 0.702 (NO2). This indicates a significant
correlation between Aether and NOA measurements at a statistical significant level of
p < 0.005.

• With regard to the prediction of different AQI’s human health impact intervals, during
the period under examination, the statistical indices TPR, FNR and FPR can be seen



Atmosphere 2021, 12, 1246 14 of 17

in detail. TPR ranges from 35.2% up to 100.0%, FPR from 0.0% up to 36.1% and FNR
from 0.0% up to 38.1%. Taking into account these statistical values, we conclude that
the Aether device can be a sufficient low-cost solution for monitoring and quantifying
the air quality.

• In general terms, the vast majority of the false health impact predictions through the
use of AQI revealed that the Aether device overestimates the air quality levels. This
means that when we are going to use this device, it might provide information for the
next worst AQI health impact categorization level than is actually the case.

Therefore, if the reason that someone chooses to use such devices is not to measure the
absolute concentration values, but to indicate the quality of the atmospheric environment
through different health impact levels, then the Aether low-cost device may successfully fit
this purpose. Of course, the long-term stability of electrochemical sensors must be further
examined using the same method which has been partially described, in order to determine
the overall use of such devices compared to big and expensive air quality monitoring
stations.

Finally, the limitations of the methodology followed that impacted or influenced
the interpretation of the findings in the specific research should be mentioned. First
of all, the length of the measuring period should be longer in order to cover extreme
weather conditions, different seasons and an in-depth study of Aether behavior in different
atmospheric events. Moreover, installing more devices not only in one monitoring site but
in different areas or even cities is required. Therefore, the authors have already expanded
their network with a number of similar devices, in different locations within Athens,
improving their field experience along with the already existing data methodology. The
authors believe that the vital question raised through this work has been answered. The
usage of low-cost sensing devices, such as Aether, for air pollution measurements in urban
environments provides sufficient and correct information concerning adverse health effects
due to air pollution. This kind of information is very important for people (residents and
visitors of the city) in order to schedule their daily outdoor activity, as well as for the state
in order to take the appropriate measures to avoid short-term and long-term hazardous
public health impacts.

The authors believe that future improved electrochemical sensor devices will be able
to create databases suitable for the creation of models determining the air quality of the
atmosphere and environment in many different areas. The effects on public health, through
appropriate tools will be recorded and provided as information. Such databases, of high
spatial resolution, will enable—in the long run—the scientific community, using all the
above tools, to prepare studies and scenarios for taking appropriate measures and decisions
by the state, in order to protect the environment and public health. There will be realistic
depiction of the prevailing conditions on maps, as well as the development of special
platforms for informing the public. Every citizen or organization, through easy access
(e.g., mobile phone, computer, tablet, etc.), will be able to see in real time the conditions
prevailing in terms of air pollution and noise pollution in all the study areas, select the
information that appeals to them, and decide on their activities in each area. Summarizing,
through a dense network of electrochemical sensors, real data will be available due to the
small number of installed atmospheric quality monitoring stations.
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