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Abstract: Tropospheric concentrations of phytotoxic ozone (O3) have undergone a great increase
from preindustrial 10–15 ppbv to a present-day concentration of 35–40 ppbv in large parts of the
industrialised world due to increased emissions of O3 precursors including NOx, CO, CH4 and
volatile organic compounds. The rate of increase in O3 concentration ranges between 1 ppbv per
decade in remote locations of the Southern hemisphere and 5 ppbv per decade in the Northern
hemisphere, where largest sources of O3 precursors are located. Molecules of O3 penetrating into
the leaves through the stomatal apertures trigger the formation of reactive oxygen species, leading
thus to the damage of the photosynthetic apparatus. Accordingly, it is assumed, that O3 increase
reduces the terrestrial carbon uptake relative to the preindustrial era. Here we summarise the results
of previous manipulative experiments in laboratory growth cabinets, field open-top chambers and
free-air systems together with O3 flux measurements under natural growth conditions. In particular,
we focus on leaf-level physiological responses in trees, variability in stomatal O3 flux and changes in
carbon fluxes and biomass production in forest stands. As the results reported in the literature are
highly variable, ranging from negligible to severe declines in photosynthetic carbon uptake, we also
discuss the possible interactions of O3 with other environmental factors including solar radiation,
drought, temperature and nitrogen deposition. Those factors were found to have great potential to
modulate stomata openness and O3 fluxes.

Keywords: carbon uptake; manipulation experiment; interaction effect; tropospheric ozone; stomatal
ozone flux

1. Changes in O3 Concentration

Concentrations of O3 ([O3]) have been increasing since the preindustrial era due to an
increase of its precursors [1]. As an important secondary phytotoxic air pollutant causing in-
jury to plant tissue and a significant decrease of crop and timber yield, it deserves attention
from farmers, scientists and the general public. Although the historical [O3] are unreliable
because of a limited number of observations and disagreements in the retrospective mod-
elling [2], it is considered that [O3] has increased from the baseline of 10–15 ppbv (parts per
billion per volume, volume mixing ratio; [3]) to current concentrations of 35–40 ppbv in
large parts of the industrialised world [4,5]). Plant species vary in their sensitivity to [O3],
and it seems that genetically based detoxification processes [6] are significant and certainly
sufficient to protect plants against any harmful effect of low pre-industrial [O3]. The con-
cept of “effective O3 flux”, defined as a balance between stomatal O3 flux and detoxifying
capacity of the plant, was proposed [7]. However, there is a huge variety of clones and
cultivars (poplars, beans, etc.), which are sensitive even to low [O3], demonstrating a strong
genetic basis for plant sensitivity to O3.
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Ozone was discovered in 1839 by Christian Friedrich Schönbein during his experi-
ments with the electrolysis of water. At the start of the modern era, [O3] was measured
using classical procedures involving titration. In Europe, one of the first measurements
was performed by Albert-Lévy in Paris. He showed [O3] to be 11 ± 2 ppbv over the
period 1876–1910 [8]. Even in high elevations, at Pic du Midi, France, 3000 m a.s.l., a
concentration of only 10 ppbv was measured during 1874–1895 with a peak in spring and
a minimum in winter [9]. The oldest continuous measurements started at the Arkona-
Zingst site (Germany) in 1956: they showed [O3] in the 1950s–1960s to be in the range of
15–20 ppbv [10].

The first harmful effects of O3 were reported in the San Bernardino Mountains of
Southern California, in Pinus ponderosa forest [11]. During the 1970s, in inland valleys
around Los Angeles, maximum annual [O3] reaching 300–400 ppbv was common [12].
Air pollution led to an increase in the number of days with [O3] > 95 ppbv from 114 in 1963
to 163 days in 1978 [13].

Elsewhere, an increase of 2–4 ppbv per decade was later reported [4], and an increase
of 0.35 ppbv per year was seen in South Korea and Japan in 2000–2014 [14,15]. How-
ever, at highly polluted urban sites the increase was rapid, 2.6 ppbv per year in Beijing
in 2005–2011 [16] and 2 ppbv per year in the Pearl River Delta region [17]. Recently, in-
terannual and decadal changes are reported elsewhere: in the North China plains, there
were increases of 3–5 ppbv (2001–2006), mostly attributed to a change of cloud cover
and temperature [18] with only a low impact (1–2%) due to afforestation and increased
VOC production [19].

In the southern hemisphere, with much less land area and industry, there is a trend
of an increasing [O3] of 0.1 ppbv per year from 1990–2015 ranging from 0.04 at Baring
head (New Zealand) to 0.21 at Arrival Heights (Antarctica). Overall there seems to be a
concentration increase towards southern latitudes [20]. Similarly, an increase of 0.66 ppbv
per decade has been observed in Chile at El Tololo mountain [21]. The increase is at-
tributed to the poleward expansion of the Hadley Circulation, bringing the O3-rich air
from the stratosphere [20].

Marked diurnal courses of [O3] have usually been found, particularly in large urban
agglomerations [22]. O3 is produced over the day, associated with high UV irradiance
which drives the photochemistry, whilst at the same time, O3 is being removed by wet and
dry depositions on various surfaces and uptake by plants. Typically, NOx is transported
from urban areas at low elevations to rural forested areas where significant amounts of
VOC are being produced as natural plant emissions. Thus the appropriate VOC/NOx
ratio for O3 production, ranging between 4 and 15, is achieved [23]. Such middle-range
transport of NOx is responsible for the enhanced production of O3 in rural areas, often at
high elevations, and may result in damage of vegetation. A globally averaged lifetime of
tropospheric O3 is approximately 23 days [24]. Therefore, O3 could be transported even
at long-range between continents [25]. However, its lifetime inside the boundary layer is
much shorter because of the surface deposition and chemical reactions, such as reduction
of O3 to oxygen. These processes, as well as the spatio-temporal heterogeneity in [O3], are
further modulated by the seasonal variability of microclimatic conditions (Figure 1).

At nightfall [O3] rapidly decreases because of the oxidation of NO to NO2 in the
absence of production. Distinct seasonal behaviour patterns have been reported in indus-
trialised and rural areas of Europe and the USA: (1) a broad spring-summer maximum of
[O3] in the industrialised parts, but (2) a minimum [O3] in summer and autumn in remote
regions [26]. Noticeably, spring [O3] maximum is a northern hemispheric phenomenon,
only found in northern and western parts of Europe. In the temperate zone of Central and
Eastern Europe, the highest [O3] are observed in summer months when temperatures and
irradiances reach their highest values (reviewed in Monks [27]), while these are lowest in
winter [28,29]. Moreover, substantially higher [O3] are observed under clear skies than
under cloudy skies, but not in winter [29].
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Figure 1. Scheme of tropospheric ozone (O3) formation. Tropospheric ozone is formed in a com-
plex series of photochemical reactions driven by ultraviolet (UV) solar radiation. NO2 is photo-
lyzed to form NO and an electronically excited oxygen atom, O, which reacts with molecular oxy-
gen in the atmosphere (O2) to form O3. However, O3 may also regenerate NO2 in the presence of 
NO, thus keeping a photo-stationary state. Therefore, net O3 production occurs when O3 precur-
sors, such as carbon monoxide (CO), methane (CH4) and volatile organic compounds (VOCs), are 
present in the atmosphere at appropriate concentrations. This chain of photochemical reactions is 
catalysed by hydroxide anion (OH−), hydroperoxyl radical (HO2), NO and NO2. Enhanced O3 pro-
duction thus occurs under high levels of UV radiation and when the concentration of precursors 
reaches critical levels. Transport of precursors and catalysts from urban and industrial lands (CO, 
NOx and VOC) to rural conditions enhances mixing of polluted air plumes with clean rural air 
(enriched with CH4 and VOC) and results in a VOC/NOx ratio conducive for O3 formation. There-
fore, latitudinal and elevational distribution differences in O3 concentration are likely caused by 
the distribution of O3 precursor sources associated with industrialization development and/or by 
an elevational increase in UV radiation. 

At nightfall [O3] rapidly decreases because of the oxidation of NO to NO2 in the ab-
sence of production. Distinct seasonal behaviour patterns have been reported in indus-
trialised and rural areas of Europe and the USA: (1) a broad spring-summer maximum of 
[O3] in the industrialised parts, but (2) a minimum [O3] in summer and autumn in remote 
regions [26]. Noticeably, spring [O3] maximum is a northern hemispheric phenomenon, 
only found in northern and western parts of Europe. In the temperate zone of Central and 
Eastern Europe, the highest [O3] are observed in summer months when temperatures and 
irradiances reach their highest values (reviewed in Monks [27]), while these are lowest in 
winter [28,29]. Moreover, substantially higher [O3] are observed under clear skies than 
under cloudy skies, but not in winter [29].  

In the Czech Republic, Central Europe, the annual maxima of [O3] are being shifted 
towards the later parts of the year. The [O3] peak has shifted from Day of Year (DOY) 120–
170 at the beginning of the millennium towards DOY 160–175 over the following 20 years 
depending on the locality [30]. The shift is probably caused by the change of meteorolog-
ical conditions towards warmer and dryer years with consequently more favourable con-
ditions for O3 formation [30]. However, contradicting results are found in the summer 
monsoon climate of Beijing: [O3] maximum is in June, while the lowest values of [O3] are 
in December [31]. Similarly, in the Yangtze River Delta, the maximum is found in July 
with a second maximum in September, followed by a minimum in November [32]. At 38 
sites involved in the European Monitoring and Evaluation Programme (EMEP), there was 
a decrease of [O3] reported in the 1990s, however later, around 2000, the [O3] had in-

Figure 1. Scheme of tropospheric ozone (O3) formation. Tropospheric ozone is formed in a complex series of photochemical
reactions driven by ultraviolet (UV) solar radiation. NO2 is photolyzed to form NO and an electronically excited oxygen
atom, O, which reacts with molecular oxygen in the atmosphere (O2) to form O3. However, O3 may also regenerate NO2

in the presence of NO, thus keeping a photo-stationary state. Therefore, net O3 production occurs when O3 precursors,
such as carbon monoxide (CO), methane (CH4) and volatile organic compounds (VOCs), are present in the atmosphere at
appropriate concentrations. This chain of photochemical reactions is catalysed by hydroxide anion (OH−), hydroperoxyl
radical (HO2), NO and NO2. Enhanced O3 production thus occurs under high levels of UV radiation and when the
concentration of precursors reaches critical levels. Transport of precursors and catalysts from urban and industrial lands
(CO, NOx and VOC) to rural conditions enhances mixing of polluted air plumes with clean rural air (enriched with CH4

and VOC) and results in a VOC/NOx ratio conducive for O3 formation. Therefore, latitudinal and elevational distribution
differences in O3 concentration are likely caused by the distribution of O3 precursor sources associated with industrialization
development and/or by an elevational increase in UV radiation.

In the Czech Republic, Central Europe, the annual maxima of [O3] are being shifted
towards the later parts of the year. The [O3] peak has shifted from Day of Year (DOY)
120–170 at the beginning of the millennium towards DOY 160–175 over the following
20 years depending on the locality [30]. The shift is probably caused by the change
of meteorological conditions towards warmer and dryer years with consequently more
favourable conditions for O3 formation [30]. However, contradicting results are found in
the summer monsoon climate of Beijing: [O3] maximum is in June, while the lowest values
of [O3] are in December [31]. Similarly, in the Yangtze River Delta, the maximum is found
in July with a second maximum in September, followed by a minimum in November [32].
At 38 sites involved in the European Monitoring and Evaluation Programme (EMEP),
there was a decrease of [O3] reported in the 1990s, however later, around 2000, the [O3]
had increased; then, in the 2010s it decreased [33]. Interpretation of the trends and spatial
patterns over several past decades has been challenging [34]; however in Europe, because
of the successfully adopted measures to reduce O3 precursors, O3 surface concentration
decreased by 2% from 2000 to 2014 [35].

In the Arctic, there is no clear trend in Barrow (USA, Alaska, 1981–2010) and Resolute
(Canada), although there is an increasing trend in short-term periods [36]. In the southern
hemisphere, the strongest increase in [O3] is reported to be during the austral autumn
(March-May) with an increase of 0.14 ppbv per year on average, while in other seasons the
increase is only 0.07–0.12 ppbv per year [20]. The exception is South Africa with a sharp
increase of 1 ppbv per year over the period 1992–2011 [37]. An overview of [O3] in different
regions of the world, with model predictions for the future, is given by Archibald et al. [5].
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Currently, [O3] and its changes are both measured and modelled, however modelling
approaches based on state-of-the-art models may suffer from huge uncertainties [38], and
some are unable to track accurately [O3] from the past.

2. Methodological Approaches

The earliest attempts to examine the response of plants to ozone were conducted
in glasshouses, growth rooms or transparent enclosures with air-conditioning [39–41].
These studies were short-term, and often focused on foliar damage, rather than growth or
physiology. Over several decades, researchers have moved away from this starting point
in an effort to achieve realism and understanding (Figure 2).
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to O3 in relation to a transition from tissue-level studies, through studies at the level of individuals and stands, up to
large-scale modelling.

2.1. Open-Top Chambers

Soon, methods for quantifying the long-term growth-responses of plants to atmo-
spheric pollutants (SO2, O3, acid mist) were being developed. From early 1970s researchers
began to employ open-top chambers (OTCs), each consisting of a transparent plastic struc-
ture, often a cylinder, into which a prepared gas mixture could be injected [42,43]. The
‘open top’ enabled mixing of the chamber air with the ambient air in an attempt to aid
mixing and reduce unwanted microclimatological effects, particularly heating, that might
occur in a fully closed chamber. OTCs became widely used, not only for pollutants such
as O3 and SO2 but also to explore the impact of rising CO2 on plant growth. Features
of their designs are illustrated in retrospective reviews by Allen et al. [44] and D’Andrea
and Rinaldi [45].

However, it was realised that a distinct microclimate would inevitably develop inside
the OTC, with higher temperature and humidity than outside, and a lower wind speed
and precipitation. The temperature difference was found to be typically less than two
degrees [46]. Differences in humidity were likely to influence stomatal conductance, and
the lack of plant movement in the natural wind might influence the thigmo-morphogenic
response [47]. For many purposes, small differences in environmental variables may not
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matter, as both control and treatment chambers induce the same conditions. On the other
hand, plant responses to pollutant levels may well be different when the environmental
variables are changed, and extrapolation to present-day ambient conditions may thus be
unwise. Another issue is the non-uniform distribution of gas within the chamber. Wind
tunnel models were constructed to aid design [48,49], and analysis was made of gaseous
diffusion pathways [50]. It was found that the addition of a frustum at the top edge of
the chamber prevented large incursions of ambient air in windy conditions, and also
economised on the use of the pollutant gas. Attention was given to the points of entry
of gas to the chamber. Leaves in the ‘near field’ of the entering gas would receive an
unwanted high dosage unless the entry points are well distributed [51]. When the pollutant
gas is ozone, this may be a special problem. To distribute the injected gas, many designs
featured one or two toroidal (“dough-nut”) perforated gas exchange units made of flexible
polythene, and sometimes a fan was fitted.

Despite these difficulties, OTCs have been widely used. They have the great advantage
of being relatively inexpensive, and therefore a number of them can be deployed in an
experimental design which includes appropriate replication. Plants may be rooted in native
soil, thus minimising the unwanted effects of root restriction usually seen in pot-grown
plants in glasshouses or growth-rooms. Moreover, the environment inside the OTC more-
or-less follows the outside environment and thus plants experience almost natural photon
irradiance, photoperiods and seasonality. Further, they have been used successfully in
many outdoor settings: for field crops [52], for trees [53] and for natural ecosystems [54].
As knowledge progresses, researchers have been able to use OTCs in new and imaginative
ways, for example, to investigate the important interactions of O3 pollution with nitrogen
supply [55], to investigate competition between species in different O3 scenarios [56,57]
and to study the impact of O3 on root growth and development [58].

2.2. Free-Air Systems

The next step was the development of fumigation systems without chambers [59,60].
In most of the early work, the main interest was SO2 and the system was known as the free-
air controlled enrichment system (FACE). Later, when used by the CO2 research community
this became free-air CO2 enrichment (also FACE). There are no walls or barriers; the gas
is distributed to the open air from a circle of towers and the rate is controlled so that the
concentrations at the canopy level are constant [61]. The installation and running costs
are relatively high, and the degree of replication is usually limited by the funds or area
of land available for the project. FACE experiments using O3 have now been used many
times, particularly on crop species and young trees [62–64]. In some of these experiments,
more than one gas may be used to examine the interactions, particularly between O3
and CO2 [62,65,66].

FACE rings may be quite small (diameter just a few metres) for use with short vege-
tation [56] or huge (diameter 35 m) for mature forests [67]. To obtain meaningful results,
experiments may be conducted for just one growing season in the case of annual crops,
or they may be extended for many years in the case of forests [68]. Where such major facili-
ties are established, it becomes desirable and highly effective to include eco-physiological
experiments, including both above- and below-ground components [69].

For trees, there has been a preponderance of work on seedlings and saplings. For
mature trees, the scale of construction, both for OTCs and FACE rings, is often beyond
the funding capabilities. Where two gases are involved, 12 units would seem to be the
minimum (see the experimental design of Isebrands et al. [62]). Seedlings and saplings
inevitably have different growth responses from mature trees and cannot ever be a realistic
surrogate for them [70,71]. Likewise, in studies on trees, there is a tendency to work on
fast-growing species, which may not be representative of the world’s forests.
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2.3. Micrometeorological Approaches

With the rapid adoption of micrometeorological techniques, particularly eddy-covariance,
it became possible to measure directly the flux of trace gases to vegetation. Eddy-covariance
requires sensors that respond quickly to concentration changes with a frequency of several
Hz. For the case of O3, the gas could be measured by chemiluminescence and such sensors
were developed very early [72,73]. Fast sensors for CO2 and H2O, and their use to measure
CO2 fluxes came about a decade later [74]. This opened up new possibilities to utilise the
naturally occurring [O3] to measure and model the photosynthetic response (as CO2 flux) of
mature vegetation to episodes of pollution. This line of research is expected to provide an
understanding of exactly how the fundamental ecophysiology of the plant responds to the
wildly varying [O3], and how this response depends on hourly, daily or seasonal changes in
natural conditions by interrogating a long time-series (preferably over several years).

As there are several hundred long-established and well-maintained CO2 flux stations
in the world [75,76], it would seem to be a simple matter to add O3 sensors to those
stations that measure trace gases and the flux of water vapor and heat [77–79]. Usually,
the water vapor fluxes are used in conjunction with other variables to estimate the stomatal
conductance of the canopy, and thus it has been possible to partition the overall flux of O3
into stomatal and non-stomatal components. The non-stomatal components of the flux
are unlikely to influence the plant’s physiology directly: they include deposition to inert
surfaces and reaction with gaseous compounds in the canopy air-space.

It has been found that O3 uptake by plant canopies is greatest when the CO2 uptake
and stomatal conductance to O3 are maximal [78,80–83]. Moreover, the photosynthetic
uptake of CO2 is more strongly related to the stomatal conductance to ozone than simply to
[O3] [28,70,84,85]. In a more recent paper, Juráň et al. [29] show how diffuse sky conditions
are associated with higher stomatal uptake of O3 even though the concentrations of ozone
are higher in clear sky conditions. The likely explanation of the diffuse-sky effect is that
meteorological conditions are more humid under diffuse skies and thus stomata are more
open because of the well-established stomatal response to vapor pressure deficit (VPD; [84]).

A full analysis of the effect of O3 on CO2 flux from micrometeorological data is how-
ever beset with difficulties because the climatological variables are strongly intercorrelated.
In particular, solar radiation is responsible for the photochemical production of O3 as
well as for photosynthesis. Fares et al. [85] tried to overcome the confounding effect by
first fitting a simple relationship between solar radiation and CO2 flux, and thereafter
examining the effect of O3 on the residuals of this relationship. There is scope for the
development of a standardised suite of statistical tools to identify the optimal methodology
for data-mining in this important area.

2.4. Modelling Approaches

How should this wealth of research data, experimental and observational, be modelled
to enable upscaling? The first approach is to develop mechanistic models. Modelling the
uptake of gases by leaf canopies using the basic principle of an Ohm’s Law resistance
network was developed by Monteith and others in the 1960s in relation to CO2 and water
vapor and is widely applied at scales from leaf to landscape [86,87]. The same type of
model, with certain modifications, might be used to simulate the effect of O3 on CO2 uptake.
The resistance network needs to allow for the uptake through stomatal and non-stomatal
pathways [88], and a robust stomatal model is required that can respond to environmental
variables [89]. The important and more difficult step is to go beyond modelling uptake,
towards modelling the effective dose of O3. Ideally, this would require knowledge of the
species-dependent internal defences (detoxification) of the leaf tissues. The effective ozone
dose is then the difference between the integrated uptake by the stomata and the integrated
detoxification rate.
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The second modelling approach is the application of machine-learning methods with
artificial neural networks, ANN [90]. Prediction using ANN is widely used in industry
and has been successfully applied to model CO2 fluxes [91–93]. It requires large data
sets, so that all combinations of environmental variables are represented. Savi et al. [90]
demonstrated the efficacy of the approach applied to model O3 uptake by analysis of flux
data from 11 sites of diverse ecosystem types and locations from the north to the south of
Europe. They found the reduction in net ecosystem productivity caused by O3 was highly
site-specific and varied 0 to 2.6 percent.

To address the policy issues regarding pollution control, models need to be at re-
gional or even global scale (“upscaling”). This has been tried by [89,94,95]. For example,
Oliver et al. [89] adapted the UK’s JULES model by incorporating data-based assumptions
about the threshold ozone uptake required to reduce photosynthesis. They found rather
little data on dose-response relationships; however, they made reasonable assumptions
about the different sensitivity of different plant functional types (PFTs). The model was
run for the whole of Europe in the period 1901–2050. O3 was found to reduce the gross
primary productivity (GPP) by 4–9 percent and carbon was lost from the soil. Boreal
regions suffered less than temperate regions.

3. Effect on Carbon Uptake from Leaf to Ecosystem Level

In the atmosphere, O3 is known to react with double bonds between carbon atoms to
produce aldehydes, ketones or higher oxidised molecules— that has been known since 1840
when O3 was discovered. The mechanism is the same in plants, where, after penetrating
through the stomatal apertures, ozone molecules oxidise the fatty acids of cell/organelle
membranes; this leads to the formation of reactive oxygen species (ROS) causing damage of
tissues (Figure 3). Such damage to photosynthetic membranes, despite the plant’s increased
defensive production of ROS scavenging enzymes ascorbate [96] and compounds with
antioxidative capacity (carotenoids; [97,98]), inevitably leads to local necrotic cell death
or early senescence [99]. Among others, Luwe and Heber [6] have shown that elevated
[O3] increases concentrations of reduced and oxidised forms of ascorbate in the apoplast of
leaves of different plant species. These transient increases are, however, often insufficient to
protect leaf tissues. The yellowish mottling occurs particularly close to stomata and appears
more often in older than young leaves [100]. Microscopic studies identified enlargement of
intercellular space and chloroplast injuries, including thylakoid swellings and membrane
disruption, as typical symptoms of O3 impact [97]. Such reduced photosynthetically active
leaf area leads to a reduced carbon uptake [101].
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However, O3 may affect carbon uptake at various physiological levels. Exposure to
chronic [O3] closes stomatal pores leading thus to a reduced stomatal conductance to CO2
diffusion and consequently to a reduced photosynthetic CO2 assimilation [102]. Moreover,
O3 reduces photosynthetic CO2 uptake via reduced Rubisco (ribulose-1,5-bisphosphate
carboxylase/oxygenase) content [103,104]. These effects need to be related to growth and
carbon economy at the ecosystem level. In a six-year free-air fumigation at a German forest,
Matyssek et al. [105] reported a 44% decline in stem productivity in Fagus sylvatica exposed
to twice-ambient [O3]. Reductions in biomass accumulation have been associated with
a modified carbon allocation to plant organs. Based on the meta-analysis of temperate
and boreal forests of the northern hemisphere, Wittig et al. [106] reported a significant
decrease of the root-to-shoot ratio under elevated [O3] indicating greater sensitivity of root
biomass to [O3]. O3-induced reduction in root surface area per soil volume unit [107] can
result in decreases of water and nutrition uptakes. Investigation of carbon pools revealed
faster O3-induced turnover of leaves/needles, reduction of canopy carbon pools and a
substantial increase in carbon deposited to the forest floor [108].

Several metrics have been developed to assess the effect of O3 on plants and to relate
threshold [O3] to relative yield loss. For example, the index AOT40 (accumulated dose of
ozone over a threshold of 40 ppbv), which has to be interpreted with regional and mete-
orological aspect, has been established. This index is calculated over the sunlight hours
and whole growing season, which is being prolonged towards a larger number of days in
line with earlier phenological phase occurrence [109,110]. The highest and lowest AOT40
values are reported from Mediterranean regions (38,359 ppb h) and Northern Europe
(5094 ppb h), respectively. In Continental Central Europe, AOT40 ranges between 13,636
and 23,515 ppb h, while it is 8207–13,751 ppb h in Atlantic Central Europe [35]. However,
this AOT40 index takes into account only of O3 exposure, but not the physiological proper-
ties enabling O3 diffusion to plant tissues, which is directly responsible for the damage.
Therefore, an alternative index based on stomatal O3 uptake, PODY (phytotoxic O3 dose
above a flux threshold of Y nmol O3 m−2 s−1) has also been advanced. The threshold
is species-specific and depends on the detoxifying capacity of the plant (e.g., [111]). The
value of Y ranges from 7 in Alnus glutinosa to 0–1 nmol O3 m−2 s−1 in Fagus sylvatica. The
minimum values of POD0 were found in Northern Europe (14 mmol m−2 year−1), while
maximum values of 29.7–32.1 mmol m−2 year−1 were observed in Mediterranean and
Atlantic regions of Europe [35].

While PODY is mainly used in scientific and modelling studies, AOT40 still prevails in
legislation (European Council Directive 2008/50/EC) and monitoring activities [112]. Pro-
tection of vegetation recommended by UNECE [113] sets an exposure-based critical level of
AOT40 as 5000 ppbv h. Attitudes may change, and PODY is now being discussed as a poten-
tial integral part of new legislation in Europe [114]. While AOT40 decreased and POD0 in-
crease in Lithuanian forests over the period 2007–2014 [115], Klingberg et al. [116] reported
a reduction of both indices in Picea abies at EMEP sites. More recently, Karlsson et al. [117]
confirmed a reduction in AOT40 but did not find a change in POD1 for the same tree
species. Between 2000 and 2014, AOT40 decreased in most of the European countries
(except rural northern areas of Iceland, Svalbard and Sweden), while POD0 increased from
0.03 to 1.06 mmol O3 m−2 year−1 across Europe [35]. However, in warm and dry years,
AOT40 increased [118] and PODY decreased [119] when compared to wet seasons. To
correctly determine the long-term trends in the development of these indices, continual
time series over several decades are, therefore, very much needed.

Recently, a new flux-based index combining stomatal exposure and crown defoliation
has been determined to define critical levels (CLef) for forest protection against O3-induced
visible injuries. Sicard et al. [120] recommended CLef to be less than 5 mmol m−2 year−1 POD1
for broadleaved species and less than 12 mmol m−2 year−1 POD1 for conifers. CLef represent-
ing ≥25% of crown defoliation is recommended to be maximal 17,000 and 19,000 ppbv h of
AOT40 for conifers and broadleaved species, respectively. It is obvious that those new indices
are inevitably linked to PODY and AOT40 and only new limits are set.
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As the injuries induced by O3 deposition on cuticle are usually small [82], the negative
effect of O3 uptake is connected mainly to stomatal O3 flux. The total flux of ozone
to vegetation may be thought of as two components: stomatal flux (uptake through
the stomatal pores) and non-stomatal flux (deposition to other surfaces in the canopy
and also reaction with gaseous compounds in the canopy air-space). The ratio between
stomatal and total O3 flux depends on actual microclimatic conditions and differs in
various ecosystems (Table 1). The highest seasonal maxima of total O3 flux were recorded
in Quercus ilex forest [119] followed by Populus grandidentata [121], Larix decidua and Pinus
halepensis [122,123]. Daily mean values range from 0.8 nmol m–2 s–1 in Pinus sylvestris forest
in Belgium [92] to 8.6 nmol m–2 s–1 in Q. ilex forest in Italy. See Table 1 for more details.
Stomatal flux is determined by [O3] and two resistances connected in series (leaf boundary
layer resistance and the stomatal resistance). While boundary layer resistance depends
on wind speed and heat flux, stomatal resistance is primarily influenced by irradiance
and VPD [86]. Stomatal O3 flux was found to be 37% of total O3 flux in a northern mixed
hardwood forest [121], but it was 21% in semi-arid regions of Israel [122], and only 15%
in Larix decidua, Alps, Italy [123]. However, in subalpine coniferous forest dominated
by Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) in southern
Wyoming, USA, 59% of stomatal O3 flux was found as an annual average [81]. Similarly,
stomatal O3 flux dominated in Czech P. abies mountainous forest under moderately cool
and humid climate [124]. Juráň et al. [29] found that stomatal flux represents 53.5% of
total O3 flux during summer days with partly-cloudy conditions, but it decreases to 43.5%
during sunny days. Moreover, a fraction of stomatal O3 flux could be further modulated
by forest age [124,125]. Comparison of modelled and measured fluxes could be found
elsewhere [29]. See Table 1 for more details.

Non-stomatal O3 flux includes deposition onto the soil, stems and branches, cuticles
and any external surface present. Chemical O3 sink also contributes to non-stomatal flux
involving the reactions of O3 molecules with VOCs, NO and aerosols. Non-stomatal flux
dominates in spring and summer because of the exponential increase of VOC concentration
with increasing air temperature and solar radiation [126,127]. It is the period, when [O3] is
usually the highest. Contrary to that, non-stomatal fluxes are negligible over the winter in
temperate forests due to low VOC emissions to the atmosphere [128]. They were significant
even at a moorland site in Scotland, without the complications of complex forest canopies:
the non-stomatal O3 flux was up to 70% of the total flux [77]. These findings suggest
that most of O3 deposits on leaf cuticles and/or wet layer of the moss, below the sparse
herbaceous canopy.

Here we summarise the effects of O3 on NEP (net ecosystem productivity) and GPP
(gross primary productivity) in several forest ecosystems estimated by eddy-covariance
technique and modelling approaches (Table 2). The impacts of O3 are very diverse. There
is no effect in mature Belgian Scots pine forest on GPP measured over 15 years, although
critical levels of AOT40 and POD1 were exceeded in each year of measurement [85].
Similarly, in a poplar stand, Belgium, no effect on NEP was reported [129], even though
stomatal O3 flux amounted up to 59% of the total O3 flux. On the other hand, a reduction
of NEP was reported in Czech [124] and Swiss forests [130], particularly in Norway spruce
and European beech stands. After 20 years of monitoring, the only mild effects of O3 on
GPP and photosynthesis were observed in a broad-leaf Harvard forest. These findings
were attributed to the fact that 40% of photosynthesis occurs lower in the canopy, in shade,
where stomatal conductance and [O3] are lower [131]. So the canopy structure can also
modulate the effect of O3.
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Table 1. Examples of fractions of stomatal O3 fluxes to total O3 fluxes from different forest ecosystems. Notes: EC—eddy-covariance; *—Total deposition flux in µg m–2 s–1; **—value not
specified.

Forest Type Species Country Total Deposition Flux (nmol m−2 s−1) Stomatal Flux (% of Total) Approach Reference

Subalpine coniferous Picea engelmannii
and Abies lasiocarpa Wyoming, USA 0.5–0.6 * (summer max) 59 EC [81]

Mountainous Picea abies Czech Republic 7.09 (daily mean) dominant ** modelling [124]

Mountainous Picea abies Czech Republic 14 (summer max)
2 (winter max) 43.5–53.5 EC [29]

Northern mixed
hardwood Populus grandidentata Michigan, USA 27.7 (seasonal max) 37 EC [121]

Evergreen
Mediterranean Quercus ilex Italy 6.9–8.6 (daily average)

51 (seasonal max) 34.4 EC [119]

Coniferous Pinus sylvestris Belgium 0.8–5.8 (daily mean) 26 modelling [92]
Coniferous Picea abies Denmark 0.5 * (5-years mean) 21 modelling [125]
Coniferous Pinus halepensis Israel 5–10 (seasonal range) 21 EC [122]

Alpine Larix decidua Italy 40 (summer daily max) 15 EC [123]
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Generally, a strong correlation of GPP to AOT40 index was shown [132]. Among
others, a tight linear decrease of whole-plant dry mass with increasing daylight AOT40
was found in Japanese larch (Larix kaempferi) and beech (Fagus crenata) seedlings [133].
Comparing to the preindustrial era, a reduction of 1–16% of GPP was reported for USA
vegetation covers [134]. Similarly, Karlsson [135] reported a reduction of living biomass
stock due to O3 to be 2% in northern European countries but up to 32% in central European
countries [136]. One of the highest, as much as 24.8%, reduction rates of NEP were for a
Norway spruce forest [28] with the highest decrease in July, the warmest month of the year.

Wang et al. [137] modelled biomass carbon stock over 500 years involving a succes-
sional series of the temperate deciduous forests. No change of carbon stock was reported
due to the change of forest species over the time period with the increasing dominance
of isoprene-emitting species. Isoprene acts as a shielding agent preventing O3 to enter
the stomatal aperture—isoprene outside of the leaf reacts with O3 [138]. It is clear, that
O3 was not an issue for half a millennium, however, it shows a possible direction of how
natural ecosystems might possibly evolve and adapt in a O3-rich world by a mechanism
incorporating successional dynamics.

Table 2. Effects of O3 on various carbon-related criterion. GPP—gross primary production, NEE—net ecosystem exchange,
NEP—net ecosystem productivity.

Type of Ecosystem Dominant Plant O3 Effect Country Criterion Reference

Mature stand Scots pine neutral Belgium GPP [92]
Plantation mix of poplars neutral Belgium NEE [129]

Mature stand Stone pine neutral Italy GPP [85]
Mixed

hardwood/conifer
forests

Red oak, Red maple negligible USA GPP [131]

USA vegetation - reduction 1–16% USA GPP [135]
Young stand Norway spruce reduction Czech Republic NEP [124]
Young stand Norway spruce reduction 24.8% Czech Republic NEP [28]
Young stand Ponderosa pine reduction 12% USA GPP [85]

Orchard Orange orchard reduction 19% USA GPP [85]

Flux sites in Europe
and USA -

reduction 6–29% deciduous forest
reduction 4–20% evergreen

needle leaf forest
Europe, USA biomass [136]

4. Interactive Effects of O3

As mentioned above, O3 triggers the generation and accumulation of H2O2 and/or
superoxide, i.e., ROS inducing cell death, depending on the species, accession and cul-
tivar [139]. However, the importance of constitutive (i.e., genetic) protection of plants
against O3 remains unclear [140] and is thought to be relatively small as compared to
the environmentally induced O3 protection and acclimation adjustment. Accordingly,
the high variability of observed plant/ecosystem responses to O3 reported in Table 2 is
likely to be due to interactive effects of other co-occurring environmental factors. Here
we summarise the potential interactive effects of enhanced [O3] with solar radiation, tem-
perature, drought and nitrogen supply (Figure 4), particularly on tree species and forest
canopies. These factors are among those found to have the greatest potential to modulate
O3 fluxes [141]. However, we do not address the issue of the interactive effect of elevated
[O3] and [CO2] concentrations in this review. This interaction is important and deserves a
detailed analysis [89] but it is beyond the scope of the present review.
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4.1. Interactive Effects of Solar Radiation and O3

Because of the light attenuation, leaves develop differently in upper and lower regions
of dense canopies. Sun- and shade-acclimated leaves are formed. Tjoelker et al. [142]
reported higher O3 sensitivity of shade leaves compared with sun leaves of sugar maple
(Acer saccharum) exposed to twice-ambient [O3]. Shade leaves, compared to sun leaves, had
greater proportional reductions in light-saturated rate of CO2 uptake associated with strong
decreases in chlorophyll content and apparent quantum efficiency. Similarly, high [O3]
reduced height growth of tomato plants (Lycopersicon esculentum) grown at low irradiances,
whereas it had negligible, or a stimulating, effect at high irradiances [143]. It is particularly
true at high relative air humidity, typical for deep inside the canopy, stimulating the
negative effects of O3. Such variability of ozone sensitivity along the vertical canopy
gradients has substantial consequences for the modelling of carbon gain [142,144].

Several studies have also investigated the effect of light spectral composition, partic-
ularly the combined effect of shortwave ultraviolet (UV) radiation and high [O3] typical
for high elevations (Figure 1). Generally, it has been shown that low, ecologically relevant
doses of UV-B radiation ameliorate the detrimental effects of O3. Studies of evergreen tree
species, Norway spruce and Scots pine, under twice-ambient [O3] showed a development
of chlorotic mottling with a reduction of photosynthetic capacity and carboxylation effi-
ciency at near zero UV-B, but not at natural UV-B intensities [145]. Such findings indicate
an important role of UV radiation in the activation of numerous protective mechanisms
and enhancing plant resistance [146] including an accumulation of antioxidants [147] and
flavonoids in plant tissues [148] among others.

4.2. Interactive Effects of Temperature and O3

In the previous experiments, combined effects of O3 with enhanced air tempera-
tures above the ambient as well as chilling temperatures were studied (Figure 4). The
experiments with silver birch (Betula pendula) under boreal conditions have shown that
temperature-stimulated growth and carbon allocation in tree biomass is counteracted by
simultaneous harmful effects of O3 [149]. While elevated [O3] (1.2 × ambient) accelerated
leaf senescence, it was delayed by a temperature increase (ambient + 1.2 ◦C). However,
under the combination treatment O3 substantially reduced the temperature effect. Such
responses led to an increase of photosynthetic (foliage biomass) to non-photosynthetic
(woody biomass) tissue ratio under elevated temperature, but it decreases under O3 and
combined treatments. An antagonistic interactive effect of O3 and temperature was also
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found on the thickness of abaxial epidermis of European aspen (Populus tremula). While
leaves exposed to elevated [O3] had significantly thicker adaxial epidermis, elevated tem-
perature reduced the impact of O3 [150].

At the leaf level, in silver birch (Betula pendula) and European aspen (Populus tremula),
a negative O3 effect on CO2 assimilation rate was partly compensated by the elevated
temperature demonstrating an interactive effect of both the treatments [151]. Similarly, an
interactive effect on intrinsic water use efficiency (iWUE), defined as the ratio between CO2
assimilation rate and stomatal conductance, was observed when elevated [O3] reduced
the stimulatory effect of elevated temperature on iWUE. Such interaction was statistically
significant in B. pendula, but not in P. tremula.

Metabolomic analyses did not reveal any interactive effects of elevated temperature
and [O3] on most metabolites and metabolic pathways [152]. Nevertheless, combined
treatment of these factors led to an enhanced content of amino acids, intermediates of citric
acid cycle and some carbohydrates as well as γ-aminobutyric acid (GABA) compared to
individual O3 treatment. These compounds are often associated with plant stress response
and/or play a role of signalling molecules under environmental stresses [153]. Such plas-
ticity of the plant metabolome ensures no alteration in the seedlings’ sensitivity to autumn
and spring frosts as demonstrated by the temperature required for 50% lethality [152].

Under natural conditions, enhanced temperatures are often associated with enhanced
VPD values having a substantial effect on the openness of stomata [154,155] and conse-
quently on stomatal O3 flux [28,29]. Accordingly, lower stomatal O3 fluxes and lower
O3-induced injuries may be observed in warm Mediterranean conditions than in the cooler
boreal and temperate forest ecosystems [156–158].

Although winter O3 fluxes into the forest ecosystems are relatively small compared to the
summer fluxes [29], evergreen urban trees/forests in particular may be subjected to elevated
[O3] episodes in parallel to chilling, freezing and/or winter desiccation. Barnes et al. [159]
investigated this topic using pea (Pisum sativum) as a model plant species. They found an
amplification of freezing injury under elevated [O3], including greater electrolyte leakage, that
resulted in the deactivation of photochemical reactions of photosynthesis. Although these
results are difficult to apply to woody plants that are well-adapted to winter conditions, these
experiments revealed greater damage in pea cultivars with a slow stomatal closure under
elevated [O3] and having thus a greater O3 flux in the internal leaf tissues.

Later research focused particularly on the interactive effects of elevated [O3] and spring
frost events [160,161]. While ozone (1.3 × ambient) exacerbated the effect of frost (applied
after bud burst) only on diameter increment of Silver birch (Betula pendula), interactive
effects on a number of physiological variables, including photochemical quantum yield
of photosystem II, photochemical quenching of absorbed light energy and chlorophyll
and carotenoid contents, were observed [149]. These findings lead to the conclusion that
combined exposure to elevated [O3] and frost appears to damage tree saplings more than a
single stress. In contrary, no increase in freeze-induced damage of overwintering birch buds
was reported under elevated [O3] [161]. This is likely to be associated with an increased
ratio of raffinose to sucrose and the transcript levels of the dehydrin gene. On the other
hand, alterations in carbohydrate metabolism of buds is highly genome-specific and more
work is needed [161].

4.3. Interactive Effect of Drought and O3

Periods with high tropospheric [O3] are often associated with hot and dry summers.
Increased frequency, intensity and duration of such conditions are predicted in the fu-
ture [162]. Accordingly, it is very likely that many tree species and forest stands are, and will
be, simultaneously exposed to enhanced [O3] and insufficient water supply. Some experi-
ments have fortuitously coincided with naturally occurring drought. Matyssek et al. [70]
describe a highly comprehensive free air experiment on adult beech (Fagus sylvatica) lasting
five years, which included the extreme drought of 2003. Drought-induced stomatal closure
decoupled the uptake of O3 from [O3], i.e., stomatal closure conferred a protective effect.
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No significant interaction of O3 and drought was detected in the growth and leaf traits
of Japanese beech (Fagus crenata) during the first growing season, but significant interactive
effects on photosynthesis were found in the second growing season [163,164] indicating
thus the importance of the stress duration. Limited water supply induced amelioration
of the negative O3 effects due to a reduced stomatal O3 flux caused by reduced leaf water
potential and stomatal conductance under the drought conditions [165]. Similarly, reduced
stomatal O3 fluxes were observed in coniferous Norway spruce (Picea abies) under the
periods of low soil humidity [29,166].

Metabolomic studies have shown that drought activates the pathways from glucose
to xylulose, xylose, inositol and several polyols and sugar alcohols [153]. Polyols, such as
sorbitol and mannitol, act as osmoprotectants and protectants of thiol-regulated enzymes
involved in deactivation of free radicals, such as hydroxyl radicals. These biochemical
adjustments, together with an accumulation of gluthatione antioxidant under limited soil
water content [164], contribute to plant cross-tolerance against other oxidative stresses.
Soil drought, and even more in combination with ozone, enhanced pools of ascorbate,
lutein and xanthophylls in Norway spruce needles [167]. Together with an increased
epoxidation status of the xanthophyll cycle, an increased antioxidant capacity in plants
is suggested. Accordingly, antagonistic effects of O3 and drought on leaf photosynthetic
traits are mostly reported in both broadleaved [163,168] and coniferous [169] tree species.
However, antagonistic effects of O3 and water stress on the growth are rare [170] and
are mostly additive [171,172]. In conclusion, drought stress reduces but does not protect
tree species from injurious O3 impacts on growth and physiological processes associated
with carbon assimilation [173,174]. Most recently, Xu et al. [175] have shown that limited
water availability does not protect poplar saplings from O3-induced reduction of water
use efficiency.

Modelling studies across diverse environmental conditions in Europe [156,158] have
shown that the arid conditions of South-European regions result in reduced stomatal
conductance and consequent lower stomatal O3 fluxes irrespective of the high AOT40s that
prevail in these regions. Together with an enhanced stimulation of protective mechanisms
against ROS [153] injuries of Mediterranean tree species are less than those in trees grown
under the conditions of temperate and/or boreal zones [144,158].

4.4. Interactive Effect of Nitrogen Supply and O3

Nitrogen availability is a limiting factor of forest production, particularly in N-poor bo-
real ecosystems (reviewed in Högberg et al. [176]); however, excessive nitrogen deposition
may lead to the imbalance between carbon and nitrogen in plant tissues having consequent
negative effects on total content of phenolic compounds [177]. A meta-analysis study [178]
revealed increased concentrations of phenolics and terpenes in response to elevated [O3].
Angiosperms were found to be more responsive than gymnosperms. Such acclimation con-
sequently resulted in reduced insect herbivore activity. Insufficient amounts of phenolics
under excessive nitrogen availability may lead, in contrast, to increased sensitivity of plants
to abiotic and biotic stresses and consequently to reduced plant growth and development
as shown in the case of Scots pine (Pinus sylvestris; [179]). On the other hand, reduced
nitrogen availability may increase plant sensitivity to O3 because of the insufficient cat-
alytic activities of enzymes involved in defence processes [153,180]. However, the reported
findings on interactive effects of elevated [O3] and nitrogen supply are inconsistent.

No interactive effect of nitrogen availability on stomatal O3 flux and biomass pro-
duction was reported in birch (Betula pendula) grown under a boreal environment [181],
evergreen broadleaf camphorwood (Cinnamomum camphora) grown under sub-tropical
regions [182] or Quercus serrata, C. sieboldii, P. densiflora and C. japonica seedlings grown
under temperate conditions (summarised in Watanabe et al. [164]). On the other hand,
significant interactions of O3 and nitrogen load on dry-biomass increments were found
in F. crenata and L. kaempferi [164] enhancing the O3 sensitivity of trees with increasing
nitrogen supply. Similarly, Marzuoli et al. [183] showed that increased wet N-deposition
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triggers negative O3 effects on biomass formation of young European hornbeam trees
(Carpinus betulus). Also, Handley and Grulke [184] reported greater decline in photosyn-
thetic capacity, defined as the CO2 assimilation rate at saturating light intensity and [CO2],
in fertilised California black oak (Quercus kelloggii). These findings led to the conclusion
that N-fertilisation tend to increase plant sensitivity to O3.

It has been proven that reduced CO2 assimilation rate under conditions of high [O3]
and nitrogen supply is rather caused by reduced allocation of nitrogen to soluble proteins,
including the Rubisco enzyme, while nitrogen content per unit leaf area, stomatal conductance
as well as mesophyll conductance to CO2 diffusion remain unchanged [185,186].

The species-specificity in response to the combined effect of elevated [O3] and nitrogen
supply was reported by Fusaro et al. [187] for two Mediterranean tree species. Nitrogen
supply ameliorated the harmful effects of O3 in deciduous manna ash (Fraxinus ornus), but not
in evergreen holm oak (Quercus ilex). It seems that nitrogen addition particularly increased
activities of SOD (superoxide dismutase), CAT (catalase) and GSH (glutathione peroxidase)
antioxidative enzymes involved in O2

− and H2O2 scavenging in F. ornus, while an alternative
antioxidant response such as the emission of volatile organic compounds were preferentially
activated in Q. ilex. Nevertheless, the activities of these antioxidative enzymes were not
significantly influenced in spring wheat plants exposed only to elevated [O3] [188].

5. Conclusions

What have we learned from fifty years of research? Experimental exposure of plants
to high concentrations of ozone, or the exposure of plants to charcoal-filtered air, tell
us that almost all species so far examined are damaged to some extent by ozone at the
concentrations that often prevail in all regions of the world. This inevitably has a huge
economic consequence for horticulture, agriculture and forestry, perhaps greater than that
of any other pollutant gas [189]. Not all species are equally sensitive, and so the balance of
competition between weeds and crops is likely to be altered.

The question of ‘how much damage’ is more difficult to answer, as the plant response
depends not only on the species concerned but also on other stress factors. Drought and the
supply of nitrogen are particularly variable across years and sites, and experiments have
shown how these can interact with ozone to cause damage levels which can be hard to
predict. The first attempts to evaluate the impact of crop losses were the NCLAN (National
Crop Loss Assessment Network) in the USA [190] and the European Open Top Chamber
Programme [191]. There were many further experiments in Asia. Feng and Kobashi [192]
performed a meta-analysis of available data for key crops. The percentage crop losses were:
potatoes 5.3, barley 8.9, wheat 9.7, rice 17.5, beans 19 and soybeans 7.7. These are probably
still the best overall assessments we have of the overall ozone damage to crops. Ozone
may well become a threat to food security as the O3 precursors NOx and VOCs increase
further due to human activities.

As we have seen in Section 4, the interaction of ozone with other environmental
variables is often highly significant but varies with species and climatology; thus it is hard
to predict and quite challenging to build a framework of regulations based on the concept of
dose. In brief, high (non-excessive) irradiances, mild temperature increases and particularly
drought tend to ameliorate negative effects of O3 on plant physiology and growth, whereas
freezing temperatures and high nitrogen deposition may increase plant sensitivity to O3.
Most recent studies discovered also the potential of O3 to modulate the colonisation of
roots by arbuscular mycorrhizal fungi [193] and herbivores attacks [194]—topics worth to
be further investigate in trees.

For forests, the question of ‘how much damage?’ is harder to answer as the older work
has been done on seedlings which may not be good surrogates for mature trees [71,106,195,196].
In some cases, tree seedlings and saplings have shown up to 40% less growth in ambient O3
than when in charcoal filtered air [106]. FACE experiments have enabled limited enrichment
experimentations on mature trees but the number of experimental units and the number of
trees is inevitably rather small. Consequently, the statistical power of such experiments is low
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(see [197]). Long-term eddy-covariance, coupled to models, may be the way forward (see
Section 2.3). The technology is well-developed and the limitations of the technique have been
widely discussed [198]. Forest ecosystems are of special concern, because of the risk to the
global carbon sink and the biodiversity that forests contain.
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