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Abstract: The Great Plains low-level jet (LL]) is a contributing factor to the initiation and evolution of
nocturnal Mesoscale Convective Systems (MCSs) in the central United States by supplying moisture,
warm air advection, and a source of convergence. Thus, the ability of models to correctly depict
thermodynamics in the LL]J likely influences how accurately they forecast MCSs. In this study, the
Weather Research and Forecasting (WRF) model was used to examine the relationship between
spatial displacement errors for initiating simulated MCSs, and errors in forecast thermodynamic
variables up to three hours before downstream MCS initiation in 18 cases. Rapid Update Cycle
(RUC) analyses in 3 layers below 1500 m above ground level were used to represent observations.
Correlations between simulated MCS initiation spatial displacements and errors in the magnitude of
forecast thermodynamic variables were examined in regions near and upstream of both observed and
simulated MCSs, and were found to vary depending on the synoptic environment. In strongly-forced
cases, large negative moisture errors resulted in simulated MCSs initiating further downstream with
respect to the low-level flow from those observed. For weakly-forced cases, correlations were weaker,
with a tendency for smaller negative moisture errors to be associated with larger displacement errors
to the right of the inflow direction for initiating MCSs.

Keywords: mesoscale convective systems; forecast errors; precipitation; low-level jet; numerical
weather prediction; convective initiation

1. Introduction

The Great Plains receive much of their warm season precipitation from Mesoscale
Convective Systems (MCSs) [1-5]. Nocturnal MCSs typically ingest buoyant air parcels
from layers of air above the convectively stable PBL [6-9]. Agriculture in the central United
States depends greatly on MCS rainfall events [1,10], and these events often bring severe
weather [11,12]. Thus, accurately forecasting these events is important [13-16]. How-
ever, Quantitative Precipitation Forecasts (QPF) are very poor for summer precipitation
from MCSs [17-20]. Jankov and Gallus [21] and Squitieri and Gallus [22], among others,
found greater accuracy in forecasting precipitation events within strongly forced synoptic
environments than in weakly forced ones. One reason for poor QPF skill with MCSs is
displacement error in the simulated location. Duda and Gallus [23] and Squitieri and Gal-
lus [24], for instance, found a 105 km average initiation displacement error for convection
that often later evolved into MCSs, while Stelten and Gallus [25] found these errors to be
between 77-105 km for multiple convection-allowing models run to support the Plains
Elevated Convection At Night (PECAN) experiment.

The low-level jet (LL]) plays a significant role in the initiation of MCSs, particularly
during their growth and mature stages [6,26-31]. An LLJ can be loosely defined as a stream
of fast-moving air, with low-level wind maxima of 10 to 30 ms~! and an elevation of
the peak wind between 250 and 1000 m AGL [32]. The LL]J can be attributed to multiple
factors, including an inertial oscillation [27,33] associated with changes in the diurnal cycle
of surface heating [34] and boundary layer mixing, channeling of the winds by topography,
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cold air pools and fronts, and heating-induced horizontal temperature gradients [35-37].
At the time of MCS initiation, the upstream region supplying inflow to the storms may
not yet meet the Bonner [38] criteria for a LL], as MCS initiation often occurs earlier than
LLJ development. While the flow may not yet meet LL]J criteria, the inflow region still
is an important contributor to MCS development, as a terrain-heating/slope induced
geostrophic low-level wind maximum [39] provides moisture and differential temperature
advection to the region where an MCS initiates, along with convergence to develop and
sustain the MCS.

Recent studies suggest that the amount of low-level moisture within a storm envi-
ronment plays an influential role in where an MCS will initiate [24,40], and thus moisture
errors within a simulation might explain some of the displacement errors present. A slight
change in moisture at a parcel’s lifted level may result in large changes in CAPE and CIN,
bringing about various responses to the overall behavior of an MCS [41-43]. Peters et
al. [40] showed for one MCS event during PECAN that in a region near and southwest of
the MCS location, a smaller value of simulated CIN resulted in a small northeastward sim-
ulated MCS position error, while a large CIN resulted in a large northeastward simulated
MCS position error, signifying the potential importance of low-level moisture supply on
the location of MCS initiation within numerical weather prediction models. The simulated
moisture regulated the time required for parcels to achieve convective initiation, with drier
values hindering the buoyancy, resulting in a longer isentropic upglide distance for parcels
to reach the level of free convection (LFC) and initiate convection.

Statistically significant correlations were discovered recently between the forecast
accuracy of WRF (Weather Research and Forecasting) simulated LL] thermodynamic
variables and MCS QPF for strongly forced cases. Squitieri and Gallus [22] defined two
synoptic environments in which MCSs associated with LL]Js occur. Those with cyclonic
flow aloft (at 200 hPa) and strong synoptic forcing were identified as Type C, and those
with anticyclonic flow aloft and weak synoptic forcing were identified as Type A. In Type
C cases, strong convergence was present at 900 hPa and coupled with 200 hPa divergence,
while in Type A cases, little or no coupling of the 900 hPa convergence to the 200 hPa
divergence was present. MCSs in Type A environments were forced by other, more diverse
means. This coupling alongside the flow aloft was examined at 0600 UTC when the LL]
was usually most prominent [22].

Based on the findings of Peters et al. [40] for one MCS event, the present study seeks
to find whether or not a strong statistical correlation exists between errors in several
thermodynamic variables in the upstream inflow regions of initiating MCSs in simulations,
and the spatial displacement errors of the simulated MCSs. In addition, because Squitieri
and Gallus [22] found differing behaviors in cases with strongly forced versus weakly
forced LLJ cases, the present study also explores sensitivity of the correlations to the amount
of larger scale forcing. It is hypothesized that if negative (positive) simulated moisture
errors exist in the inflow region for upscale growing convection, simulated MCSs will be
displaced downstream (upstream) as more (less) lift would be required within the broad
ascending airstream to bring parcels to their LFC, and that the greater the magnitude
of the errors, the larger the displacements will be. Two approaches were taken when
investigating these inflow regions. The first used the observed MCS initiation location at
the time of initiation to explore the validity of the hypothesis. The second used inflow
regions based on the position of the simulated MCS with the aim of finding a relationship
to assist forecasting since the location of the observed MCS initiation would be unknown
to forecasters in the hours preceding the event.

The paper is structured as follows. Section 2 describes the data used and methodology.
Section 3 discusses statistical correlations and their significance and provides physical
interpretation. Finally, Section 4 reviews relevant findings and outlines future work that
could build upon the results.
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2. Data and Methodology
2.1. MCS Events Examined

From the sample of 31 MCS events occurring over the eastern Great Plains and
Midwest in the warm seasons of 2007-2014 and associated with LL]s examined in Squitieri
and Gallus [22,24], 15 cases that had easily identifiable initiation locations and times were
chosen, with 3 additional cases added from the 2015 PECAN project [44] that also met
these criteria, to create a sample of 18 events. In all cases, relationships were examined
between model forecast errors for specific humidity, equivalent potential temperature
(6¢), relative humidity, temperature, most unstable convective available potential energy
(MUCAPE), most unstable convective inhibition (MUCIN), and the level of free convection
(LFC) in the inflow regions of the upscale growing convection, and the spatial displacement
errors present at the initiation of those MCSs. Because these cases included LL]Js with MCS
formation in the general region relative to the jet identified in the Maddox [45] climatology,
it was assumed the inflow was gently ascending as suggested in that study, and shown in
detail in the Peters et al. [40] MCS case. Additionally, one event was randomly chosen for
a more thorough isentropic analysis, and it clearly showed the slowly ascending inflow
into the region where MCS initiation took place. These parameters were selected based
on the findings in Peters et al. [40] for one PECAN case and because parcel theory would
suggest they could have a pronounced influence on convective initiation. The 18 cases
were chosen based on the criterion that an MCS initiated in both model runs examined for
each case, one run using the Yonsei University (YSU; [46]) PBL scheme, and the other using
the Mellor-Yamada-Janjic (MY]; [47]) PBL scheme. An equal number of 9 weakly forced
cases where flow aloft was anticyclonically curved (Type A) and 9 strongly forced cases
where flow aloft was cyclonic (Type C; see [21] for more details on classification of A and C
events) were chosen for synoptic comparisons. Although the larger-scale environment in
Type C events likely provided some of the forcing for the LL], LLJs in Type A events were
likely primarily forced by the inertial oscillation, terrain sloping, or heating effects. Usually
less lift via low-level convergence or upper level divergence was present for Type A cases
than for Type C Cases [22].

2.2. Model Output

All of the events were simulated using WRF-ARW (Advanced Research WREF; [48])
version 3.6.1 with 3 km horizontal grid spacing. The Dudhia Shortwave [49] and RRTM
Longwave [50] radiation schemes and the Thompson microphysics scheme [51] were used
in all simulations, and no convective parameterization was used. The two PBL schemes
used, YSU and MY], were chosen to explore the sensitivity of the simulated LLJs and
MCSs to the PBL scheme choice. YSU is a nonlocal mixing scheme using first-order closure
that represents entrainment at the top of the PBL and has been found to underestimate
the LL] wind magnitudes [52]. MY]J is a local mixing scheme using 1.5-order closure
which used a prognostic calculation for turbulence with an equation for prognosis of TKE,
with the addition of viscous sub-layer to the PBL through molecular diffusion, and may
simulate environments that are too moist and cool, leading to overestimates of the low-
level wind maximum [53]. The two PBL schemes were chosen due to their different
behaviors, mainly related to the fact that one is local and the other is non-local, as well as
the opposite magnitude errors they often have in simulating LLJs. For each case, the WRF
was initialized at 12 UTC, roughly 12 h before MCS initiation, and runs were integrated
for 24 h over a 1600 x 1600 km domain centered over the Great Plains (e.g., Figure 1),
with 50 vertical levels (25 below 850 hPa, and 25 above). As explained in [22], this domain
was generally centered over the LL] and MCS of interest to keep the lateral boundaries
as far from the area of interest as possible and reduce impacts related to lateral boundary
conditions. 12 km NAM forecast output [54] was used to initialize the WRF and provide
lateral boundary conditions.
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Figure 1. Type C case on 2 June 2014 at 0000 UTC showing all 4 regions used as inflow domains: (a) Obs-inflow (red), Rapid
Update Cycle (RUC) 750 m AGL wind barbs, and observed mosaic composite reflectivity (see color bar for magnitudes),
(b) Weather Research and Forecasting (WRF) 750m-inflow (blue), WRF 750 m AGL wind barbs, and simulated composite
reflectivity, (c) WRFdisp (green), WRF 750 m AGL wind barbs, and simulated composite reflectivity, (d) WREF700mb-inflow
(purple), WRF 700 mb wind barbs, and simulated composite reflectivity. Distance scale shown at bottom of (a).

As upper-air observations are scarce for nocturnal hours over the Great Plains, 0-h
RUC or RAP analyses (RAP replaced RUC in 2012) with 13 km horizontal grid spacing
were substituted for in-situ observational data [55], except for composite reflectivity. Past
studies have explored the potential for biases to occur in RUC analyses, and have found
that problems with using RUC output as a substitute for observational data were generally
small, with errors close to the ranges for radiosonde accuracy [56]. Although forecasters
do need to be aware of these errors, such analyses are the only high-resolution gridded
depictions that exist of atmospheric variables above the surface, and thus RUC and RAP
analyses have been used in place of observations in other synoptic and mesoscale studies
(e.g., [22,24,57-60]). However, it should be noted that in the MCS case studied by Peters
et al. [40], the RAP poorly represented the LL] and moisture when compared to special
PECAN soundings. Jahn and Gallus [61], on the other hand, found that for the full sample
of LLJ cases in PECAN, RAP analyses of wind speed, potential temperature, and moisture
generally matched PECAN soundings well, with only a small negative bias in wind speeds
in the LLJ layer. In the present study, the RUC and RAP output, available every 25 hPa in the
vertical, were interpolated to levels of constant height for comparisons with WRF output.
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The WREF output was filtered using a Gaussian filter to remove waves with wavelengths
less than 26 km (twice the 13 km grid spacing of the RAP and RUC output), and regridded
to a 13-km horizontal grid to allow an appropriate comparison with the RAP and RUC
data. Times and locations of MCS initiations (defined in the following sub-section) were
identified using composite reflectivity from Multi-Radar Multi-Sensor (MRMS) 1-km hourly
mosaic radar data [62], which were regridded to 3 km to match the WRF grid spacing for
determination of the MCS initiation timing and location, and to a 13-km horizontal grid to
match the grid spacing of the RAP and RUC analyses when used to determine points in the
inflow that were convectively contaminated and removed (discussed in sub Section 2.4).

2.3. MCS Initiation and Inflow Region Identification

MCS initiation was identified using the criteria of Parker and Johnson [63] and Schu-
macher and Johnson [57]. Thus, an MCS was said to have initiated when a nearly-connected
linear band of reflectivity greater than 40 dBZ, that may not show a reflectivity trough,
exceeded 100 km in length. The initiation location was the centroid of the 40 dBZ echo
region. Both of these criteria were evaluated subjectively. All cases contained an LL] based
on the Bonner [38] criteria, although at the time of MCS initiation, the flow within the
inflow regions may not yet have met the criteria to be considered an LL] (though all cases
did reach LLJ criteria at some point during the night).

The inflow region was defined as a 250 km x 250 km domain for each case based
on various levels of upstream wind flow using four different methods. It has long been
shown (e.g., [45]) that MCSs develop near the nose of the LL] with heat and moisture being
supplied from a generally southerly direction, motivating our choice to focus on an inflow
region. Our choice of a 250 km x 250 km domain was subjective, and we are unaware
of prior works establishing what the best area would be over which to evaluate inflow
characteristics. The first method evaluated 750 m AGL flow immediately upstream of the
observed MCS initiation location (Figure 1a; hereafter referred to as Obs-inflow). This level
was chosen as it is near or just above where the LL] often peaks in intensity (e.g., [35,64]).
Note that all of these inflow regions were chosen so that any overlap (at the inflow edge of
the MCS) with the area of composite reflectivity greater than 40 dBZ was by less than 15%,
with the majority of the inflow region extending upstream from that area of MCS initiation.
The 750 m AGL flow at the time of MCS initiation was southerly in most cases, hence most
inflow region sub-domains were located south of the MCS initiation point. Focusing on
these regions allowed for the best evaluation of positive (negative) moisture errors in the
inflow region of upscale growing convection that could systematically lead to upstream
(downstream) displacement errors in the simulated MCS location. The second approach
employed the same methodology as the first approach, but used the simulated MCS
initiation location (Figure 1b; hereafter referred to as WRF750m-inflow), as correlations
discovered using only model output could serve as a tool to allow forecasters to predict
MCS spatial displacement errors. Using the observed MCS initiation location would not
be possible in practice since forecasters would not know where an MCS would initiate
in advance.

The third approach defined the inflow box using the simulated MCS initiation location
but with an adjustment based on the average displacement errors of the simulated MCS
initiations for the sample of cases examined in the present study (Figure 1c; hereafter
referred to as WRFdisp). The average displacement errors for the runs using the YSU and
MY] schemes were 220 and 200 km, respectively. Because the simulated MCS initiations
typically were north or northeast of the observed ones, the inflow regions were shifted
110 and 100 km south-southwest of the simulated MCS initiations, respectively. Only half
of the average displacement distance was used to keep the domain relatively near and
upstream of the simulated MCS initiation location.

The last approach allowed for the possibility that some events may feature displace-
ment errors very different from the average and assumed that displacement errors may
be related to the flow at some higher level for a given case. Because the 700 mb flow
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direction often best matched the direction of the average displacement error, an inflow
subdomain was chosen upstream of the simulated MCS initiation location with respect to
the 700 mb flow (Figure 1d; hereafter referred to as WRF700mb-inflow). Both approaches
three and four were investigated because correlations using an inflow region just upstream
of the simulated MCS initiation (approach 2) were often much weaker than those obtained
when using a region upstream of the observed MCS (approach 1). Inflow regions based on
the WRF MCS initiation location with respect to both the 1500 m AGL flow and 500 mb
flow were also studied, but the correlations were not as strong, and these results will not
be discussed. It is acknowledged that these four inflow regions are defined subjectively,
and future work could explore a much larger range of inflow regions systematically tested
to find the area yielding strongest correlations. Within the four inflow regions on which
this study will focus, thermodynamic variables within three vertical layers were studied,
250-750 m AGL (lower layer), 1000-1500 m AGL (upper layer), and 250-1500 m AGL
(full layer).

2.4. Statistical Analysis Approach

Mean error was defined for the seven thermodynamic variables mentioned earlier for
each inflow region and aforementioned vertical layers as the averaged WRF value over
the inflow region subtracted from the averaged RUC value over the same inflow region.
To minimize convective contamination of variables within the inflow regions, points within
areas of reflectivity greater than 25 dBZ were ignored. The vector displacement error for
MCS initiation location was calculated using the simulated MCS initiation location relative
to observations. To gain further insight, correlations were also computed for the variables
with the X and Y-components of displacement, which were calculated based on a rotated
Cartesian axis with the Y-direction being parallel to the general wind direction in each
inflow region, as seen in Figure 2 (positive Y-direction is upstream).
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Figure 2. Mesoscale Convective System (MCS) case on 2 June 2014. Red area represents the Obs-
inflow, and the axes represent the rotated coordinate system aligned with the 750 m AGL flow. Filled
contours show mosaic composite reflectivity (dBZ as indicated by color bar), and RUC wind barbs
are in m s~ 1. Distance scale shown at lower left.

To determine the correlation between the errors in forecast thermodynamic variables
and the MCS initiation displacement errors, the Spearman Rank Correlation (S) was em-
ployed. S was selected instead of the Pearson Correlation Coefficient to compensate for
the small number of cases used in this study, as Type A and Type C cases were treated
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separately. In addition to better handling small sample sizes, impacts of potential outlier
cases (ones that may not follow any significant correlation) may be dampened with S,
thus preserving statistical relationships between two variables that may otherwise be un-
fairly punished by an outlier [65]. S is also sign sensitive, and allows for the determination
of statistical significance, making it a useful metric for the present study. Lastly, S is a
non-parametric test, meaning it has statistical use for this study’s data distribution as the
mean errors and distance errors are statistically independent [65]. S was defined in Myers
and Well [66] as:

ey

where 1 is the total number of samples, i is each case, and x; and y; are the ranks of the
variables to be correlated, the mean errors of each tested variable and displacement of the
initiating MCS, respectively. The 90th quantile of Spearman rank correlation values was
used to determine statistical significance within this study’s data to also compensate for
the small sample size. Using a sample size of nine (as Type A and Type C cases are treated
separately), the critical value for statistical significance was an absolute value of S greater
than or equal to 0.4667, as determined by Conover ([65]; Table A10). For the cases analyzed
in the present study, a positive S value usually signified that the more negative the errors
in the thermodynamic variables, the greater the displacement error in the downstream
(negative) direction, usually toward the northeast. A negative S value usually signified that
as displacement errors became more negative, the mean errors were less negative (smaller
in magnitude).

The calculations were done at four different times in hourly intervals. These included
the time of initiation and the three hours prior to initiation. Although correlations were
computed at all four times for all seven thermodynamic variables using all four inflow
regions for both Type A and C cases, because the WRE750m-inflow region exhibited the
weakest correlations of all regions investigated in this study, and the WRFdisp region
mirrored the results from the WRF700mb-inflow region, with the latter having slightly
higher significance values, the results that follow will focus only on correlations using the
Obs-inflow and WREF700mb-inflow regions. In addition, because no significant correla-
tions based on the 90th quantile were discovered using temperature, relative humidity;,
MUCIN, MUCAPE, or LEC, the discussion will focus primarily on specific humidity and
8. Although all of these parameters have an influence on convection, it is possible that
for initiation, the most important ones are related to absolute moisture available around
the specific inflow level, and not to other variables at that level, or parameters that reflect
deeper layer conditions such as MUCIN or MUCAPE.

3. Results
3.1. Type C with YSU Scheme

In the Type C cases for WRF runs using the YSU scheme (Table 1), the Obs-inflow
region showed statistically significant positive S values at nearly all times and in all
3 vertical layers with respect to the total spatial displacement of MCSs. This agrees with the
hypothesis that errors in variables that would play a role in the level where saturation of
an air parcel within ascending flow would occur will determine the displacement error of
a simulated MCS. Positive S values were found in both specific humidity and 6.. However,
correlations at most times were not statistically significant for specific humidity with respect
to the X and Y-components of displacement. , showed a positive significant correlation at
most times for all layers for the X-component as well as for the Y-component in the full
layer. Both variables for all vertical layers contained similar positive statistical significance
with respect to the total displacement but tended to diverge for the X and Y-components.
An example scatterplot of the displacement errors associated with the errors in specific
humidity at the time of initiation using the WRF700mb-inflow domain (Figure 3) reveals
that the WRF almost always produced a drier low-level atmosphere upstream of the MCSs
in the present sample of cases than what the RUC analyses showed. Negative moisture
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errors were as large as 4 g kg ! while positive errors generally remained no larger than
roughly 1 g kg~!. Because MCS initiation locations, and thus also displacement errors
between the simulated locations and the observed ones, will not only be a function of
the moisture fields, but also of other factors such as the position of zones of low-level
convergence, and temperature fields, it is understandable that scatter exists in the plots in
Figure 3, and that the relationships shown are not always monotonic.

Table 1. Spearman rank correlation coefficients (red indicates positive, blue negative) for all Type C cases simulated with

WREF using the Yonsei University (YSU) scheme, and for all combinations of layers and displacements. Values are at time

of initiation (t-0), and 3 h prior to time of initiation (t-3), and focus on two regions, the Obs-inflow region (RUC), and the

WRF700mb-inflow region (WRF 700 mb). Bold font represents statistically significant correlations (S > |0.467|), regular font

not statistically significant correlations (S < |0.400]), and if a non-significant value was an outlier and the t-1 and t-2 values

(which are not shown) were both significant, the value is indicated in italics.

Layer Specific Humidity Equivalent Potential Temperature Displacement
Obs-Inflow WRE700mb- Obs-Inflow WRE700mb-
Inflow Inflow
t-0 t-3 t-0 t-3 t-0 t-3 t-0 t-3
Full Layer 0.617 0.567 0.7 0.783 0.683 0.783 0.583 0.55 Total
Lower Layer 0.267 0.583 0.667 0.75 0.533 0.75 0.767 0.617 Displacement
Upper Layer 0.25 0.567 0.617 0.783 0.3 0.783 0.233 0.517
Full Layer 0.433 0.383 0.217 0.25 0.5 0.6 0.35 —0.1
Lower Layer 0.467 0.267 0.5 0.3 0.55 0.45 0.267 0 X-Component
Upper Layer 0.05 0.467 0.167 0.167 0.0067 0.6 —0.05 —-0.167
Full Layer 0.333 0.367 0.7 0.767 0.583 0.5 0.533 0.667
Lower Layer —0.117  0.433 0.667 0.683 0.367 0.55 0.767 0.707 Y-Component
Upper Layer 0.217 0.3 0.65 0.8 0.317 0.5 0.267 0.617

In the same set of Type C cases, the WRF700mb-inflow region followed the same trend
for both variables for all vertical layers with respect to the total displacement values. Small
differences existed from the values computed using Obs-inflow, but general results for
both variables were similar. No significant S values were observed for the X-component
at all layers, but the same significant positive correlation was present for all layers with
respect to the Y-component. This set of Type C cases that were simulated using the YSU
scheme had the most statistically significant S values with both inflow regions compared
to the MY] runs for Type C cases, and for both configurations with Type A cases as well,
and showed the most consistency between all 3 vertical layers.

Significant positive correlations in both the total displacement and Y-component
distances support the hypothesis that as negative moisture errors increase within a region,
the simulated MCS will be displaced further downstream, and as the negative moisture
error decreases, the simulated MCS will be nearer to the observed MCS with respect to the
flow direction, as seen in Figure 4. This relationship suggests that if a positive moisture
error existed in WREF, the MCS may initiate too far upstream, but since the present sample
of cases rarely showed positive moisture errors, future work with a larger sample of cases
is needed to verify this suggestion. For the X-component, a positive correlation means that
as the negative moisture error increases, the simulated MCS will be displaced further to
the right of the inflow direction. As will be discussed later, it is unclear why correlations
existed with the X-component.
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and the green squares Y-components of displacement. Spearman rank correlation coefficients are
in the top-right corner with a line of best fit added to demonstrate the correlation behavior. (a) Full
Layer-Type A Cases at t-0; (b) Full Layer-Type C Cases at t-0; (c) Lower Layer-Type A Cases at t-0;
(d) Lower Layer -Type C Cases at t-0; (e)Upper Layer-Type A Cases at t-0; (f) Upper Layer-Type C
Cases at t-0.

3.2. Type C with MY] Scheme

With the MY] PBL scheme in the WRF simulations, Type C cases differed more between
vertical layers (Table 2). For specific humidity within the Obs-inflow region, only the lower
layer contained significant positive correlations at most times for the total displacement
and its X-component. However, the X-component was positively correlated for the full
layer as well. This correlation was present for 6, in the X-component, and for all vertical
layers. For nearly all layers and the three displacement measures, the significance was
larger at the earliest times, most removed from the time of initiation.
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Figure 4. Type C case on 28 June 2014 at 0100 UTC, near the time of initiation. Red contours
are mosaic composite reflectivity above 25 dBZ (dashed) and 40 dBZ (solid). Blue contours and
wind barbs are WRF output with the Mellor-Yamada-Janjic (MY]) scheme, with blue contours being
composite reflectivity above 25 dBZ (dashed) and 40 dBZ (solid), and wind barbs representing the
750 m AGL wind. Bottom left corner displays the specific humidity mean error, and the Y-component
displacement error (based on centroids of the 40 dBZ region), with the total displacement represented
by the black line. Distance scale is shown in lower right.

Table 2. As in Table 1 except for WRF runs using MY].

Layer Specific Humidity Equivalent Potential Temperature Displacement
Obs-Inflow WRE700mb- Obs-Inflow WRE700mb-
Inflow Inflow
t-0 t-3 t-0 t-3 t-0 t-3 t-0 t-3
Full Layer 0.15 0.433 0.55 0.733 0.233 0.633 0.333 0.517 Total
Lower Layer 0.417 0.767 0.583 0.8 0.2 0.9 0.5 0.56 Displacement
Upper Layer —0.117  0.167 0.467 0.65 —0.217 0.45 0.15 0.45
Full Layer 0.367 0.633 0.167 0.217 0.417 0.667 0.15 —0.033
Lower Layer 0.533 0.567 0.5 0.4 0.433 0.667 0.3 0.1 X-Component
Upper Layer 0.05 0.5 0017  0.15 0.15  0.683 0333 —0.167
Full Layer 0117  —0.017  0.617 0.633 0.133 0.417 0.35 0.433
Lower Layer  0.0833 0.35 0.75 0.617 0.05 0.683 0.467 0.4 Y-Component
Upper Layer 0.1 —0.05 0.5 0.617 0.15 0.15 0.167 0.433

For the WRF700mb-inflow region, positive S values for specific humidity were ob-
served at all layers with respect to the total displacement and its Y-component and were
significant at nearly all times. There were also positive S values in the lower layer for its
X-component, which are nearly identical to those observed using the YSU scheme. 6, did
not show as strong of correlations as specific humidity, but it also showed correlations were
most significant at the earliest time, 3 h prior to initiation. However, significant positive
correlations occurred at most times for the full layer with respect to the total displacement,
as well as the lower layer for both the total displacement and its Y-component. Overall,
the correlations for the MY] runs were stronger in the lower layer than in the upper layer,
while for the YSU runs, there was less difference in correlations between the two layers. Ad-
ditionally, almost all S values were positive, signifying that simulated MCSs were displaced
relatively consistently to the right and downstream when errors for both variables were
negative, with larger displacements for larger errors. Although there was some variability
in the S values with respect to each layer and inflow region used, the fact that the MY]
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runs had the most significant correlations confined to the lowest layer is consistent with
the fact that the MY] scheme is known to produce shallower PBLs than the YSU scheme,
and these shallower PBLs are often cooler and more moist than those produced when the
YSU scheme is used [53,67,68].

3.3. Type A with YSU Scheme

Table 3 shows the S values of correlations present for Type A cases that were simu-
lated using the YSU scheme. The total displacement and its Y-component had significant
positive correlations at most times within the full layer, but only the total displacement
had significant positive correlations within the lower layer. This again agrees with re-
sults previously discussed for Type C cases that utilized both the YSU and MY] schemes.
However, significant negative correlations occurred within the full and upper layers with
respect to the X-component. At most times, negative correlations were not observed in
almost any Type C cases. These correlations are nearly mirrored for 6,, apart from the full
layer not showing statistically significant correlations for the X-component. The additional
significant negative correlations occurred at most times. Within the WRF700mb-inflow
region, the only significant correlations occurred for the X-component, and they were
negative everywhere for both variables. Correlations were small and inconsistent for total
displacements and Y-component distances. The negative correlations for the X-component
were unexpected and are not addressed by the hypothesis. These negative correlations
were associated with small negative moisture errors and large displacements to the right of
the initiation location, and large negative moisture errors with little to no displacement to
the right or left of the initiation location with respect to the inflow direction.

Table 3. As in Table 1 except for Type A cases.

Layer Specific Humidity Equivalent Potential Temperature Displacement
Obs-Inflow WRE700mb- Obs-Inflow WRE700mb-
Inflow Inflow
t-0 t-3 t-0 t-3 t-0 t-3 t-0 t-3
Full Layer 0.5 0.433 0.05 —0.383 0417 0.483 0.017  —0.167 Total
Lower Layer 0.517 0.5 0.183 —0.133 0.583 0.55 0.033 0.067 Displacement
Upper Layer 0.25 0.117 0.067 —0.583  0.233 0.167 0.1 —0.517
Full Layer —0.33 —0.517 —0.783 —0.517 —-0.333 —0.417 —0.65 —0.55
Lower Layer 0217  —0.133 —0.8 —0.65 0283 —-0.183 —0.683 —0.733 X-Component
Upper Layer —-055 —0.783 —0.633 —0.417 —0.517 —0.733 —0.617 —0.517
Full Layer 0.48 0.467 0.267 —0.2 0.367 0.55 0.2 0
Lower Layer 0.467 0.367 0.383 0.033 0.583 0.5 0.25 0.25 Y-Component
Upper Layer 0.217 0.317 0.117 0.367  0.183 0.417 0.067 0.267

The negative correlation with respect to the X-component was present for a majority
of the Type A cases, with a good example depicted in Figure 5. Additional analysis was
performed to try to understand why these negative correlations were present. Because
Squitieri and Gallus [22] discovered some relationships between QPF skill and the depth
and magnitude of the LL]J, these flow variables within the inflow regions, as well as
MUCAPE, MUCIN, and LFC, were explored (Figures 6 and 7). Six cases were considered,
three containing small negative moisture errors but a large rightward displacement (group
1), and three cases containing large negative moisture errors but little to no left or right
displacement (group 2). Little difference was found in the LL] variables between the two
groups (Figure 6), and these results are mirrored in the other 3 inflow regions (figures not
shown). Likewise, no differences were found in MUCAPE, MUCIN, and LFC between
the two groups (Figure 7). These results are again mirrored by the other 3 inflow regions
(figures not shown). Model errors in flow aloft, which would likely be veered from that
used to define the inflow boxes in the present study, were also studied as these might
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influence the X-component displacements. A preliminary analysis of 500 mb flow errors
did not find systematic differences in the errors. In addition, the majority of surface maps
for all Type A cases at 0000 UTC contained a nearby stationary front, usually with an
east-west orientation, with southerly warm air blowing north towards colder air with
easterly winds. Because Type A events are not associated with strong synoptic forcing, a
variety of smaller-scale factors likely strongly influences the initiation and upscale growth
of MCSs in those cases, and interactions between these factors may be complex. A detailed
understanding of the reasons for the negative correlation would require a larger sample of
cases and additional analysis beyond the scope of the present study.

" J
MeanError= — 0,07 g/kg
X — ComponentError = — 138.69 km 100 km
—

T

\ i N 1 1 \

Figure 5. As in Figure 4, but for a Type A case on 15 June 2012 at 0000 UTC and showing the
X-component error (km) instead of the Y-component displacement error in the box. Distance scale
shown in lower right.
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Figure 6. Low-level wind magnitude (ms~!) and direction within the Obs-inflow region for six Type
A cases (month, day, and year shown below each panel). Cross-section taken across the entire region
from west to east at the halfway position from north to south across domain. Top row (a—c) are cases
that contained a small X-component distance error, yet a large specific humidity mean error, while
the bottom (d—f) are cases that contained a large X-component distance error, yet a small specific
humidity mean error. Speeds indicated with color bar on the right.
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Figure 7. Most unstable CAPE (a), most unstable convective inhibition (MUCIN) (b), and level of
free convection (LFC) height (c) within the inflow region for the same set of cases as in Figure 6,
with top row of Figure 6 represented by the leftmost three dates, and bottom row represented by the
rightmost three dates.

3.4. Type A with MY] Scheme

Type A cases simulated with MY] had the smallest number of significant S values in
comparison to the other 3 scenarios examined (Table 4). For the Obs-inflow region, the
lower layer contained significant positive S values at most times with respect to the total
displacement. For the X-component, both the full and upper layers contained significant
negative S values at most times, as was seen with the YSU output, and the results are
mirrored identically for 6,. The WRF700mb-inflow region contained almost no significant
correlations for both variables. Individual times may have significant S values, but they
do not remain consistent over the time period examined. The only strong correlation that
existed at most times was for specific humidity with significant negative S values for the
full layer with respect to the X-component.

Table 4. As in Table 2 except for Type A cases.

Layer Specific Humidity Equivalent Potential Temperature Displacement
Obs-Inflow WRE700mb- Obs-Inflow WRE700mb-
Inflow Inflow
t-0 t-3 t-0 t-3 t-0 t-3 t-0 t-3
Full Layer 0.283 0.183 0.1 —0.583 0.25 0.0833 —0.033 —0.517 Total
Lower Layer 0.483 0.433 0.283 —0.133 0.55 0.45 0.033 —0.133 Displacement
Upper Layer  —0.033 0.05 —0.1 —0.75 0.133 0.0333 —0.117 —0.617
Full Layer —0.567 —0.6 —0.517 —0.05 —0.6 —0.45 —0.45 0.017
Lower Layer  —0.183 —0.183 —0.583 —0.317 —0.267 —0.017 —-04 —0.25 X-Component
Upper Layer  —0.883  —0.683 —0.6 0.117 —0.817 —0.5 —0.517 0.15
Full Layer 0.267 0.267 0.217 —0.5 0.283 0.133 0.017  —0.517
Lower Layer 0.283 0.2 0.417 —0.05 0.4 0.183 0.1 —0.15 Y-Component
Upper Layer 0.2 0.283 0 —0.683  0.367 0.2 —0.083  —0.65

3.5. Application to Forecasting

Because positive correlations were common and often significant for Type C cases,
even when an inflow domain was chosen based on the simulated MCS initiation location,
forecasters may be able to use the information to anticipate a few hours ahead of time
the displacement errors likely to be present for MCS initiation for these types of events.
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Table 5 shows the layer and time with the most significantly positive value of S for specific
humidity and 6,, as this would be the best information for forecasters to use. Unfortunately,
no systematic significant correlations dominated for Type A events using inflow determined
from the simulated MCS initiation, so the present study cannot identify useful guidance
for forecasters to anticipate displacement errors in advance for those events. Of note, since
positive significant S values did exist at some times for some layers when using an inflow
domain based on the observed MCS initiation, the general hypothesis still seems to be
valid in these events, but none of the techniques tested in the present study was able to
identify an inflow box that forecasters could use in advance of MCS initiation to predict
displacement errors. The domain positions relative to the simulated initiating MCSs that
worked well for Type C cases did not work for Type A cases.

Table 5. Largest positive Spearman rank correlation coefficients simulated in Type C cases using both
MY]J and YSU schemes. S values were taken from the WRF700mb_inflow region and are shown for
each displacement along with the time when valid.

Type Moisture Variable = Displacement S Value Layer Time
. .. Total Full,
Type C  Specific Humidity Displacement 0.8 Lower t-1,t-3
X-Component 0.5 Lower t-0, t-2
Y-Component 0.8 Upper t-3
Equivalent
Potential . Total 0.767 Lower t-0
Displacement
Temperature
X-Component 0.467 Lower t-1
Y-Component 0.767 Lower t-0

4. Discussion and Conclusions

A set of 18 MCS events was examined to determine if errors in some thermodynamic
variables within the inflow regions of MCSs were correlated well with spatial displacement
errors present in the initiation stage of the MCSs. The MCSs were classified into two
synoptic environments, Type C and A, based on the presence of strong and weak synoptic
forcing, respectively. Prior studies [22,24] had found correlations that could assist forecast-
ers were more common for Type C LL]J cases than for Type A LLJ cases, and forecast skill
was greater for Type C events. Four inflow regions were used in the present study, with
one based on the observed MCS initiation location and three others on the WRF simulated
MCS initiation location. Three layers were examined, 250-750 m AGL, 1000-1500 m AGL,
and 250-1500 m AGL. To determine the errors within the inflow region, WRF output was
compared to RUC analyses. Correlations were then determined between these errors and
the spatial displacements of the MCS initiations as well as their X and Y-components using
a coordinate system defined by the direction of the inflow.

In Type C cases, as negative moisture errors increased, MCSs were displaced further
downstream, agreeing with the findings of Peters et al. [40] for one PECAN case, and with
the hypothesis that the location of MCS development is largely related to the level at which
saturation would be reached within a broad ascending inflow layer. Significant positive
correlations were observed for total displacement and its Y-component (in direction of the
wind flow) for most of the Type C cases, and for the inflow region upstream of the observed
MCS initiation for Type A cases. These results suggest that for Type C cases, forecasters
may be able to use information on moisture errors a few hours prior to MCS initiation to
estimate the displacement errors likely to be present for MCS initiation.

The strongest correlations for Type A cases were present for its X-component of
displacement values, and the correlations were negative. These negative correlations mean
that the larger the negative moisture errors, the closer the simulated MCS initiation was to
the observed MCS initiation with respect to the left or right of the inflow direction. For a
small negative moisture error, the simulated MCS initiation was displaced far to the right
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of the observed initiating MCS. An analysis of multiple weather parameters was unable to
explain the negative correlations. Due to the important role that numerous smaller-scale
triggers play for Type A MCS initiation with the lack of strong synoptic forcing, it is difficult
to identify a particular cause for the significant negative X-component correlation. It is
also possible that with the small sample size, the negative correlations found in the present
study may be more of a coincidence and may not be generalizable.

The present study also revealed the potential importance of the 700 mb flow in
influencing the displacement of the simulated MCSs. It was recognized that to assist
forecasters, an inflow region would need to be based on the simulated MCS initiation
location and not that of the observed one. However, the WRF750 m-inflow region location
performed much more poorly than Obs-inflow, without many significant correlations
between errors there and the spatial displacement errors of the systems. An inflow box
making use of the average displacement error from this small set of cases performed better.
Because the average displacement direction matched rather well with the flow at 700 mb,
an inflow box using 700 mb flow was also tested and found to result in the most significant
correlations of all four regions explored. The fact that 700 mb worked well is consistent
with the finding by Cotton et al. [26] that MCS initiation tends to occur in the region of
maximum 700 mb warm air advection. Inflow boxes based on the 500 mb flow and flow
at 1500 m AGL also were explored but yielded less significant correlations and smaller
S values.

Some concerns may arise from the subjective approach to identifying the four inflow
regions used in the present study. Regions were placed upstream of the MCS initiation
location based on the direction of flow at several levels, and although areas of convective
echoes were excluded, it is possible that convection altered some fields just outside these
areas of reflectivity. Future work should more systematically examine a broader range of
domain sizes, positions, and layers to find the best correlations. It is possible that an inflow
domain could be found that would also provide forecasters with some ability to predict
displacement errors for Type A cases. In addition, wind directions within the inflow box
occasionally varied, such that there was some uncertainty in how to define the X and Y
axes. Additionally, some of the cases in the present study occurred during the PECAN
project in 2015 and a more thorough analysis could be performed in the future, using the
high-temporal-frequency radiosonde launches from PECAN as done in Peters et al. [40]
instead of RUC analyses alone. In addition, the present study focused on the initiation
stage of an MCS. A similar study could be performed at a later stage in the life cycle of
MCSs, perhaps when the inflow region truly represents the flow of a well-developed LLJ.
Would displacement errors for mature MCSs correlate well with errors within the strong
LLJs? Although documentation of such a relationship may be less useful to forecasters
prior to the time of MCS initiation, if such a relationship exists, forecasters might be able
to use analyses during the time the LL] develops to adjust model predictions of where an
MCS would be during its mature stage, based on moisture errors, for instance, that are
showing up within the LLJ during its development. This information may also be useful
to flood forecasters since a large portion of rainfall happens during the mature stage of
a MCS.
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