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Abstract: This study aims to assess the capabilities of a weather forecasting system based on simu-
lations performed with the COSMO (COnsortium for Small-scale Modeling) model over a domain
located in southern Italy, employing a spatial resolution of about 1 km, driven by ECMWF-IFS global
data. The model is run daily at the Italian Aerospace Research Center (CIRA), and the evaluation was
performed from January to May 2018 using a combination of observational data, specifically data
provided by the CIRA meteorological station, wind profiler and ceilometer. Moreover, data provided
by radio sounding located at Pratica di Mare and ground stations at two other locations were also
used. A model configuration optimized through a tuning procedure over the domain considered
was employed, while the evaluation was performed by comparing daily values of several variables
and using standard monitoring indices. The results highlight that the model has good capability in
reproducing daily values of temperature, while precipitation intensity is generally underestimated,
even if rain patterns are well captured (alternating rainy and dry days). Good agreement is also
reported for wind speed, especially at 100 and 500 m altitude. Regarding radio sounding data, the
COSMO model configuration selected can reproduce the vertical profile of temperature and dew
point, with the exception of inversion points. Evaluation against ceilometer data is achieved in terms
of cloud height and planetary boundary layer height.

Keywords: COSMO limited area models; very high resolution; numerical weather prediction (NWP)
model evaluation

1. Introduction

The importance of accurate weather forecasting at high resolution is widely recognized,
since atmospheric phenomena have significant impacts on human life. Availability of
meteorological information results is strategic when aimed at managing adverse events.
Accurate forecasts can also support many different strategic economic sectors, such as
power supply from renewable energy, tourism, agriculture, flood, civil protection and river
transport, i.e., whenever numerical weather prediction (NWP) models are fundamental to
providing a detailed forecast in a short time range. Moreover, very high resolution NWP can
be used to provide forecast products in time and space within localized areas subject to high
impact atmospheric events. In order to define the kind of products required, it is essential
to perform a long and detailed calibration of NWP models using different observation
platforms and a spatial and temporal resolution similar to the model. Very high resolution
NWP models are powerful tools that allow for a more detailed representation of orography,
sea–land interaction and soil–atmosphere interface (due to the availability of soil moisture
data) relative to models with resolution in the range of 7–10 km. This feature is expected to
improve the capability to represent very localized events. Moreover, these high-resolution
models require less parameterization, e.g., deep convection is explicitly solved.

More specifically, in southern Italy severe weather events are generally connected to
deep convection, leading to intense precipitation and strong winds. When a limited-area
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model is run at a spatial resolution on the order of 10 km, the formation and propagation
of these convective systems are poorly simulated because the model relies on parameter-
ized convection without describing the interaction between the convective scale and the
larger scale. With recent advances in computing power, studies have increasingly shown
improvements in model performance when the grid spacing is increased to 1 km and the
parameterization of deep convection is switched off (i.e., convection-permitting). Moreover,
high resolution leads to significant advantages in representing orographic regions, produc-
ing high-order statistics and predicting events with small temporal and spatial scales [1].
This approach reveals extensive capability [2], especially when surface forcing, such as
land use and land/sea contrast, play a significant role in controlling convection triggering.
However, such models must be run over relatively small areas nested in coarser resolution
models (e.g., [3,4]) that do not represent convection explicitly.

In recent years, several studies have been performed to analyze the potential benefits
provided by the high resolution. Baldauf et al. [5] analyzed results of the operational NWP
COSMO at convective scale (2.8 km) and performed related sensitivity activity. They found
that the system was able to predict deep convection explicitly, providing an improved
precipitation forecast when compared to coarser NWP models. The dynamic core was
based on an accurate and efficient Runge–Kutta solver.

Heppelmann et al. [6] evaluated NWP forecasts provided by both COSMO and ICON
against wind mast observations, finding that both models were affected by shortcomings
regarding the representation of the diurnal cycle. In particular, for the summer, nocturnal
wind speed results were underestimated. Uzan et al. [7] tested the accuracy of planetary
boundary layer (PBL) height estimations from COSMO, based on the bulk Richardson
method over Israel, finding the model was characterized by good accuracy in both flat
and elevated terrain. They concluded that a combination of ceilometers (devices that use a
laser to determine the height of a cloud ceiling) and high-resolution model data enabled
generation of a corrected spatial evolution of the daytime PBL height over Israel.

The feasibility of calibrating COSMO at about 3 km resolution using an objective
multivariate calibration method built on a quadratic metamodel (MM) was investigated by
Voudouri et al. [8]. This metamodel makes a calibration by sampling the parameter space
and then fitting a continuous quadratic regression. In this way, it was possible to reproduce
the forecasted field for any parameter combination. This methodology was applied by
Voudouri et al. [9] for model calibration over the domain, which included Switzerland and
Northern Italy at 2 km resolution.

The Italian Aerospace Research Center (CIRA), as a member of the COSMO Consor-
tium, developed a specific convective-scale model configuration with horizontal resolution
of about 1 km, running daily (currently only for research purposes) over an area includ-
ing part of the Campania and Lazio regions (southern Italy). The main reason was the
assessment of a specific configuration for this geographical area, having a low number
of sensitivity tests with the COSMO model. The optimization of the configuration was
performed through a tuning procedure [10], aimed at selecting the parameters that have
been shown to play a significant role in determining model response [11]. In fact, the
COSMO formulation includes several parameterization schemes [12,13], which account
statistically for the effects of phenomena that are not described by the governing equations
or that occur at unresolved scales.

The main aim of this work is to test the capabilities of the COSMO model in re-
producing the main atmospheric variables at the CIRA site, by exploiting the technical
instrumentation available in situ. In fact, CIRA has developed a weather situational aware-
ness system (WSAS) [14], able to provide real-time data for updating mission management
and trajectory generation functions; it includes the Meteo Service Center, a ground seg-
ment that processes and integrates observational data from the instrumentation installed.
Moreover, to avoid the limitation of analysis related to a single point, evaluation is also
conducted against daily observational data in different locations. Radio sounding data
available at Pratica di Mare (Roma) are also considered. Even with the limitations due to
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the consideration of a limited number of locations, we believe that this study represents
a step forward, since only a few studies have been conducted to evaluate an NWP using
a combination of different kinds of observations; the majority of studies are based only
on ground observations. A five-month period was considered in order to allow the possi-
bilities of testing the model over different seasons and different climate features (winter
and spring).

The paper is organized as follows: Section 2 contains a description of the model set-up
and of observations. In Section 3, results are presented and discussed. Concluding remarks
are presented in Section 4.

2. The COSMO Model and Observational Data

The limited area model used in the present work as an NWP tool is COSMO, a non-
hydrostatic dynamic downscaling model for three-dimensional compressible flows [15]. It
is developed by the European consortium COSMO (COnsortium for Small-scale MOdeling).
The atmosphere is considered as an ideal mixture of dry air, water vapor, liquid and solid
water, subject to the gravity and to the Coriolis forces [16].

The governing equations are discretized on a rotated latitude longitude grid, assuming
terrain-following coordinates in the vertical, and using finite difference techniques. Time
integration is performed using a fixed time step, with different algorithms of integrations
(Leapfrog, Runge–Kutta). The unresolved scale phenomena are treated in a statistical man-
ner through a number of parameterizations of grid- and sub-grid scale physical phenomena,
such as convection, radiation, land–atmosphere interaction, turbulence and microphysics.
For each scheme, input parameters appearing as constants or exponents must be specified.
The model version used in this work is the cosmo5.05, released in 2018.

2.1. Simulation Set-Up

The simulated domain (12.22◦–14.55◦ E; 40.63◦–41.88◦ N) is shown in Figure 1. It
extends for about 260 km in the longitude and 138 km in latitude direction and covers the
northern part of the Campania region and the southern part of Lazio. This domain has a
mild climate influenced by the sea and a colder internal zone characterized by the presence
of mountains. High precipitation values are recorded, even along the coasts, generally up
to 1000 mm/year since most of the region is exposed to the humid westerly winds. Extreme
meteorological events frequently affect this area, with very intense and localized precipita-
tion events and strong winds. This is likely associated with the increased Mediterranean
temperature, especially from the Tyrrhenian Sea, where storm cells are generated.

The spatial resolution was set to 0.009◦ (about 1 km), leading to a domain with
260 × 138 points, while the number of vertical levels was 60. The time step was equal to
10 s. Initial and boundary conditions were provided by the ECMWF IFS global model [3],
characterized by a spatial resolution of 0.075◦ (about 8.5 km). The boundary conditions
were updated every 3 h. Numerical simulations (duration: 24 h each) were performed
daily assuming a 6 h spin-up period for each day, in accordance with [17]. COSMO has
run at CIRA since September 2017; however, in this work models were evaluated from
January 2018 (because the current model version was installed at this time) until May 2018
in order to have a 5 month period sufficient for covering two seasons (winter and spring)
and different climate features. As reported in [18], in most of the Mediterranean region,
convective overshoot cloud are more frequent in summer and autumn than in winter
and spring, with frequencies larger than 1.3‰; therefore, if the sea surface temperature is
relatively warm, it can provide enough moisture to support localized convection [19].
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Figure 1. The computational domain considered, including northern Campania and southern Lazio regions. The locations
of the observational stations are specified.

The model configuration was derived from MeteoSwiss for daily operational simu-
lations at very high resolution (about 1 km). This configuration was calibrated over the
domain considered in this work by changing the values of some parameters according to
the sensitivity tests described in [10]. As stated by Beven in [20], the parameters must be
set properly in order to guarantee that the main features of the real domains are properly
reflected in the model. Deep convection was explicitly solved as required, while shallow
convection was parameterized by means of the Tiedtke scheme [21]. Optimization included
parameters related to microphysics, radiation, vertical turbulent diffusion, soil and veg-
etation processes. Specifically, better results in terms of temperature can be achieved for
this domain by setting the parameter controlling vertical variation for the critical relative
humidity in the sub-grid cloud formation to a minimum (uc1). This is defined empirically
to compute the rate of cloud cover. Cloud formation is evaluated using physical functions
that depend on relative humidity levels at which clouds are expected to form [22]. Further
improvements are obtained by choosing the minimum value for the laminar resistance to
heat (rlam_heat). This regulates the heat resistance length of the laminar layer so that a
larger resistance of the laminar layer to heat transfer corresponds to higher values [23], and
this was introduced to consider the complexity of the interaction between the atmosphere
and the surface. Benefits are also obtained by reducing the minimal diffusion coefficient for
heat (tkhmin), which controls the minimum value for the turbulence coefficient for heat [24].
This configuration offers a good improvement in terms of temperature bias (reduced up to
0.5 ◦C) over this complex orographic area. Finally, internal turbulence switches were set in
order to better reproduce the scheme based on the diagnostic turbulence closure [25]. This
scheme adopts diffusion coefficients for momentum and heat (coupling turbulent fluxes
with vertical gradients), which are determined in terms of wind shear and thermal stability.

2.2. Observational Data

The model was evaluated against a combination of observational data. The CIRA
meteorological ground station uses Vaisala MAWS301. This is a robust system that provides
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quality-controlled data in applications including synoptical observation, meteorology, hy-
drology and aviation weather. Every minute it provides the 2 m temperature, precipitation,
pressure and relative humidity. A Vaisala LAP-3000 Doppler beam swinging wind profiler
is installed at CIRA (property of ARPAC, Environmental Protection Agency of Campania
Region) that reliably provides vertical profiles for the wind speed and direction from a
height of 120 m up to 3 km above ground level every 30 min, with a spatial resolution of
about 50 m. An optional extended antenna aperture improves the performance by nar-
rowing the beam width, thereby increasing the antenna gain and reducing side lobes. The
CIRA ceilometer CS135 is a lidar sensor able to measure the cloud height, the cloud cover
and the backscatter profile. Such measurements are made in the troposphere between 0 and
10 km, every 30 s. It is equipped with a diode laser that emits short impulses in the vertical
direction, at a wavelength of 905 nm and frequency of 10 kHz. Using a sample frequency
of 30 Mhz provides a vertical resolution of 5 m. The backscatter profiles were used to
evaluate the mixing layer height (MLH) through a MATLAB code [26]. MLH represents the
vertical extension of mixing due to thermal and mechanical turbulence inside the planetary
boundary layer.

Furthermore, an evaluation was performed against radio sounding data collected
daily in Pratica di Mare (12.45◦–41.67◦) by CNMCA (Centro Nazionale di Meteorologia e
Climatologia Aeronautica) at hours 00 and 12, in terms of vertical profiles of temperature
and dew point. A radiosonde is a battery-powered telemetry instrument carried into
the atmosphere by a weather balloon that measures various atmospheric parameters
and transmits them by radio to a ground receiver. Radiosounding is a key part of the
atmospheric observation system since it is able to provide accurate data on vertical profiles
for temperature, humidity and winds.

Finally, daily temperature, precipitation and wind data from stations at Napoli
Capodichino airport and Montemarano were considered in order to validate the model
at different locations, respectively, close to the sea (Napoli) and on a hill (Montemarano).
These data were provided by the SCIA (Sistema nazionale per l’elaborazione e diffusione
di dati climatici) system (national system for the collection, elaboration, and diffusion of
climate data) developed by ISPRA (Istituto Superiore Protezione e Ricerca Ambientale) [27].

3. Results

The model evaluated several variables: temperature and precipitation represent the
basic weather variables; wind speed and direction were considered due to their importance
in relation to power supply and renewable energies; clouds and planetary boundary layer
(PBL) height were measured because they are important not only for weather forecasts, but
also for air pollution analysis.

Standard indices for performance evaluation were used [28]: mean bias (BIAS) and
root-mean-square error (RMSE):

BIAS =
1
N

N

∑
i=1

(Si − Oi) (1)

RMSE =

√√√√ 1
N

N

∑
i=1

(Si − Oi)
2 (2)

Here, Si and Oi are, respectively, the simulated and observed values at the i-th time
step; N is the total number of time steps considered. BIAS provides the average error, its
value being affected by the possibility of error compensation. RMSE provides the average
magnitude error without indicating the sign of the deviation, which has the disadvantage
of putting more influence on larger errors than smaller ones. As pointed out in some works
(e.g., [29]), RMSE is not appropriate because it can vary with the average error and with
the variability within the error distribution.
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Moreover, the index of agreement (d) proposed by Willmott [30] has been considered:

d = 1 − ∑N
i=1(Si − Oi)

2

∑N
i=1
(∣∣Si − O

∣∣+ ∣∣Oi − O
∣∣)2 (3)

A value of 1 indicates a perfect match, while 0 indicates no agreement at all. The
index of agreement can detect additive and proportional differences in the observed and
simulated means and variances; however, d is highly sensitive to extreme values since
it measures squared differences. Further, CORR (spatial correlation between simulated
and observed values) and STD_RATIO (ratio between model and observation standard
deviations) were used. All analyses were conducted over the 137 days included in the
period 15 January–31 May 2018. In all figures, 15 January is marked with 1, and so on, until
the last day (31 May) marked with 137.

3.1. Temperature Analysis

The first analysis compared 2 m temperature values (t2m) recorded by the CIRA
weather station with the model data, considering values related to the nearest grid point
and average values over a 3 × 3 grid box. Figure 2 shows the average hourly daily values
(observed and simulated) over the entire period considered. The graph highlights no
significant differences between the nearest and grid box values. The comparison showed
the model was capable of reproducing daily temperature values, with a sight tendency for
underestimation. An analysis of the diurnal cycle (Figure 3) (obtained by averaging data
over the entire period) revealed good performances, even at the hourly scale, especially
for maximum daily values. On the other hand, minimum nocturnal values were generally
underestimated. A possible explanation is that the model uses a Biosphere-Atmosphere
Transfer Scheme (BATS) [31], and the simulated bare soil evaporation by BATS may be too
high, thus creating a bias towards moist and cold conditions, particularly during night
time. Tests conducted over the selected periods in [32] revealed that small improvements
could be achieved by using a resistance-based formulation (RB) scheme [33]. The average
values of BIAS, RMSE and d over the entire period considered were evaluated (Table 1) and
revealed good performances, even though there were obvious bias compensation effects: a
non-negligible, positive bias (6.6 ◦C) affected the simulation on 1 March, when a sudden
temperature increase (about 11 ◦C) was recorded over 24 h, and the model was not able to
reproduce this sharp jump; a large, negative bias was recorded in winter on 23 January, due
to relevant underestimations in nocturnal hours. In order to validate the model in different
locations, model data were compared with observations at Napoli Capodichino airport and
Montemarano. Figure 4 shows the daily values (observed and simulated) over the entire
period considered. In Napoli, from January to March the model accurately reproduced
t2m, while in April and May both daily minimum and maximum values were generally
underestimated. Since this station is located in an urban environment, this underestimation
could be due to the unsuitable representation of cities and suggests the need for specific
urban parameterization [34]. In Montemarano, the figure shows the model adequately
reproduced the observed series, with some underestimation of daily maximum values.
The good performance in both locations was confirmed by the numerical values shown in
Table 1.
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Table 1. Mean, maximum positive and maximum negative temperature bias (◦C) and RMSE (◦C) of
the model against observational data. Index of agreement d (non-dimensional). Both nearest point
and grid box values are shown.

CIRA Napoli Montemarano

Nearest
Point (◦C)

Grid Box
(◦C)

Nearest
Point (◦C)

Grid Box
(◦C)

Nearest
Point (◦C)

Grid Box
(◦C)

Mean Bias 0.2 0.2 −0.4 −0.4 −0.3 −0.3

Max Bias − −3.5 −3.4 −2.6 −2.5 −3.0 −3.1

Max Bias + 6.6 6.5 3.1 3.1 3.1 3.0

RMSE 1.5 1.5 1.1 1.1 1.2 1.3

d 0.8 0.8 0.9 0.9 0.9 0.9
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3.2. Precipitation Analysis

The second analysis involved daily precipitation values at CIRA weather station.
Figure 5 shows a histogram of the observed and simulated (nearest point and grid box)
values over the period considered. As for temperature, there were no differences between
nearest and grid box values. The histogram reveals that the model was able to reproduce
dry days (precipitation less than 1 mm), while the model generally underestimated the rainy
days (with the exception of a few cases). In more detail, the model’s ability to reproduce the
number of rainy days was investigated by using a contingency table (Table 2), considering
an “event” as a day in which precipitation was larger than 1 mm.
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Table 3 contains the numerical values of these quantities over the observed period.
These values confirmed that the model adequately reproduced the dry days (correct
negatives: 77 out of 137), while a strong underestimation of rainy days was confirmed. In
addition, the critical success index (CSI), defined as the ratio of events correctly forecasted,
was quite low and was calculated as follows:

CSI =
hits

hits + misses + false alarms
(4)

Table 3. Numerical values of the quantities defined from the contingency table.

N. Rainy Days (Observed) 42

N. Rainy Days (Model) 16

Hits 13

False Alarms 2

Misses 29

Correct Negatives 77

CSI 0.30

Further analyses were performed in order to investigate the origin of these shortcom-
ings. It is known that COSMO experiences difficulties when localizing rain events. Strong
precipitation is often simulated in geographical areas away from where the event really
takes place. As shown in [35], discrepancies between COSMO and observed precipitation
intensities are caused primarily by temporal and spatial shifts in the simulated precipitation
patterns. In the present work, we investigated the dependency of the simulated values
on the size of the box considered. Besides the 3 × 3 size, we also examined larger boxes,
namely 7 × 7 and 11 × 11. Figure 6 shows hourly precipitation biases for the selected
days and hours with different boxes, revealing that the use of larger boxes leads to better
representation of precipitation for days in which precipitation was overestimated (e.g.,
3 May 2018, 11:00).
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Overall, the model inadequately simulated some climate features of the area con-
sidered, and there was internal variability and some deficiencies in the lateral boundary
conditions. Further investigations were conducted comparing model data with observa-
tions in Napoli Capodichino airport and Montemarano. Figure 7 shows a histogram of
daily observed and simulated (nearest point) values. Similar to what was observed at CIRA,
the model adequately reproduced dry days in both locations, while it underestimated pre-
cipitation on rainy days at the hill station (Montemarano). On the other hand, precipitation
was overestimated in Napoli in February, probably due to sea surface temperature biases in
proximity to the sea. In spite of the convection permitting scheme adopted, the model still
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had problems in simulating convective precipitation, which is typical in spring months, so
further adjustments to the configurations are needed. Improvements in this area can be
achieved by setting the laminar heat resistance factor to the minimum value. Increasing
the vertical velocity factor of snow also provides a positive effect on precipitation and will
be the object of further investigation.
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3.3. Wind Analysis

This evaluation was conducted assuming data provided by the Wind Profiler as
observational reference. This instrument is installed at CIRA, but it is owned by ARPAC;
data are provided to CIRA in the spirit of cooperation between the institutions. Evaluations
were performed considering the COSMO grid point closest to the Wind Profiler location.
Wind intensity values in the vertical directions were interpolated to the Wind Profiler
height levels, while for the direction, model height values closest to the observed ones were
considered. Figure 8 shows the daily bias values of wind speed at 100, 500 and 1000 m over
the considered period, revealing the good capability of the model to reproduce daily values,
especially at 500 and 1000 m. The bias generally was between −2 and +2 m/s and agreed
with the results presented by Heppelmann et al. [6]. Large biases recorded on some days
were partially due to the non-negligible number of missing observed hourly values. Table 4
shows the average, maximum and minimum values of BIAS for the three levels over the
entire period. RMSE, d, CORR and STD_RATIO were obtained by averaging hourly values
over all the levels. Good agreement was found in terms of BIAS, but compensation effects
were present, as revealed by the larger maximum and minimum values and by the RMSE.
The correlation and STD_RATIO values are quite good.

In order to investigate the origins of bias, vertical profiles were analyzed over selected
days. As an example, Figure 9 shows the vertical profiles of speed and direction bias
on 6 March 2018 and 23 April 2018, the first one being a day with larger wind values
and the second one with lower values. These figures contain the profiles for each hour
of the day. Direction bias was evaluated only when the related speed was larger than
2 m/s. Part of the recorded bias was certainly due to the interpolation procedure required,
since raw data are available at different geometrical heights, and also was due to the
self-generated internal variability of the model simulation, as shown in [36]. Moreover, the
sharp reduction in wind speed at low altitudes, which is due to increased vertical mixing
after sunrise, was simulated late by the COSMO model. Wind speed could potentially
be enhanced by improving the PBL parameterization schemes [23], and in particular
regarding a source term for the prognostic turbulent kinetic energy and the description of
the minimal diffusion coefficient [6]. Both modifications will become operational in the
ICON model [37], which will improve the representation of stably stratified nights and the
corresponding nocturnal wind speeds.
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Table 4. Average, maximum and minimum values of BIAS at 100, 500 and 1000 m for wind speed
(m/s) and direction (degrees). Average, maximum and minimum values of RMSE for wind speed
(m/s) and direction (degrees). Index of agreement d (non-dimensional). CORR and STD_RATIO
indicators (non-dimensional).

Wind Speed Wind Direction

Mean Min Max Mean Min Max

BIAS 100 m 1.2 −1.5 14.4 14 −81 90

BIAS 500 m 0.2 −3.9 4.6 8 −72 83

BIAS 1000 m 0.1 −3.2 2.2 6 −55 64

RMSE 2.5 0.5 8.6 36 3 120

d 0.8 0.8 0.8 0.7 0.7 0.7

CORR 0.6 −0.8 1.0 0.5 −0.9 1.0

STD_RATIO 0.9 0.1 3.5 1.0 0.0 8.3

Next, model performance was investigated in Napoli Capodichino and Montemarano.
For these locations, only ground station wind intensity values at 10 m were available.
Figure 10 shows daily bias values of wind speed over the considered period and confirms
the good capabilities of the model in reproducing daily values at 10 m, in both locations,
with bias generally between −2 and 2 m/s.
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3.4. Radio Sounding Evaluation

Radio soundings are used to observe conventional upper-air conditions. Their high
vertical resolution delivers good-quality observations and is a powerful benchmark for
NWP evaluations. Unfortunately, the global distribution does not guarantee a uniform and
detailed network, being confined to a limited number of locations. In the present work,
data were provided by the radio sounding measured daily at the Pratica di Mare airport
(at 00 and 12 UTC) and were compared with the values provided by COSMO in the grid
point closest to this location. Table 5 shows the values (average, maximum and minimum)
of BIAS, RMSE, CORR and STD_RATIO related to temperature, dew point, wind speed and
direction, averaged over all the vertical values (up to 16 km altitude) and over all the days
in the period considered. Results highlight a very good reproduction of the temperature
profile (correlation equal to 1 and maximum bias of 1 ◦C) and also a good accuracy for the
other variables. As an example, Figure 11 shows the vertical profile of temperature and
dew point (model and observations) on 30 January 2018 at 12 UTC. Wind barb vertical
profiles are also shown. Part of the wind discrepancy can be due to some limitations in
radiosonde measurements [38], since radiosonde encounters a narrow column of air as
it ascends, and a misleading profile may be produced if wind passes through the only
cloud in the area. Moreover, the profile is not actually vertical due to the lateral drift of the
balloon. Dew point temperature profiles are generally well reproduced, with the exception
of the inversion points.

Table 5. Values of BIAS and RMSE for temperature (◦C), dew point (◦C), wind speed (m/s) and direction (degrees). Values
of CORR and STD_RATIO for temperature, dew point, wind speed and direction (non-dimensional).

Temperature Dew Point Temperature Wind Speed Wind Direction

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

BIAS 0.0 −0.6 1.1 1.4 −6.0 6.1 0.0 −4.8 6.6 2 −14 21

RMSE 1.1 0.5 2.7 4.8 1.7 9.8 5.8 3.0 13.7 24 7 73

CORR 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.4 1.0 0.7 −0.7 1.0

STD_RAT 1.0 1.0 1.0 1.0 0.8 1.2 0.9 0.5 1.6 0.9 0.2 1.7
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3.5. Evaluation against Ceilometer Data

Ceilometer data were used to check the model’s capability to reproduce cloud heights.
The COSMO output variable CEILING was considered, which indicates (in meters) the
height above mean sea level at which cloud coverage is larger than 4/8. Figure 12 shows
the daily values of this variable (related to the nearest and 3 × 3 grid box) provided by
the model and the height of the first cloud detected by the ceilometer (H1) (note that in
the period 21 February–26 March 2018 observational data were not available). A general
good agreement between the model and observations was recorded, with an average bias
over the entire period of about +7.2%. However, non-negligible biases were recorded
on some days: for example, on 6 May the model value was 4240 m while the observed
value was 1170 m, demonstrating the existence of some deficiency in the treatment of
surface–atmosphere interactions in the model [39].
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It is recognized that measuring the planetary boundary layer height (HPBL) is impor-
tant not only for weather prediction, but also for air pollution analysis. Several studies
have revealed the usefulness of ceilometers as a means to recognize and determine HPBL
values [40]. In particular, it is possible to calculate the mixing layer height (MLH) with spe-
cific algorithms [26] starting from the backscatter profiles provided by the instrument. In
the present work, MLH values were used as a reference for validating the HPBL provided
by the COSMO model, as MLH is a key parameter to characterize (with a certain degree of
approximation) the structure of the PBL.

Figure 13 shows the daily values of HPBL (m) provided by the model, related to the
nearest point and averaged over a 3 × 3 box, compared to MLH values for the whole period
considered. It is evident that there were no differences between the nearest point and 3 ×
3 box. In both cases, however, the trend seems to be qualitatively reproduced. COSMO
largely underestimated the values of HPBL. Only in May 2018 when the weather was
mild, with higher temperatures (see Figure 2), was a better agreement observed. Part of
this underestimation is certainly due to inaccuracies in the algorithm for MLH evaluation,
as MLH detection could be adversely affected by the presence of clouds. These results
highlight that tuning COSMO for HPBL evaluation is still a challenging research area.
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In any case, as stated also in [7], the combination of high-resolution COSMO data and
ceilometer data provides a correct evolution of PBL height.

Atmosphere 2021, 12, x FOR PEER REVIEW 15 of 18 
 

 

It is recognized that measuring the planetary boundary layer height (HPBL) is im-
portant not only for weather prediction, but also for air pollution analysis. Several studies 
have revealed the usefulness of ceilometers as a means to recognize and determine HPBL 
values [40]. In particular, it is possible to calculate the mixing layer height (MLH) with 
specific algorithms [26] starting from the backscatter profiles provided by the instrument. 
In the present work, MLH values were used as a reference for validating the HPBL pro-
vided by the COSMO model, as MLH is a key parameter to characterize (with a certain 
degree of approximation) the structure of the PBL. 

Figure 13 shows the daily values of HPBL (m) provided by the model, related to the 
nearest point and averaged over a 3 × 3 box, compared to MLH values for the whole pe-
riod considered. It is evident that there were no differences between the nearest point and 
3 × 3 box. In both cases, however, the trend seems to be qualitatively reproduced. 
COSMO largely underestimated the values of HPBL. Only in May 2018 when the weather 
was mild, with higher temperatures (see Figure 2), was a better agreement observed. Part 
of this underestimation is certainly due to inaccuracies in the algorithm for MLH evalu-
ation, as MLH detection could be adversely affected by the presence of clouds. These 
results highlight that tuning COSMO for HPBL evaluation is still a challenging research 
area. In any case, as stated also in [7], the combination of high-resolution COSMO data 
and ceilometer data provides a correct evolution of PBL height. 

 
Figure 13. Time series of daily values (m) of planetary boundary layer height (HPBL) provided by 
the model against mixing layer height (MLH) starting from the backscatter profiles provided by the 
ceilometer, over the considered period. (Note that in the period 21 February–26 March 2018 ob-
servational data were not available.) 

4. Conclusions  
In this paper, the results of simulations performed with the COSMO model at very 

high resolution over a domain located in southern Italy have been presented. The main 
aim of this work was to test the capabilities of the model by taking advantage of the wide 
range of technical instrumentation available at CIRA, which provides highly accurate 
observational data. A five-month period in winter/spring of 2018 was selected. In order to 
support different strategical sectors (e.g., flood, agriculture, renewable energy, tourism, 
civil protection), the NWP model output needs to be improved and optimized, but as a 
first step the forecast quality and model deficiencies must be understood. It is well 
known that a 1 km resolution is challenging to employ in weather models for short- and 
medium-term forecasts. Considering the computational costs required, it is necessary to 
evaluate if such simulations could provide good results, at least in complex orographic 
areas such as southern Italy.  

Figure 13. Time series of daily values (m) of planetary boundary layer height (HPBL) provided by
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4. Conclusions

In this paper, the results of simulations performed with the COSMO model at very
high resolution over a domain located in southern Italy have been presented. The main
aim of this work was to test the capabilities of the model by taking advantage of the wide
range of technical instrumentation available at CIRA, which provides highly accurate
observational data. A five-month period in winter/spring of 2018 was selected. In order
to support different strategical sectors (e.g., flood, agriculture, renewable energy, tourism,
civil protection), the NWP model output needs to be improved and optimized, but as
a first step the forecast quality and model deficiencies must be understood. It is well
known that a 1 km resolution is challenging to employ in weather models for short- and
medium-term forecasts. Considering the computational costs required, it is necessary to
evaluate if such simulations could provide good results, at least in complex orographic
areas such as southern Italy.

The model was configured and optimized for the specific area of southern Italy, as in
a previous work [10] it was found that COSMO was highly sensitive to changes related to
the physical soil and atmosphere parameters. In particular, it was shown that the present
configuration adequately reduced temperature bias (up to 0.5 ◦C) and precipitation (even
if benefits were less evident) over this complex orographic area. The distribution of vertical
levels adopted by the model, both in the atmosphere and in the soil, provided better results
compared to those by COSMO. Numerical tests on this topic were performed in [41] with
different resolutions and time horizons. Evidence of the model’s accuracy in simulating
daily t2m is given by the low average biases, while nocturnal hourly values were un-
derestimated. Regarding precipitation, dry days were generally well reproduced, while
precipitation on rainy days was underestimated since COSMO experiences difficulties in
localizing rain events in this complex orography area. Wind values were well reproduced,
especially at high altitudes, suggesting a great potential of the model to support wind
power production. Comparison with radio sounding data showed that the vertical profiles
of temperature and dew point were well reproduced, with the exception of the inversion
points. Finally, cloud height values were compared with those provided by the ceilometer,
which showed good agreement, while preliminary results evaluating the planetary bound-
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ary layer height showed low accuracy. However, this offers a preview of the great potential
of ceilometer data to evaluate mixing layer height.

Further improvements could be achieved by investigating other challenging areas,
such as the use of urban parameterizations, which seem able to better reproduce key urban
meteorological features [32,33] and the ensemble modelling approach. The area in the
present study is characterized by a large number of buildings, and the area is close to the
coast and orographically complex, so it is potentially more sensitive than others to the land
surface processes. The urban canopy is a key issue not limited to the present test case; in
fact, there are currently several studies in progress in the COSMO consortium that show
the importance and the great sensitivity of the model to this issue. Several tests conducted
in other areas (Turin, Moscow) (Garbero et al., paper submitted) have shown the relevant
impacts of both the land surface scheme TERRA implemented in COSMO and of the urban
parameterization scheme TERRA-URB on temperature (at least 0.5◦). In particular, a new
description of the surface temperature in TERRA is based on skin temperature formulations,
which introduces an additional temperature of the canopy leaves (the skin temperature) as
a way to represent energetically balanced vegetation on the surface [33].

The present results represent a solid foundation for the implementation and testing of
ICON [37], the new model based on an icosahedral grid that will replace COSMO in the
coming years. Similar analyses will be performed in the future to quantify the potential
benefits provided by the new model.
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