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Abstract: ATLID (ATmospheric LIDar) is the atmospheric backscatter Light Detection and Ranging
(LIDAR) instrument on board of the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mis-
sion, the sixth Earth Explorer Mission of the European Space Agency (ESA) Living Planet Programme.
ATLID’s purpose is to provide vertical profiles of optically thin cloud and aerosol layers, as well as the
altitude of cloud boundaries, with a resolution of 100 m for altitudes of 0 to 20 km, and a resolution of
500 m for 20 km to 40 km. In order to achieve this objective ATLID emits short duration laser pulses
in the ultraviolet, at a repetition rate of 51 Hz, while pointing in a near nadir direction along track of
the satellite trajectory. The atmospheric backscatter signal is then collected by its 620 mm aperture
telescope, filtered through the optics of the instrument focal plane assembly, in order to separate
and measure the atmospheric Mie and Rayleigh scattering signals. With the completion of the full
instrument assembly in 2019, ATLID has been subjected to an ambient performance test campaign,
followed by a successful environmental qualification test campaign, including performance calibra-
tion and characterization in thermal vacuum conditions. In this paper the design and operational
principle of ATLID is recalled and the major performance test results are presented, addressing
the main key receiver and emitter characteristics. Finally, the estimated instrument, in-orbit, flight
predictions are presented; these indicate compliance of the ALTID instrument performance against
its specification and that it will meet its mission science objectives for the EarthCARE mission, to be
launched in 2023.

Keywords: LIDAR; UV laser; high spectral resolution; aerosols

1. Introduction: The EarthCARE mission

EarthCARE [1–5] is a joint collaborative mission of ESA and Japan Aerospace Ex-
ploration Agency (JAXA) with the objective to improve our understanding of the cloud-
aerosol-radiation interactions and Earth radiative balance, so that they can be modelled
with better reliability in climate and numerical weather prediction models [6]. To provide
atmospheric observations globally, the EarthCARE satellite (Figure 1), will be placed in a
Sun-synchronous orbit with a repeat cycle of 25 days. A low average altitude to ground of
408 km has been selected in order to enhance the performance of the two active instruments.
The quasi-polar orbit will allow to cover all latitudes from equator to ±83◦.
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Figure 1. Artist’s view of the EarthCARE satellite in-orbit. Reproduced with permission of European
Space Agency.

The EarthCARE payload consists of four instruments that will, in a synergetic manner,
retrieve vertical profiles of clouds and aerosols, and the characteristics of the radiative and
micro-physical properties, to determine flux gradients within the atmosphere as well as
top of atmosphere radiance and flux. Specifically, EarthCARE scientific objectives are:

• Observation of the vertical profiles of natural and anthropogenic aerosols on a global
scale, their radiative properties and interaction with clouds;

• Observation of the vertical distributions of atmospheric liquid water and ice on a
global scale, their transport by clouds and their radiative impact;

• Observation of cloud distribution (‘cloud overlap’), cloud precipitation interactions
and the characteristics of vertical motions within clouds;

• Retrieval of profiles of atmospheric radiative heating and cooling through the combi-
nation of the retrieved aerosol and cloud properties.

EarthCARE payload comprises three instruments provided by ESA: a High Spectral
Resolution UV ATmospheric LIDar (ATLID) [7–11], a Multi-spectral Imager (MSI) and a
Broad-Band Radiometer (BBR) [12]; and the Cloud Profiling Radar (CPR) [13] with Doppler
capability, provided by JAXA. The two active payloads, a LIDAR and a radar, penetrate
into clouds and collect data, at a microscopic level, on atmospheric constituents and their
movement. 3D scene construction will be used to derive radiative transfer products from
the active instrument observation data and models. Calculated radiances and fluxes can
then be compared against the BBR measurements of radiated thermal versus reflected
solar fluxes at the top of the atmosphere; conversion to flux is performed analytically
using Angular Dependence Models and the three BBR views [14]. The Multi-spectral
Imager provides contextual information about the relatively small scenes observed by the
active instruments, as well as providing spectral scene content to aid with un-filtering
the BBR data. The combined dataset will be an evolution of the existing observations of
the A-Train satellites CloudSat, Cloud–Aerosol LIDAR and Infrared Pathfinder Satellite
Observations (CALIPSO), and Aqua. On one hand, the impacts of climate change can be
further monitored. On the other hand, the advanced payloads will provide aerosol-cloud
and radiation measurements to further refine their modelling of direct and indirect effects
on the radiative budget [15]. Co-registration of the multi-instrument payload data is a
key aspect for the mission. The instrument viewing geometry can be seen in Figure 2,
which illustrates the satellite ground track, the CPR beam at normal nadir, the ATLID beam
de-pointed backward by 3◦ to reduce any specular reflection, the across track swath of
the MSI with its offset in the anti-sun direction to mitigate sun-glint and finally the 3 BBR
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views in nadir, forward and backward directions required to retrieve the top of atmosphere
emitted flux.
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Figure 2. EarthCARE payload viewing geometry.

2. ATLID Measurement Principle

ATLID is a high spectral Resolution LIDAR (HSRL), operating in the ultraviolet spec-
tral domain (355 nm), which takes advantage of the distinct interactions of light with
molecules and aerosols that lead to different spectra scattering effects. Whereas the Brow-
nian motion of molecules induces a wide broadening of the incident light spectrum, the
scattering with an aerosol does not affect the spectral shape of the incident light. Conse-
quently, a simple means of separating the backscattering contributions of aerosols and
molecules consists of filtering the backscattered spectrum with a high spectral resolution
filter centred on the laser emitted wavelength. In this way the instrument is able to separate
the relative contribution of aerosol (Mie) and molecular (Rayleigh) scattering, which allows
the retrieval of the aerosol optical depth. Co-polarised and cross-polarised components of
the Mie scattering contribution are also separated and measured on dedicated channels.
While CALIPSO is missing the HSRL capability to determine directly the extinction-to-
backscatter ratio, Aeolus is not equipped to determine the particle depolarisation ratio.
Therefore, ATLID will allow for the first time aerosol typing (e.g., smoke and dust) based on
measured intensive particle properties. The operating wavelength in the UV spectral range
was selected as the molecular scattering is high enough to measure more accurately extinc-
tion profiles and aerosols/thin clouds thickness and because laser technology (Nd:YAG
laser with frequency tripling conversion) is available for operation in this spectral region.
Additionally, eye safety versus field of view dimension were also taken into consideration
for the selected operational wavelength.

As displayed in Figure 3, ATLID measures atmospheric profiles, in a direction close to
the nadir, with a vertical resolution of about 100 m from ground to an altitude of 20 km,
and of 500 m from altitude 20 km to 40 km. The instrument transmitter emits short laser
pulses with a repetition rate of 51 Hz, corresponding to about 285 m spatial sampling for a
local accumulation of two shots, along the horizontal track of the satellite. Atmospheric,
backscattered photons are collected by ATLID receiver using a 620 mm diameter telescope.
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3. ATLID Instrument Design

Airbus Defence and Space in Toulouse was responsible for the design, assembly and
test of ATLID. The instrument was designed as a self-standing instrument, as seen in
Figure 4, thereby reducing the mechanical coupling between instrument/platform inter-
faces and allowing better flexibility in the satellite integration sequence.
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ATLID instrument development is based on a proto-flight model (PFM) approach:
critical sub-systems such as laser transmitter, beam expander, beam steering mechanism
and detector front-end have been subject to specific efforts in terms of early breadboards,
electrical models or qualification models to minimise risks. The instrument is based on a
bi-static architecture consisting of two independent main sections, the emitter chain and
the receiver chain. ATLID functional architecture can be seen in Figure 5.
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On the emitter chain, the Transmitter Assembly (TxA), designed and manufactured
by LEONARDO (Pomezia, Italy), is the laser source for the ATLID LIDAR. It comprises a
power laser Head (PLH), seeded via a fibre optic by a reference laser head (RLH), and its
associated transmitter laser electronics (TLE). There are two fully redundant transmitters
(in cold redundancy), each including both laser heads (PLH and RLH) and electronics
(TLE). The PLH design is based on a diode-pumped tripled Nd:Yag laser, providing a
high energy pulse at 355 nm. In the nominal measurement mode it is operated in steady-
state mode with 51 Hz pulse repetition frequency (PRF). While the laser transmitter is
largely inheriting from the Aladin instrument development for the AEOLUS mission [15],
a significant evolution has been achieved by the fact that the ATLID PLH is sealed and
pressurised in order to improve its tolerance to laser-induced contamination. Both TxA
flight models, nominal and redundant units, demonstrated compliance with the main
requirements: pulse energy >35 mJ, pulse duration <35 ns and laser beam divergence <
300 µrad (<45 µrad after Emission Beam Expander).

At the heart of the receiver chain the High Spectral Resolution Etalon (HSRE), devel-
oped by RUAG Space (Zurich, Switzerland), differentiates and filters the Mie and Rayleigh
components of the backscatter signal, routing these (including splitting co-polarised from
cross polarised light) towards the relevant detection channels. The key performance re-
quirement of the HSRE is achieving high UV transmittance on the Mie co-polarised channel
with a full-width-half-maximum (FHWM) of 0.3 pm. The unit concept is based on a
Fabry-Perot (FP) etalon, used in combination with polarisation beam-splitters (PBS) and
quarter-wave plates. The Fabry-Perot etalon acts as a filter, transmitting only the narrow
Mie signal and reflecting the wider Rayleigh signal.

The instrument implements a co-alignment control loop, making use of a Beam
Steering Mirror (BSM) at transmitter chain level and a Co-Alignment Sensor (CAS) at
receiver chain level, in order to track and ensure that the emitted laser beam is aligned with
the receiver field of view. This active alignment approach allows to correct for structural,
thermo-elastic deformations that could be expected after launch or in orbit.
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4. ATLID Performance Test Overview
4.1. Performance Verification Approach

The LIDAR performance verification consists of the analysis of recordings of the
instrument receiver response to an atmospheric echo simulation and of the validation of
instrument transmitter characteristics. The LIDAR instrument is tested in ambient for all
performances that are not sensitive to air to vacuum effects: timing calibrations, detection
alignment and functional operations, such as receiver to transmitter co alignment functions
(Figure 6 right). Then final tests are performed in a thermal vacuum test chamber (Figure 6
left), where real flight conditions are reproduced; in this way performance is evaluated
according to actual thermal control stability. Also, vacuum conditions can affect optical
coating phase shifts, change their characteristics and impact instrument performance.
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A limited set of key performance indicators are also measured at various stages of the
satellite campaign on ground (in ambient conditions), in order to check the performance
health of the ATLID, for instance upon delivery, after integration onto the satellite platform,
before and after tests at satellite level. A dedicated in vacuum check of performance is also
made during the satellite level thermal vacuum campaign.

4.2. Receiver Measurement Setup

The instrument’s high sensitivity to the simulated echo characteristics shall be dis-
criminated from the possible bias or instabilities of the test setup. The simulated echo
source is a tuneable laser coupled to an optical system that control its divergence, line of
sight, wavelength, polarisation and pulse timings. Any uncontrolled variation of these
parameters will induce a performance variation that will degrade the test accuracy.

The measurement setup used for the instrument characterisation is shown in Figure 6.
It transmits a beam of the simplified atmospheric echo:

• Generated by a frequency-tripled, Nd:YAG, narrow-band Optical Ground Support
Equipment (OGSE), UV laser (source-pack outside the vacuum chamber), which is
fibre-coupled;

• Through part B of OGSE FPA (OGSE multi-purpose focal plane assembly, outside
the vacuum chamber, detailed in Figure 6), which allows for laser beam parameters
adjustment, including polarisation, line-of-sight and radiometric level, and then free
path;

• Through OGSE collimator COL70 (70 cm diameter, inside the vacuum chamber); up
to ATLID telescope input.

4.3. Transmitter Measurement Setup

The two ATLID emitters have been characterised in terms of:

(1) Laser pulse energy;
(2) Laser beam divergence.
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The additional measurement setup used for the characterisation is shown in Figure 7
and indicated with FPA part A in Figure 6 (left). It can collect the radiation from both
nominal and redundant lasers (yellow circles) into single path toward COL70 inside the
vacuum chamber. Laser A beam (bottom circle) is reflected on front side of P0, while laser B
beam (top circle) is going through prism P0 and is reflected on back side. The wedge angle
of this prism is sufficiently large to avoid any parasitic images within the FF (Far Field)
image pattern (<100 µrad). A camera system is placed at the output of COL70 system,
outside the vacuum chamber on FPA part B, as per Figure 6.
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5. Test Results
5.1. Transmitter Test Results
5.1.1. Laser Pulse Energy

The objective was to estimate the energy knowledge via the internal laser photodiode
monitoring. To this purpose, the absolute energy was measured before Thermal Vacuum
(TVAC) test, acquiring the entire laser beam spot. For TVAC test two additional photodi-
odes were installed and calibrated on the OGSE, one on its main bench (FPA part B) and
one inside the vacuum chamber behind a partially reflective mirror (FPA part A). These
two sensors aimed at providing a measurement reference external to the laser, all along the
laser optical path, during the whole TVAC test.

An example result of the telemetry calibration is shown in Figure 8a. Figure 8b shows
the overall, internal photodiode reading during the entire test, for both emitters: energies
between 35 and 40 mJ were reached.
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5.1.2. Laser Beam Divergence

With this test a measurement of the far field pattern (FFP) of the emitted laser beams
was performed, thanks to the imaging capability of the COL70 collimator OGSE. The
measurements were performed in vacuum, collecting OGSE images on a shot-to-shot basis
(instantaneous FFP). Post processing averaging was done to compute integration over an
equivalent of 10 km horizontal span. Additional measurements were also done to verify the
capability to thermally adjust the external beam expander (EBEX) defocus and to quantify
the thermal sensitivity; in this second phase, emission defocus calibration (EDC) mode
is commanded, inducing a slow scan of EBEX temperature. A special test procedure is
used to optimise the number of steps (down to 4 or 5 steps) for this ground test, in order to
reduce test duration compared to a finer stepping in flight.

Figure 9 shows the far field measurement results during EDC; as expected, the diver-
gence is in the 15–45 µrad range (with angular resolution lower than 2 µrad and accuracy
within ±5 µrad). Far field pattern images are reported in the figure in correspondence to
the different tests’ EBEX temperatures.
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The FFP was also acquired during the simulation of orbital cycle effects, i.e., for a ±1 ◦C
temperature oscillation on the transmitter thermal interface. Figure 10 shows the evolution
of encircled energy divergence during about 6 cycles. The FF images corresponding to the
minimum and maximum temperatures are reported inside the plot.
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Figure 10. Far field measurement results during simulation of orbital cycles (±1 ◦C on the laser);
the variation of beam divergence (left scale, diameter of 86% encircled energy) plotted over time
(overlaid, camera acquired far field images).

5.2. Radiometric Tests

The ATLID receiver has been characterised in terms of:

• Polarisation
• Field-Of-View
• Radiometric stability
• Dark current

5.2.1. ATLID Receiver Polarisation Characterisation

The objective here was to characterise the response of the ATLID receiver for each of the
three channels, for both polarisation axes, and over at least one free spectral range of HSRE.
To this purpose, the OGSE (Figure 11) emission line-of-sight is centred in instrument field-
of-view, radiometric level is adjusted to be in the instrument measurement dynamic, and:

• Scans of the OGSE laser wavelength are performed, for vertical and horizontal linear
polarisation directions, and the channels’ relative responses are extracted;

• Rotations of the OGSE beam linear polarisation orientation are performed, for OGSE
source-pack laser wavelength set at HSRE response peak, and the channels’ relative
responses are extracted.
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5.2.2. ATLID Field-of-View Characterisation

The objective here was to evaluate the reception field-of-view angular diameter, in
order to assess the collecting solid angle of the instrument. The same test shall also permit
to the reference receiver line-of-sight with respect to the co-alignment sensor. To this
purpose, the OGSE emission line-of-sight is scanned around the centre of the instrument
field-of-view, radiometric level is adjusted to be in the instrument measurement dynamic,
and the channels’ responses are extracted and normalised. The angular width of the
normalised response gives the angular diameter of the instrument reception field-of-view,
as can be seen in Figure 12.
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5.2.3. ATLID Radiometric Stability Characterisation

The objective was to characterise the relative instrument response variation for each of
the three science channels, with varying environment. To this purpose, the OGSE emission
line-of-sight is centred in the instrument field-of-view, OGSE laser wavelength is set at
HSRE response peak and the thermal environment in the vacuum tank is managed in order
to describe the equivalence of the foreseen orbital thermal cycle. The channels’ signals are
extracted and their stabilities during thermal cycle are calculated. As the OGSE frequency
drift during the measurement contributes to signal variation during the test, its contribution
is calculated and accounted for in the measured radiometric stability assessment, in order
to assess the impact of thermal cycle only.

5.2.4. ATLID Dark Current Characterisation

The objective was to record the dark signal map and the dark noise in operational
conditions at a −30 ◦C setpoint for the detector CCD. To this purpose, the OGSE does
not emit any signal and ATLID is in dark current calibration (DCC) mode. The output of
this test allows filling the calibration database to be provided with the instrument and to
be used by the EarthCARE ground processer. The dark noise all along the atmospheric
profiles is below the defined 2.2 e- rms success criteria for all channels, validating the
ATLID performance model budgeted value.
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6. ATLID Performance Update and Flight Prediction Overview
6.1. Performance Analysis

The performance prediction is made using the test results obtained with an artificial,
atmospheric echo simulation to reconstruct the instrument performance; as shown above
during the instrument testing, no direct atmospheric test is performed. In particular, the
test source spectrum is a monochromatic, monomode, longitudinal laser line at 355 nm,
while in flight the received backscattered signal spectrum will be broadened by Rayleigh
backscattering superimposed onto a variable Mie spectrum line (see Figure 13).
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Also, the echo will be partially depolarised by the atmospheric scene; for example,
Sahara aerosols can depolarise up to 30% of the polarised light.

The instrument performance model is updated based on the instrument test results
shown above. In particular, the receiver channel cross talks are verified and calibrated. This
concerns at first the polarisation cross talk characteristic between co polar and cross polar
channels that is checked via input beam of pure Co polarisation, or pure Cross polarisation.
The spectral cross talk is also confirmed, by verifying the instrument spectrum response of
the HSRE. The cross talk correction needs are shown in Figure 14.
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6.2. Performance Summary

Table 1 shows the ATLID instrument radiometric characteristics predicted for flight
and Table 2 shows the ATLID detection performance.
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Table 1. ATLID radiometric characteristics.

Radiometric Characteristics ATLID Unit

Receiver field of view 66.5 1 µrad
Telescope diameter 620 mm

Solar background filter equivalent bandwidth 710 pm
Mie Co Polar transmission EOL 2 45 %

Mie Cross Polar transmission EOL 2 43 %
Rayleigh transmission EOL 2 43 %

(molecular to molecular channel 3) C_mm 75 %
(molecular to particle channel 3) C_mp 25 %

(particular to molecular channel 3) C_pm 16 %
(particular to particular channel 3) C_pp 84 %

Laser pulse energy 35 mJ
Pulse repetition frequency 51 Hz
Transmitter field of view 36 µrad

Transmitter EOL transmission 89 %
Transmitter polarisation Linear -

1 value predicted in flight is different from ground measured value due to gravity focusing effects; 2 End of life
value without etalon transmission; 3 photo flux ratio characteristics of HSRE.

Table 2. ATLID detection performance.

Detection Performance ATLID Unit

Vertical resolution from 0 to 20 km 100 m
Vertical resolution from 20 km to 40 km 500 m

Vertical cross talk 4.5% on 500 m, 11% on 100 m
Computed quantum efficiency 79/75/79 1 %

Linearity <+/−1 2

<+/−2 3 %

Noise worst case 2.2 e- rms
Dynamic margin on channel vs. predicted

worst signal 18/5/12 1 %

1 (MieCoPo/MieCross/Rayleigh); 2 from 10 e- to the top; 3 from 1 e- to 10 e-.

Table 3 shows the derived ATLID LIDAR performance of backscatter absolute re-
trieval accuracy, based on the relative retrieval accuracy on each channel and the absolute
calibration of the LIDAR constant. The accuracy is given at 10 km altitude, on a 10 km
horizontal integration length, for three types of scenes:

• a sub visible cirrus: faint cirrus at the limit of instrument detection, β = 8 × 10−7

sr−1 m−1

• a thin cirrus: β = 1.4 × 10−5sr−1m−1

• a depolarisation cirrus: cirrus with 10% depolarisation ratio, βpar = 2.6 × 10−5

sr−1 m−1 and βper = 2.6 × 10−6 sr−1 m−1

Table 3. ATLID LIDAR retrieval accuracy.

LIDAR Absolute Backscatter Retrieval Accuracy 10 km
Horizontal Integration Typical BOL Worst Case EOL Unit

Mie Co Polar on sub visible cirrus: β = 8 × 10−7 sr−1 m−1 31 48 %
Mie Co Polar on thin cirrus: β = 1.4 × 10−5 sr−1 m−1 6 8 %

Mie Cross polar on depol. cirrus: β = 2.6 × 10−6 sr−1 m−1 19 23 %
Rayleigh (above cirrus 10 km) 12 17 %
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7. ATLID Verification Closure and Lessons Learnt

Instrument performance verification steps have been completed as shown above.
Following the environmental qualification and calibration at instrument level, ATLID has
been integrated onto the EarthCARE satellite in March 2020 and will undergo satellite level
thermal vacuum testing in 2022.

Lessons learnt from previous LIDAR experience on ALADIN have shown the im-
portance of prediction of the long-term evolution of the laser properties. The lifetime
elements of the laser are the 808 nm pump diode aging, the high fluence coatings and the
laser housing pressure. The laser diodes have undergone life testing, to demonstrate their
longevity in accordance with the requirements of ATLID flight unit ground testing and
mission lifetime.

In addition, one other lesson learnt from ALADIN is the verification of the CCD dark
current map stability. A “hot pixel” phenomena is observed on ALADIN, whereby random
pixels exhibit an elevated signal level, with the number of hot pixels increasing over
time [16]; this forces Aeolus satellite to have to compensate the effect with an additional,
regular calibration that was not foreseen before flight. ATLID pixel level CCD behaviour
has been characterised under flight-like operational parameters and the dark current values
do not present the same level of defect, with no hot pixels seen; this is due to a different
CCD control sequence, which reduces the time that the charge resides in the CCD by a
factor of 10. Nevertheless, the pixel responses will be monitored and checked again once in
satellite thermal vacuum operation, where flight dark current value can be recorded with
the nominal −30 ◦C operating temperature.

8. Conclusions

Since the completion of the full instrument assembly in 2019 [9], ATLID has been
subjected to an ambient performance test campaign [10,11], followed by a successful
environmental qualification test campaign, including performance calibration and char-
acterisation in thermal vacuum conditions. ATLID has been successfully operated as a
self-standing instrument and all performance aspects, including transmitter and receiver
characteristics, have been found to be in line with targeted expectations and compliant
with all major science, in-flight, end of life, performance requirements. This includes
under worst case scenarios, where is assumed instrument performance degradation as
well as operation in less favourable orbital points regarding sun illumination conditions.
The instrument has been delivered to the EarthCARE industrial Prime for assembly and
integration onto EarthCARE satellite platform, a task that was completed in May 2020
(Figure 15). Instrument and platform interface verifications are now approaching an end,
with the execution of the last performance checks and functional testing at system level.
With the completion of the foreseen platform qualification test campaign and flight ac-
ceptance review in 2022, the launch of EarthCARE satellite in March 2023, and the first
6 months of in-orbit commissioning phase, ATLID will be ready to start its 3 year long
mission, to measure aerosols and thin clouds from space. Data from ATLID is expected to
provide a major contribution to the earth observation science community’s understanding
of the cloud-aerosol-radiation interaction and Earth radiative balance, and in development
of more reliable climate and numerical weather prediction models.
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