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Abstract: This study presents a comprehensive investigation of multiple Artificial Intelligence
(AI) techniques—decision tree, random forest, gradient boosting, and neural network—to generate
improved precipitation estimates over the Upper Blue Nile Basin. All the AI methods merged multiple
satellite and atmospheric reanalysis precipitation datasets to generate error-corrected precipitation
estimates. The accuracy of the model predictions was evaluated using 13 years (2000–2012) of
ground-based precipitation data derived from local rain gauge networks in the Upper Blue Nile Basin
region. The results indicate that merging multiple sources of precipitation substantially reduced the
systematic and random error statistics in the Upper Blue Nile Basin. The proposed methods have
great potential in predicting precipitation over the complex terrain region.

Keywords: remote sensing; machine learning; artificial intelligence; satellite observations; error
analysis; statistical techniques

1. Introduction

The precise estimate of precipitation is important for climatic research and hydrological
applications, as it is the major driving force of the water cycle [1–3]. Several studies have de-
termined that satellite-based observations are the primary source of precipitation estimations
and explored their potential capability for hydrological applications on a global scale [4–6].
However, satellite observations are associated with significant random and systematic errors
over regions with complex terrain due to the influence of orographic effects [3,7]. Another
global atmospheric reanalysis precipitation product is available for climate monitoring [8,9].
These reanalysis precipitation products are also affected by observational constraints and
orographic effects [10,11]. Despite the importance and use of accurate precipitation ob-
servations, documenting precise global precipitation is a real challenge for the scientific
community [12–14]. Therefore, assessing and adjusting the sources of precipitation error
are essential for improving the use of satellite/reanalysis precipitation estimates for water
resource applications. However, the availability of ground-based precipitation data in Africa
is low [15], especially in basin areas, such as the Upper Blue Nile region, which limits the
scope for performing comprehensive research for hydrological applications.

At present, several high-resolution spatially distributed gauge-adjusted quasi-global
satellite precipitation products are available—e.g., the Global Precipitation Measurement
(GPM) mission [13], Tropical Rainfall Measuring Mission (TRMM) [16], Climate Predic-
tion Centre (CPC) Morphing Technique (CMORPH) [17], Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Networks (PERSIANN) [18], and
Global Satellite Mapping (GSMaP) [19]. Gauge-corrected precipitation estimates with
a high accuracy provide an alternative choice for hydrometeorological applications [3].
Recently, different statistical techniques have been used to improve precipitation estimates
by merging multisource precipitation datasets [20–23]. Specifically, Artificial Intelligence

Atmosphere 2021, 12, 1239. https://doi.org/10.3390/atmos12101239 https://www.mdpi.com/journal/atmosphere

https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-0231-5685
https://doi.org/10.3390/atmos12101239
https://doi.org/10.3390/atmos12101239
https://doi.org/10.3390/atmos12101239
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/atmos12101239
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos12101239?type=check_update&version=1


Atmosphere 2021, 12, 1239 2 of 14

(AI)-based algorithms have been used to merge multisource satellite/reanalysis precipi-
tation estimates at the regional scale based on ground-based rain datasets [3]. Moreover,
a limited number of investigations have been carried out to advance the precipitation
estimates with the rain gauge networks in several locations in Ethiopia [3,24–27]. Therefore,
this study uses multiple machine learning algorithms to yield more robust predictions to
achieve error-corrected precipitation estimates over the Upper Blue Nile Basin through the
use of satellite and reanalysis precipitation information.

The main objective of this research is to improve precipitation prediction over the
complex terrain region of the Blue Nile by merging individual precipitation products using
multiple artificial intelligence (AI) techniques. However, there is no state-of-the-art AI tech-
nique for advanced water resource applications that can predict precipitation effectively in
many places. Therefore, for the advancement of precipitation estimates, we assimilated the
satellite/reanalysis precipitation data using four well-established machine learning models
(decision tree, random forest, gradient boosting, and neural network) for the accurate
estimation of precipitation. Specifically, an advanced framework that integrates multiple
global remotely sensed observations and atmospheric reanalysis datasets along with static
(elevation) land surface variables to produce a quality-controlled precipitation product
through the use of multiple AI algorithms will significantly benefit the development and
transformation agenda in the study area.

The remainder of this paper is organized as follows: Sections 2 and 3 include the data
description and methods used in this study; Section 4 presents the performance evaluation
error metrics; and Section 5 presents the results and discussion. Conclusions and future
recommendations are also presented in Section 6.

2. Data and Study Area

In this research, one complex terrain region, the Upper Blue Nile River basin [3], was
selected as our study area. Data were collected from 70 rain gauges between 2000 and
2012. Rain gauges within the same 0.25 degree grids were averaged, and as a result we
had 43 grids over the Blue Nile and its corresponding averaged rain gauge values (detail
in [3]). Almost the entirety of the rainfall occurs between June and September [3]. The
reference dataset was obtained from the above ground-based network, which was mapped
at a 0.25 degree grid resolution (interpolation to 0.25 degree grid cells). For our study, five
gauge-adjusted quasi-global precipitation products were used: CMORPH, PERSIANN,
TMPA or 3B42(V7), GSMaP (V6), and reanalysis (Table 1). Another input feature used
in this study was elevation, which ranged between 1615m and 3125m. The positions of
rain gauge measurement are shown in Figure 1. The elevation data were collected from
the Shuttle Radar Topography Mission (SRTM) dataset. This dataset was obtained using
1◦ digital elevation model (DEM) tiles from the US Geological Survey and interpolated to
a 0.25◦ grid resolution to match the resolution of the precipitation products. CMORPH,
developed by the National Oceanic and Atmospheric Administration (NOAA), calculates
precipitation estimates using passive microwave (PMW) observations from low-orbiter
satellites, whose features are propagated by geostationary satellite infrared (IR) data.
PERSIANN uses neural networks to conduct precipitation estimates based on infrared
satellite imagery and ground-surface information. Tropical multi-satellite precipitation
analysis (TMPA) estimates precipitation using data from a wide variety of satellite sensors.
It is gauge adjusted data that merges IR and PMW precipitation products from the National
Aeronautics and Space Administration (NASA). Estimates are provided in both near real
time and post real time. GSMaP from the Earth Observation Research Center (EORC)
of the Japan Aerospace Exploration Agency (JAXA) uses IR estimates GSMaP-MVK and
gauge-adjustment GSMaP (V6). Finally, the reanalysis data were based on the original ERA-
Interim data used in ERA-Interim/Land after rescaling based on the Global Precipitation
Climatology Center (GPCC) dataset. The dataset used in this study was downscaled using
the Climate Hazards Group’s Precipitation Climatology (CHPclim) and bias correction was
carried out. The details of these datasets can be found in Ehsan et al. [3].
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Table 1. Spatiotemporal resolution of different precipitation products used in this study.

Precipitation Product Original Spatiotemporal Resolution

TMPA

0.25 degree, daily
CMORPH

PERSIANN

ERA-Interim

GSMap 0.1 degree daily

Atmosphere 2021, 12, x FOR PEER REVIEW 3 of 14 
 

 

Global Precipitation Climatology Center (GPCC) dataset. The dataset used in this study 

was downscaled using the Climate Hazards Group’s Precipitation Climatology 

(CHPclim) and bias correction was carried out. The details of these datasets can be found 

in Ehsan et al. [3].  

Table 1. Spatiotemporal resolution of different precipitation products used in this study. 

Precipitation Product Original Spatiotemporal Resolution 

TMPA 

0.25 degree, daily 
CMORPH 

PERSIANN 

ERA-Interim 

GSMap 0.1 degree daily 

In our study, 53,098 samples of rainfalls were collected, but only the cases where the 

measured rainfall value was greater than zero were used. The median rainfall was 8.6 

mm/day for the rain gauges, with a standard deviation of 9.92 mm/day. Medians and 

standard deviations for the different models are given in Table 2. The reanalysis data had 

the closest median and standard deviation (6.94 and 7.91 mm/day, respectively) compared 

to the rain gauge measurements (8.6, 9.92 mm/day respectively). GSMaP had the lowest 

median value (2.54 mm/day). Another parameter was the elevation at which the precipi-

tation was measured. The correlation matrix using the Pearson correlation coefficients 

(Equation (1)) between variables with respect to rain gauge is shown in Figure 2. 

CMORPH showed a higher correlation (0.29), followed by TMPA (0.24). Elevation had the 

lowest correlation (0.037).  

𝑟 =  
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√∑(𝑥𝑖 − �̅�)2∑(𝑦𝑖 − �̅�)2
 (1) 

where r is the correlation coefficient, �̅� is the mean of the x values, and �̅� is the mean of y 

values.  

 

Figure 1. Map of the elevation of the Upper Blue Nile Region (reprinted with permission from [3]). 

Black dots indicate the locations of rain gauge measurement. 

  

Figure 1. Map of the elevation of the Upper Blue Nile Region (reprinted with permission from [3]).
Black dots indicate the locations of rain gauge measurement.

In our study, 53,098 samples of rainfalls were collected, but only the cases where
the measured rainfall value was greater than zero were used. The median rainfall was
8.6 mm/day for the rain gauges, with a standard deviation of 9.92 mm/day. Medians
and standard deviations for the different models are given in Table 2. The reanalysis
data had the closest median and standard deviation (6.94 and 7.91 mm/day, respectively)
compared to the rain gauge measurements (8.6, 9.92 mm/day respectively). GSMaP
had the lowest median value (2.54 mm/day). Another parameter was the elevation at
which the precipitation was measured. The correlation matrix using the Pearson correlation
coefficients (Equation (1)) between variables with respect to rain gauge is shown in Figure 2.
CMORPH showed a higher correlation (0.29), followed by TMPA (0.24). Elevation had the
lowest correlation (0.037).

r = ∑ (xi − x)(yi − y)√
∑ (xi − x)2 ∑ (yi − y)2

(1)

where r is the correlation coefficient, x is the mean of the x values, and y is the mean of
y values.
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Table 2. Percentiles and standard deviations of rainfall prediction from models as well as the
measured rainfall (Target). All units are mm/day.

Reanalysis CMORPH GSMaP PERSIANN TMPA Rain Gauge

Min (0%) 0 0 0 0 0 0.02
25% 4.09 2.25 0 0 1.25 3.8

Median (50%) 6.94 6.09 2.54 2.97 5.15 8.6
75% 11.47 12.60 9.26 9.06 11.90 15.4

Max (100%) 89.26 112.05 100.00 86.61 110.91 166
Standard Deviation 7.91 9.71 8.63 8.74 9.85 9.92
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variables. A value of 0 indicates no relationship.

3. Methodology

The workflow is shown in Figure 3. In our study, elevation and five precipitation
products (‘Reanalysis’, ‘CMORPH’, ‘GSMaP’, ‘PERSIANN’, ‘TMPA’) were used as input
features/predictor variables. The input data were normalized using min-max scaling
(Equation (2), the resultant data are scaled between 0 and 1). This ensured that every
feature had equal significance during training.

Xnorm =
X− Xmin

Xmax − Xmin
(2)

where Xnorm is the normalized value after min-max scaling. Xmin and Xmax are the minimum
and maximum values of a feature, respectively.

The data were randomly split into train, validation, and test sets. While 70% of the data
were used for training algorithms, 10% were used for the optimizing algorithm (Random
Forest, Decision Tree, Gradient Boost, Neural Network) parameters (validation), and 20%
of the data were used for testing the performance of the algorithms. Each algorithm was
considered independently, and the fitting parameters were derived to minimize the loss
function: mean square error (MSE). Four regression algorithms were tested.
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Figure 3. Schematic representation of the prediction process for this study.

3.1. Decision Tree Regressor (DT)

This decision tree regressor is a supervised algorithm that predicts outcomes based
on decision rules created from prior data. The attributes of the observation are compared
with those of the decision tree [28]. Comparison starts from the ‘root’ of the tree, which
branches into nodes. Each node in the tree represents a feature and branches into sub-nodes
based on the value of that feature. The outcomes are taken from the terminal node or ‘leaf’.
In order to develop a model that could accurately predict the output variable without
overfitting, decision trees with different maximum depths were fitted to training data and
tested on validation data. It was found that a depth of 5 had the lowest mean square error
(90.89 mm2/day2) on the validation dataset (Figure 4a). Details about the other parameters
used in the algorithm can be found in Table 3.
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Table 3. Additional parameters for the decision tree, random forest, and gradient boosting regressors used in this study.

Parameter Description DT RF GB

Criterion Function to measure the quality
of a split Mean Square Error (MSE) MSE MSE

Number of
estimators Number of trees in the forest N/A Figure 3b Figure 3c

Splitter Strategy to choose the split at
each node Best N/A N/A

Max Depth Maximum depth of the tree Figure 3a
until all leaves contain less
than minimum samples for

splitting (2)
3

Min samples at
leaf node

Minimum number of samples
required to be at a leaf node 1 1 1

Bootstrap Using bootstrap samples to
build the tree N/A True N/A

3.2. Random Forest Regressor (RF)

Random Forest is an ensemble algorithm that uses predictions from a large number of
decision trees (weak learners) to obtain a more robust prediction (strong learner) [29]. In RF,
a number of decision trees are created from a subset of training data, which are sampled
with replacement. Each decision tree also uses a subset of features chosen randomly. This
makes the trees less correlated and results in a better performance. The predictions from
the decision trees are then averaged to create the final prediction. The RF regressor in
our study was optimized by fitting the training data with different numbers of trees and
comparing their performance on the validation data. We found that 120 trees perform best,
with an MSE of 91.07 mm2/day2 (Figure 4b). Details about the other parameters used in
the algorithm can be found in Table 3.

3.3. Gradient Boosting Regressor (GB)

Gradient boosting regressor is also an ensemble method that sequentially combines
decision trees [30]. Each tree attempts to minimize the errors of the previous tree. The
final prediction aggregates the results from each tree. Similar to RF, the GB regressor was
optimized by finding the number of trees (250) that would provide the best performance
on the validation dataset (85.62 mm2/day2) (Figure 4c). Details about the other parameters
used in the algorithm can be found in Table 3.

3.4. Neural Network (NN)

Neural networks are machine learning algorithms comprised of an input layer, one
or more hidden layers, and an output layer [31]. Each layer has multiple nodes, with
each node generally connected to the input features or outputs from an earlier layer. The
output of each node is the weighted sum of inputs to that node. The sum is then fed to
an activation function. We used a fully connected NN (every node in a layer is connected
to every node in the following layer) with four hidden layers (Figure 5). The input layer
consisted of the five input models (CMORPH, PERSIANN, TMPA, GSMaP, and reanalysis)
and elevation. The hidden layers contained 256, 256, 256, and 128 nodes, respectively,
with rectified linear unit (relu) as their activation function. The output layer predicting
precipitation had one node without any activation function. A batch size of 3000 was used.
Early stopping was used to prevent overfitting to the training data. The loss versus epoch
plots for the training and validation datasets are shown in Figure 6.
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The importance (scale of 0 to 1) of different features for all machine learning algorithms
apart from NN are shown in Figure 7. Feature importance is a feature’s contribution to node
impurity. CMORPH is most important feature for all algorithms but its weight changes
for different algorithms. For examples, it has a relative importance of 0.76 for decision
trees but 0.27 for Random Forest. PERSIANN appears to be the feature with the lowest
importance overall. This is probably caused by GSMap and PERSIANN reporting zero
precipitation for at least up to 25th percentile.

To further demonstrate potential insights into the influence of individual variables
on the response variable, a Partial Dependence Plot (PDP) was created for the study area
(Figure 8). PDP presents the impact of each variable on the output variable while other
variables remain constant [30]. The PDP plot in our study shows the response variable
(reference precipitation) responding to all the inputs used in this study. This suggests
that the variables selected in our study have a considerable impact on the precipitation
prediction, justifying our choice to include them.
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4. Performance Evaluation Error Metrics

To compare the performance of algorithms on the test dataset, we decided on the
following series of metrics.
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4.1. Root Mean Square Error (RMSE) and Normalized Centered Root Mean Square
Error (NCRMSE)

Root mean square error is the square root of the mean of sum-squared error terms.
The lower the value of RMSE is, the better the model is.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (3)

where yi and ŷi are true and predicted values, respectively. N is the population.
Normalized centered root mean square error (NCRMSE) is a statistical metric used to

measure random error [32]. The values of NCRMSE vary from zero to positive infinity. The
lower the value, the better the performance will be—i.e., there will be lower random error.

NCRMSE =

√
1
N ∑N

i=1

[
ŷi − yi − 1

N ∑N
i=1(ŷi − yi)

]2

1
N ∑N

i=1 yi
(4)

4.2. Mean Absolute Error (MAE)

Mean absolute error is the average of absolute values of errors. The lower the value of
MAE is, the more accurate it will be.

MAE =
1
N

N

∑
i=1
|yi − ŷi| (5)

4.3. Mean Relative Difference (MRD)

Mean relative difference refers to the mean of the relative percentage error, which is
given by:

MRD =
1
N

N

∑
i=1

ŷi − yi
yi

(6)

MRD can describe both the magnitude and the direction of the error; positive MRD
indicates overestimation, while negative MRD indicates underestimation. A value of zero
equates to perfect prediction.

4.4. Bias Ratio (BR)

Bias ratio is the mean of the ratio of the predicted value to the actual value. The bias
ratio of a pure unbiased distribution will be 1.

BR =
1
N

N

∑
i=1

ŷi
yi

(7)

There are two types of errors associated with the precipitation prediction: random
error and systematic error. Random errors average out to zero over significant amounts of
observation. However, systematic error leads to a consistent deviation from the actual value.
NCRMSE quantifies random errors, while MAE, MRD, and BR quantify systematic errors.

5. Results and Discussion

A comparison of the different input models and AI algorithms is shown in Figure 9.
For lower than the 25th percentile, GSMaP and CMORPH perform best in terms of RMSE
and NCRMSE, respectively. The PERSIAN model performs best in all other metrics (MAE,
MRD, and BR). The random error indicated by NCRMSE is reduced by 60% using NN.
For all other metrics, GB performs best among the ML algorithms, but falls short of the
performance of the input models. For the percentile range between 25th and 50th, the
PERSIANN model performed best among the input models in terms of RMSE, MRD, and
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BR. Reanalysis performed best in NCRMSE and MAE. The ML algorithms performed better
than the input models in terms of RMSE (26.1%, NN), NCRMSE (57.5%, GB), and MAE
(3.8% GB), although it suffered in terms of MRD and BR. For the 50th to 75th percentile
range, the NN model outperformed all the input models, as well as other ML algorithms in
all metrics, with 57.6%, 56.4%, 58.2%, 119.6%, and 21% improvements in RMSE, NCRMSE,
MAE, MRD, and BR, respectively. For percentiles larger than the 75th, RF performed
best among the machine learning models, with 21.9%, 26.33%, 27.2%, 13.9%, and 10.6%
improvements over the best input models in terms of RMSE, NCRMSE, MAE, MRD, and
BR, respectively. The metric comparison is summarized in Table 4.
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Figure 9. Percentile-based comparison of RMSE (a), NCRMSE (b), MAE (c), MRD (d), and BR (e) between input models and
different machine learning algorithms on the test dataset. Total number of samples in test set was 10,620; thus, each of the
four percentile ranges contain 2655 samples. The 0th, 25th, 50th, 75th, and 100th percentile values are 0.03, 3.8, 8.5, 15.2, and
124 mm/day, respectively. The preferred value for BR (=1) is indicated by a black dashed line.
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Table 4. Best input and ML model based on different metrics in different percentile ranges. Red indicates a worse
performance than the input models and green indicate a better performance.

Percentile(th) RMSE NCRMSE MAE MRD BR

<25 Best input GSMaP CMORPH PERSIANN PERSIANN PERSIANN
Best ML Model GB NN GB GB GB

Performance (%) 13.7 60.0 80.9 187.5 146.6
25-50 PERSIANN Reanalysis Reanalysis PERSIANN PERSIANN

NN NN GB GB GB
26.1 57.5 3.8 11,549.7 90.2

50-75 Reanalysis Reanalysis Reanalysis Reanalysis Reanalysis
NN NN NN NN NN
57.6 56.4 58.2 119.6 21.0

>75 CMORPH Reanalysis CMORPH CMORPH CMORPH
RF DT RF RF RF

21.9 26.3 27.2 13.9 10.6

In terms of RMSE, the ML algorithms performed worse (<25th percentile, 13% worse)
or better (>25th percentile, ≥21% better) than the input models (Figure 9a). Since RMSE
puts more weight on larger errors, this indicates that the magnitude of the errors made
by ML algorithms decrease as the precipitation value increases. Throughout the entire
test set, the ML algorithms had lower random error compared to the input models, as
indicated by the NCRMSE plot (Figure 9b). The ML algorithms showed more than 55%
improvement over the input models up to the 75th percentile, and 26% improvement
beyond that. The mean absolute error plot estimating the average errors shows that ML
algorithms performed better than the input models beyond the 25th percentile. Once
possible reason behind this may be that the median of the train set is higher than the test
set. From the polarity of MRD, we can comment that the ML algorithms overestimate in
the 0–75th percentile range and underestimate in the range beyond (Figure 9d). This is
because the input models overall show a similar behavior as well. From the bias ratio plot,
we observe that the ML algorithms suffer from high bias errors. However, beyond 50th
percentile the ML algorithms perform better than the input models (Figure 9e).

Overall, ML algorithms greatly reduced random errors in all percentiles and system-
atic errors in >50th percentile. They performed best in the 50–75th percentile range and
worst in the range below the 25th percentile. The 50-75th percentile is crucial for predicting
the growth of vegetation. NN performs best in this range. Even though the input models
suffer from high error (RMSE and MAE) in the range above the 75th percentile, we ob-
served improvements in all metrics in this range when using machine learning algorithms.
Accurate prediction in this range is important, as it can prevent losses due to flooding
caused by excessive rainfall. RF performs best in this range.

In our analysis so far, we have only considered cases where the measured precipitation
was greater than zero. In order to check the robustness of our model, we checked the per-
formance of one of the ML algorithms. GB, for two different datasets: the June-September
period of 2000-2012 both ‘with’ and ‘without’ zero precipitation cases. Where zero pre-
cipitation cases were included, this constituted ~22% of the dataset. The GB algorithm
was trained on 80% of the data and tested on 20% of the data. The resulting NCRMSE
and RMSE values are shown in Figure 10. We observed a 19% increase in NCRMSE with
the inclusion of zero precipitation, whereas the RMSE reduced by 1.24%. This indicates
that zero precipitation cases, if moderate in number, can be handled by ML algorithms. Of
course, there will be high bias towards zero for regions or time periods dominated by zero
precipitation, resulting in the erroneous prediction of precipitation at higher percentiles.
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Overall, for the calibration of the precipitation forecasting model, the most important
factors are the AI algorithms, predictors, and accurate precipitation data for constructing a
predictor–precipitation relationship. Moreover, AI techniques considered elevation as a
control parameter, which helped to decrease the systematic and random error noticeably in
the study regions where complex terrain is available. Collective evidence from the recent
studies [3,7] and the regional precipitation evaluation study herein shows that hydrological
understanding paired with multisource hydrometeorological data merging is necessary for
reliable precipitation forecasting over complex terrain areas.

6. Conclusions

This study investigated the use of multisource satellite/reanalysis data for advancing
the application of operational water resources. This study also presented a comprehensive
evaluation of ML methods and a comparison of reanalysis and satellite-derived estimates
of precipitation in the diverse climate and terrain region of the Upper Blue Nile Basin. Un-
derstanding complex hydrological processes in conjunction with big data is a prerequisite
for predicting water resources phenomena. Although ground-based measurement is the
best way to examine the application of water resources, it is impossible to measure all the
meteorological information at the required spatio-temporal scale. We used precipitation
predictions from five different models and the attribute elevation of the gauge as inputs
for four different machine learning algorithms. Elevation showed little correlation with
precipitation but was an important feature in making predictions. The performance of
the ML algorithms was compared with that of the input models on different metrics, and
the ML models improved the predictions in most of the cases, especially in cases above
the 25th percentile. The machine learning algorithms tested in this study showed similar
improvements in all metrics, with different algorithms showing slightly better performance
in each of the four percentile ranges. The ML models also outperformed the input models
in the 75 to 100th percentile range. This is crucial, as this range often indicates the flooding
of the area. Timely and accurate prediction will alert authorities to take necessary steps to
minimize loss if such an event occurs. We found the training time of decision trees to be
the shortest, followed by gradient boosting and random forest. Neural networks took the
longest time to train. The training time of neural networks can be shortened by using a
simpler network, possibly at the cost of accuracy. The neural network was also the most
resource intensive. Thus, depending on the resources and degree of precision, different
models can be chosen without sacrificing much accuracy, as all the ML models perform
better than the input models. In future studies, the observation capability of a single
satellite/reanalysis data set could be enriched by utilizing multiple techniques to provide
a proof-of-concept for mainstreaming the application of multisource observation-based
water management in data-limited regions.
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