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Abstract: Accurate forecast of PM2.5 pollution is highly needed for the timely prevention of haze
pollution in many cities suffered from frequent haze pollution. In this work, an online recurrent
extreme learning machine (OR-ELM) technique with online data update was used in the forecast of
PM2.5 pollution for the first time, and a hybrid model (OR-ELM-AR) by combining autoregressive
(AR) model was proposed to enhance its forecast ability to capture the variations of hourly PM2.5

concentration. Evaluation of forecast performances in terms of pollution levels, forecast times, spatial
distributions were conducted over the Yangtze River Delta (YRD) region, China. Results indicated
that the OR-ELM-AR model could quickly respond to short-term changes and had better forecast
performance. Therefore, the OR-ELM-AR model is a promising tool for air pollution forecast of
supporting the government to take urgent actions to reduce the frequency and severity of haze
pollution in cities or regions.

Keywords: extreme learning machine; OR-ELM-AR; PM2.5; forecast performance; time-series fea-
tures; emergency prevention

1. Introduction

With rapid urbanization and economic development, China has confronted severe
haze pollution, with surface concentrations of fine particulate matter (PM2.5) exceeding air
quality standards in recent decades [1–4]. A high concentration of PM2.5 not only affects
people’s daily life and health but also exhibits negative impacts on the social economy and
climate change [5–7]. Therefore, it is essential to predict PM2.5 concentration accurately in
advance so that the government could make decisions and take effective emergency control
measures timely to reduce pollution levels in advance and thus to protect public health.
However, the accurate forecast of hourly PM2.5 concentration is still a great challenge
due to the complexity of its formation mechanisms of PM2.5 [4,8–10]. Variations of PM2.5
concentration usually depends on changes in emission and meteorological condition [2,10].
Furthermore, PM2.5 was highly nonlinear related to them, as many studies reported [7,11].

In recent years, researchers have made substantial contributions to the prediction
of PM2.5 concentrations by machine-learning methods [8,12,13]. The forecasting models
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based on machine learning techniques are generally divided into two categories, namely
offline models and online models [14]. Offline models can be further divided into two
subcategories, including the single models and hybrid models. Single models mainly
include linear regression models, gray models, Bayesian, support vector machines, neural
networks, as well as other algorithms-led artificial intelligence methods. In many studies [7],
linear models, such as the autoregressive integrated moving average model (ARIMA)
and mixed logistic regression (MLR), were used to predict the concentration of PM2.5
and PM10. If the PM2.5 concentration sequence is linear, the forecast results of ARIMA
and MLR will be more reliable and interpretative [15]. However, temporal variations
of particulate matters are highly nonlinear, non-stationary and irregular sequences in
real situations. The limitation of linear models is that their predictions rely too much
on the linear mapping capability. Compared with linear models, nonlinear models are
better at predicting extreme concentrations [6]. As a typical kind of nonlinear model,
artificial intelligence algorithms, such as an artificial neural network (ANN), are widely
used to predict particle concentration [8,13,16,17]. However, nonlinear models have their
own limitations. For example, they are easy to cause local optimization and overfitting
problems [18]. In order to improve the forecast performance of the model, increasing
researchers have tried to use hybrid models in recent years [6,19,20]. Most hybrid models
are composed of linear models and nonlinear models [19,21]. With the development
of hybrid models, the idea of “decomposition and aggregation” is gradually applied to
the prediction in time-series cases [22] as a supplement to the deterministic models and
statistical models. Studies have shown that the “decomposition-collection” method, as part
of the hybrid models, can greatly improve the accuracy of PM2.5 prediction [13,20].

However, time-series data of PM2.5 concentration arrives in the form of data streams,
and the distribution of data changes over time [23,24]. Online learning models with in-
cremental update capability should be more suitable for predicting PM2.5 concentration
because of the nonlinear and non-stationary time-series of PM2.5 data. The online sequential
extreme learning machine (OS-ELM) is an emerging online learning algorithm proposed
by [25]. This model was used to predict a particular matter in the atmosphere and achieved
a better forecast performance than the ELM algorithm [26]. However, OS-ELM has two
obvious shortcomings. One is that the input weight cannot be adjusted; the other is that
the cyclic neural network cannot be trained. Park and Kim (2017) overcame the shortcom-
ings of OS-ELM by adding the auto-encoding with normalization and feedback input for
the recurrent neural network (RNN) structure, and an online recurrent extreme learning
machine (OR-ELM) was proposed to forecast New-York city taxi passenger count [14].
Their results showed that OR-ELM could rapidly adapt to the pattern change, and the
forecast error was minimized compared with OS-ELM and other online-sequential learn-
ing algorithms [14]. The OR-ELM model has shown to be a promising tool to capture
nonlinear and non-stationary time-series features with rapid update capability. However,
the OR-ELM model has not been used in hourly PM2.5 prediction so far.

In this work, the OR-ELM model was applied to forecast PM2.5 concentrations for
the first time. In addition, the hybrid model of OR-ELM-AR was proposed by coupling
with the autoregressive (AR) model based on the OR-ELM model in order to deeply
explore information from its residuals. The performance evaluations were conducted
by comparison with observed data based on different time periods and pollution levels.
There were seven criteria, including mean error (bias), mean absolute error (MAE), root-mean-
squared error (RMSE), index of agreement (IOA), fractional bias (FBIAS), fractional error
(FERROR) and correlation (R), which were used to evaluate the forecast performance.
Spatial forecast performance was also examined through 41 prefecture-level cities over
the Yangtze River Delta (YRD) region, which is one of the heavy PM2.5 polluted regions
in China in recent decades. To better understand the forecast performance of OR-ELM-
AR, LSTM, OS-ELM and OR-ELM models were employed to compare with the forecast
performance of OR-ELM-AR.
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2. Methods and Data Source
2.1. Study Domain and Data Source

As one of the most densely populated regions, the YRD region, located in eastern
China, has a population of over 150 million, accounting for 11% of the total population
in China. It is also one of the most economically developed regions in China. The YRD
region consists of Shanghai Municipality and three provinces, covering 41 prefecture-
level cities, as shown in Figure 1. Nanjing, Hangzhou and Hefei are the capital cities
of Jiangsu, Zhejiang and Anhui Provinces, respectively. Data of observed hourly PM2.5
concentrations can be obtained from the China Urban Air Quality Real-Time Publishing
Platform (http://106.37.208.233:20035/), which was supported by the Ministry of Ecology
and Environment of the People’s Republic of China (MEEP). The instrument operation and
management, data quality assurance and quality control of these data are all performed in
strict compliance with NAAQS guidelines (GB 3095-2012).

Figure 1. Geographic location of the Yangtze River Delta region and its prefecture-level cities.

The training data we used in this study are the data of hourly PM2.5 concentrations,
which were continuously observed in every city from 2017/1/1 00:00 to 2019/12/31 23:00.
For each city, after training using past 200 samples of PM2.5 concentration, the models were
established to predict the PM2.5 concentrations at the next 1st to 6th hour. There are 26,280
samples, which involve data of hourly PM2.5 concentrations at one city during this time
period, which were used to be the training data for the forecast in the same city. Missing
data accounts for 0.6% of the whole series. The period of consecutive missing data in
Huangshan city was 12 h. Because of the best air quality with low concentrations of PM2.5
in Huangshan city compared with other cities in the YRD region, the effect of missing data
is negligible. Missing data were filled with data of previous hours in the time-series.

2.2. Model Framework of OR-ELM-AR and Forecasting Process

Based on the OR-ELM model [14], a hybrid model combining an online sequential
extreme learning machine with the AR model (OR-ELM-AR) was developed in this study,
as illustrated by Figure 2. It consists of three neural networks and a link with the AR model.
The core of OR-ELM-AR is a recurrent neural network (RNN) for the prediction, extended
by an AR model to deeply explore information from its residuals. Two single-hidden layer
feed-forward neural networks (ELM-auto-encoder, ELM-AE), referred to as ELM-AE1 and
ELM-AE2, were designed to learn RNN′s input weights and hidden weights, respectively.
All the observed data were separated into two parts, namely the training dataset and the
test dataset. Samples in the training dataset were input to the model as a batch of size 200
sequentially, with one complex function generated from the training process. This function
was used to forecast the PM2.5 concentration during the time period of the test dataset.

http://106.37.208.233:20035/
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The forecast performance can be evaluated by comparison of the forecast concentrations
and the observed concentrations in the test dataset with the help of several metrics.

Figure 2. The main framework of the hybrid machine learning method (OR-ELM-AR) model.

The training process of the OR-ELM-AR model consists of three stages, as follows:
Stage 1: initialization phase:
The initial input weights and hidden weights were randomly assigned with a mean-

zero and a standard deviation of one. The initial output weights were set by fully online

initialization method: β0 = 0, P0 =
(

I
C

)−1
, where I is a unit diagonal matrix, and C is

a constant.
Stage 2: an online learning phase
The main algorithm was to learn sequential data by recursive least-squares method

(RLS). The output weight is as follows:

βt+1 = RLS(A, Z, λ) (1)

the definition of RLS is as follows:

Wt+1 = f (norm(A)) (2)

βt+1 = βt + Pt+1WT
t+1(Z−Wt+1βt) (3)

Pt+1 =
1
λ

Pt − PtWT
t+1(λ

2 + λWt+1PtWT
t+1)

−1
Wt+1Pt (4)

where A is an input weight matrix, and W is an output weight matrix. Norm (·) is the
normalization method, which is called layer normalization (LN) and is applied to avoid
degradation problems. The regret factor λ enables the algorithm to continually forget the
outdated data and adapt to new patterns. If λ = 1, there is no regret.

Once the training samples were updated, the input weights were updated correspond-
ingly and the hidden weight successively by RLS in which the regret factor is included and
the hidden weight At is used, as follows:

Update the input weight : Ai = Ai
t+1

TXt+1 (5)

βi
t+1 = RLS(Ai, Xt+1, λ) (6)

Update the hidden weight : Ah = Ah
t+1

TWt (7)

βh
t+1 = RLS(Ah, Wt, λ) (8)

Update the output weight : A = At+1Xt+1 + βh
t+1

TWt (9)

βt+1 = RLS(A, Yt+1, 1) (10)
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Stage 3: autoregression phase
According to Equation (11), residuals {yt} are extracted from the forecast results of

OR-ELM, and autoregression was conducted to generate new residuals {yt+1}, as shown in
Equation (12). Finally, the ultimate prediction of PM2.5 concentration are {predictedt+1 + yt+1 }.

yt = targett − predictedt (11)

yt+1 = ϕ1yt + ϕ2yt−1 + ϕ3yt−2 + εt+1 (12)

2.3. Evaluation Methods

The forecast results of OR-ELM-AR were evaluated by comparing with the observed
data based on several statistical metrics, including mean error (bias), mean absolute error
(MAE), root-mean-squared error (RMSE), index of agreement (IOA), fractional bias (FBIAS),
fractional error (FERROR) and correlation coefficient (R). Definitions of these metrics are
shown in Table 1. In order to evaluate the robustness of forecast performances, these metrics
were calculated for different cases: (1) at different forecasting time from the first hour to
the sixth hour; (2) at different PM2.5 pollution levels; (3) during time periods of daytime
and nighttime, respectively; (4) spatial distribution of forecast over the whole YRD region.
In addition, LSTM, OS-ELM and OR-ELM were also used, and their performances were
compared with OR-ELM-AR for better understanding the advantage of the OR-ELM-AR
model in forecast ability [27].

Table 1. Statistical measures of evaluation of forecast performance.

Statistic Definition Notes

Mean error (bias) Bias = 1
N ∑ (Mi −Oi) Concentration units

Mean absolute error (MAE) MAE = 1
N ∑|Mi −Oi| Concentration units

Root-mean-squared error (RMSE) RMSE =
√

1
N ∑ (Mi −Oi)

2 Concentration units

Index of agreement (IOA) IOA = 1− ∑ (Mi−Oi)
2

∑(|Mi−Oi |+|Oi−Oi |)
2

Unitless, 0 ≤ IOA ≤ 1

Fractional bias (FBIAS) FBIAS = 2
N ∑ (Mi−Oi)

(Mi+Oi)
−2 ≤ FBIAS ≤ 2

Fractional error (FERROR) FERROR = 2
N ∑ |Mi−Oi |

(Mi+Oi)
0 ≤ FERROR ≤ 2

Correlation (R) corr = ∑ (Mi−Mi)(Oi−Oi)√
∑ (Mi−Mi)

2
∑ (Oi−Oi)

2
−1 ≤ corr ≤ 1

Note. Subscript j represents the pairing of N observations M and predictions P by the time. Overbars signify
means over time.

3. Results
3.1. General Temporal-Spatial Patterns of PM2.5 Pollution

The annual PM2.5 concentration for attainment should be lower than 35 µg/m3,
according to the national ambient air quality standards (NAAQS). The PM2.5 concentration
of cities in the central and northern YRD region in 2018 fail to meet the standards, as shown
in Figure 1 (right), and the concentrations in the north YRD region are still high. In order
to explore the mid-to-long-term trend of PM2.5 pollution variations, we used a moving
average of 20 weeks (nearly 5 months), which is often used by researchers to describe
the middle-long term trend [28]. Figure S1 shows 20 weeks moving average of PM2.5
concentration in three different typical cities (Nanjing, Shanghai, and Xuzhou): the moving
average in Shanghai was lower than 60 µg/m3 whereas that in Xuzhou was much higher
than 60 µg/m3 for most values. Nevertheless, these three cities all present the same
seasonal pattern that the moving average PM2.5 concentration increased from November
to April mainly due to high concentrations in winter and decreased from April to October
mainly due to relatively low concentrations in summer. January, April, July and October
are the representative months of winter, spring, summer and autumn, respectively, in the
YRD region.
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From the perspective of the spatial distribution, the heavily polluted areas were mainly
in the northern part of the YRD region, of which the pollution in northern Anhui and
Xuzhou in Jiangsu Province was particularly heavy (Figure 1). PM2.5 concentration in
several cities in southern Zhejiang has met the NAAQS standard. Pollution in the central
and eastern YRD region and coastal cities in Jiangsu was at a moderate level.

The diurnal variations of the average PM2.5 concentration for 41 cities in the YRD
region are shown in Figure S2. The concentration in summer is the lowest, and the concen-
tration in winter is the highest. The concentration in April 2019 was significantly lower
than that in the previous year. Differences between seasons and between years are not
only related to emission changes but also to variations in the meteorological conditions.
In general, there was a peak of PM2.5 during 08:00–10:00 a.m., followed by a decrease and
then an increase again at night.

As shown in Figure S2, the average PM2.5 concentration in January 2018 in Shanghai,
Nanjing and Xuzhou were all higher than those in the same period in 2017. The high
peaks all occurred at 11:00 a.m., and both Shanghai and Nanjing showed second peaks
between 20:00–21:00 at night. According to the observed hourly concentration in these
three cities, the relatively high PM2.5 concentrations and diurnal variations in these three
cities were mainly dominated by several pollution episodes with heavy pollution during
the daytime in January 2018. There were more heavy-pollution episodes in January 2018
than in the same period in 2017, which also can partially be explained that the overall PM2.5
concentration in January 2018 in the YRD region was significantly higher than that in the
same period in 2017. Based on the average diurnal change of PM2.5 concentration over
the whole YRD region and in these three cities, the change of concentrations at night was
relatively gentle, but the change during the daytime could be dramatic. The differences of
daytime (7:00–20:00) and nighttime (21:00–6:00) forecast abilities of OR-ELM-AR model in
PM2.5 concentration were examined in this study.

3.2. Optimization of Model Parameters

A total of 26,280 hourly samples were rearranged and fed into the training dataset
sequentially by online manner for each city’s forecast. Each training dataset has two parts.
One part was a bundle of 200 samples that are set as input data to the model, and the
other part was the corresponding observed data in the next few hours are the target data of
forecast. These target data are used to evaluate the forecast performance based on several
metrics. In a period of training, one train dataset is input to update three weights in the
model, and we use the next bundle of data to predict PM2.5 concentration for the next
few hours.

To ensure the robustness of the experiments of the OR-ELM-AR model, the impacts of
the number of neurons and the length of input samples on the forecast performance were
examined. With the increase of neuron numbers, FBIAS and FERROR increased, while IOA
and R decrease, as shown in Figure 3 (left). The number of neurons, 25, was the optimum in
both considerations of avoiding over-fitting and achieving satisfying operational efficiency.
With the increase of input sample length, but less than 200, FBIAS, IOA and R slowly
decreased while FERROR increased slowly, so we choose the parameter of input length as
200, which was enough to extract important information of the time-series and keep the
model’s robustness [28].
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Figure 3. The performance variations with neuron number (left) and the length of input sample length (right).

3.3. Comparison of Daytime and Nighttime Forecast Performance

Figure S2 shows that PM2.5 pollution patterns in cities with relatively high pollution
are obviously different during the daytime and nighttime. Compared with the concen-
tration changes during the nighttime, the concentration changes during the daytime are
generally more drastically, mainly due to various kinds of human activities and always
changing meteorological conditions during the daytime. This makes us wonder if there is
any difference in forecast performance of PM2.5 between the daytime and the nighttime.
We assume the time period of 7:00 a.m–8:00 p.m. as the daytime and the other time period
as the nighttime. The comparison of the forecast performance of hourly PM2.5 concentra-
tion in one-hour advance for all cities in the YRD region during the daytime and nighttime
periods is shown in Figure 4. In general, the forecast performance of the OR-ELM-AR
model shows good stability. Both R values during daytime and nighttime are higher than
0.97. Furthermore, the R-value in the nighttime reaches 0.983, higher than in the daytime,
because there are more affecting factors during the daytime. The concentration fluctuation
in the daytime is relatively large, with a few samples close to 400 µg/m3.

Figure 4. Scatter plots of forecasted and target fine particulate matter (PM2.5) concentrations based on the OR-ELM-AR
during the daytime (a) and during the nighttime (b).

3.4. Forecast Performance at Different Pollution Levels

According to the technical regulations of the ambient air quality index (HJ 633–
2012) issued by China government, air quality situations are classified into six categories:
excellent, good, light, moderate, heavy and severe pollution. We evaluated the forecast
performance at different pollution levels. Here, we combined heavy pollution and severe
pollution into one group for forecast performance evaluation due to the limited number of
severe pollution days. Generally, the forecast concentrations of the OR-ELM-AR algorithm
were close to the target values for all pollution levels, as shown in Figure 5. From good to
moderate pollution level, the R coefficient gradually decreased from 0.888 to 0.638 and then
rose to 0.861 under heavy and severe conditions (Figure 5). This shows that the OR-ELM-
AR model has slightly better adaptability at low and high levels of PM2.5 concentration
compared with the intermediate pollution level.
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Figure 5. Comparison of forecast results and targets in different pollution levels.

3.5. Spatial Forecast Performance

The forecast performance of the OR-ELM-AR model for hourly PM2.5 concentration
forecast over the whole YRD region during 2019 is shown in Figure 6. The size of the circle
represents the FERROR value. The color of the circle represents the FBIAS value, and the
color in the map of the whole city area represents the IOA value of the corresponding city.
Based on these, the figure reflects the variations of FBIAS, FERROR and IOA in the six
sub-Figures with the forecast times and cities.

Figure 6. Distributions of fractional bias (FBIAS), fractional error (FERROR) and index of agreement
(IOA) over cities with the variation of forecast times.

With the variation of forecast time from the first hour in advance to the sixth hour in
advance, the FERROR values for all cities in the YRD region increase while the IOA values
decrease gradually, suggesting that the performance of this model compromised when the
forecast time gets longer. In contrast, the FBIAS value has the smallest fluctuation across
cities and forecast times. Distinct differences of performance exist among these cities over
the YRD region [29–32].

As shown in Figure 1, heavy pollution occurred in the north part of the YRD region,
while the least polluted areas are located in the southern and western YRD region, as well
as in Zhoushan city in the east of the YRD region. Combined with the spatial distribution
of IOA, as shown in Figure 6, IOA values of areas with both the lowest and the highest
PM2.5 concentration are obviously higher than those of the other areas. This is consistent
with the previous result that the OR-ELM-AR model has better adaptability at low and



Atmosphere 2021, 12, 78 9 of 13

high levels of PM2.5 concentration than that in middle levels. In addition, it also shows that
the forecast performance weakens with the increase of the forecast time in advance based
on the spatial distribution of forecast performance in the whole YRD region [32–34].

Figure 7 depicts the boxplots of forecast performance indicators varying with forecast
times for all cities in the YRD region. The x-axis is the forecast time, and each sub-graph
displays one evaluation indicator. As the forecast time becomes longer, the values of
FBIAS, FERROR, BIAS, MAE and RMSE gradually increase, while the values of IOA and
R gradually decrease. This shows that the overall forecast performance of the OR-ELM-
AR model decreases slowly with the increase in the forecast time. The fluctuation range
of performance indicators among these cities becomes larger gradually, suggesting that
the performances among these cities become more heterogeneous. Compared with other
indicators, the FEEROR value has the smallest fluctuation range. For FBIAS values, most of
them fall in the narrow range from −0.05 to 0.05, mainly due to the inclusion of random
algorithms in the OR-ELM-AR model.

Figure 7. Boxplot of performance indicators with different forecast times.

As shown in Figure 8, the trends of all indicators with the pollution levels are similar
under different forecast times. For a certain forecast time, FERROR values decrease slightly
with the increase of PM2.5 pollution levels, while Bias, MAE, and RMSE, show upward
trends with pollution levels, partially because PM2.5 concentration can amplify the values
of these indicators. IOA and R have similar trends, where the forecast performance of
OR-ELM-AR decreases gradually at first and then increases with the increase in pollution
level. This indicates that the forecast performance is relatively low based on IOA and
R evaluations in the middle pollution levels, which is consistent with the analysis from
Figure 5. However, the lowest performance does not occur at the same pollution levels for
different forecast times based on IOA and R evaluations. Compared with the lowest values
of IOA and R for the other forecast times, the lowest values of IOA and R for the forecast at
1st hour in advance occur at the interval of a higher concentration of PM2.5. The forecast
at the sixth hour in advance has the lowest performance at the concentration interval of
[35, 75], after which performance becomes better as indicated by the IOA and R values,
as shown in Figure 8. Moreover, the performance of the forecast at the first-hour advance is
much better than that of the forecast at the sixth hour in advance in terms of any indicator
among them.
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Figure 8. Forecast performance of the OR-ELM-AR model under different pollution levels.

3.6. Comparison with Other Models

The forecasts of OR-ELM and OR-ELM-AR respond more quickly and have narrow
deviations than that of OS-ELM both in high concentrations and low concentrations,
as shown in Figure S3.

According to the forecast of hourly PM2.5 concentrations in the whole year 2019,
the residuals of forecast in the first hour and second hour in advance show bell-shaped
distributions and the results are relatively concentrated and stable, as shown in Figure 9.
However, starting from the third hour in advance, OS-ELM′s residuals show bimodal
distributions with large deviations. In addition, the residuals of LSTM expand with the
increase in forecast time [35]. The skewness coefficients of LSTM′s residuals in the fourth,
fifth and sixth hours in advance are 0.4652, −0.7803, and −0.026, respectively, exhibiting
significant positive-skewed or negative-skewed. The OR-ELM-AR algorithm has residuals
with near-zero skewness coefficients of −0.1235, 0.0288, and 0.0732 at the same forecast
time, showing a more stable forecast with much smaller skewness.

Figure 9. Residual distributions of the extreme learning machine (OS-ELM), online recurrent extreme learning machine
(OR-ELM), OR-ELM-AR and LSTM models.
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Compared with the other three algorithms, the IOA values of OS-ELM are much
lower, but the MAE, RMSE and FERROR values are much higher, as shown in Figure 10.
The LSTM, OR-ELM and OR-ELM-AR models have similar IOA values as well as their
FERROR values. Admittedly, the FERROR values of OR-LEM-AR are still the lowest.
Both RMSE and MAE values of LSTM are much larger than those of OR-ELM-AR, with the
forecast times varying from 1st hour to 6th hour in advance, suggesting the OR-ELM-AR
algorithm has a much better ability of quickly responding to the short-term change than
the LSTM algorithm.

Figure 10. Comparison of forecast performance for four models.

4. Conclusions

In this work, online recurrent extreme learning machine (OR-ELM) was used to
forecast hourly PM2.5 concentration for the first time. The hybrid model (OR-ELM-AR) was
developed based on the OR-ELM model, coupled with the AR model. The performance
of the OR-ELM-AR model in the forecast of hourly PM2.5 concentration was evaluated in
detail over the YRD region in China. The main conclusions are as follows:

(1) The PM2.5 forecast ability of OR-ELM-AR at nighttime is slightly better than that of
daytime, mainly due to several influencing factors, such as more man-made sources
and more changeable meteorological conditions in the daytime;

(2) OR-ELM-AR model has better forecast performance for low and high levels of PM2.5
pollution than that for intermediate pollution levels. Especially in the cases of heavy
and extreme heavy pollution, this model can respond to large temporal variations
in concentration in time, with a higher correlation coefficient between the forecast
values with the observed values. Compared with the intermediate polluted cities in
the center part of the YRD region, the forecast performance is better for cities in the
north part with heaviest pollution and cities in the southern and western part with
the least pollution in the YRD region;

(3) The OR-ELM-AR model gains much smaller RMSE and MAE values and slightly
smaller FERROR values than the OR-ELM model by the embedded AR algorithm.
The OS-ELM model has the worst forecast performance;

(4) The OR-ELM-AR model has a much better ability of quick response than the LSTM
model based on both RMSE and MAE metrics with the forecast times varying from
1st hour to 6th hour in advance, although their IOA values are close.

Overall, the OR-ELM-AR model is a promising tool of the short-term forecast of PM2.5
pollution to help the government take urgent action to reduce the occurrence rate and level
of haze pollution in cities or regions.
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