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Abstract: The paper considers a new approach to modeling the relationship between the increase in
woody phytomass in the pine forest and satellite-derived Normalized Difference Vegetation Index
(NDVI) and Land Surface Temperature (LST) (MODIS/AQUA) data. The developed model combines
the phenological and forest growth processes. For the analysis, NDVI and LST (MODIS) satellite data
were used together with the measurements of tree-ring widths (TRW). NDVI data contain features of
each growing season. The models include parameters of parabolic approximation of NDVI and LST
time series transformed using principal component analysis. The study shows that the current rate
of TRW is determined by the total values of principal components of the satellite indices over the
season and the rate of tree increment in the preceding year.

Keywords: boreal forests; tree and forest functioning; tree ring width; field measurements; remote
sensing data analysis; modeling studies of forest

1. Introduction

Research addressing the growth and changes in productivity of boreal forests is useful
for understanding and predicting sustainability of these ecosystems affected by diverse
environmental stresses associated with extreme weather events and climate change [1–7].
Most studies dealing with this problem predict that, because of climate change, tree growth
will be affected by more frequent and violent extreme events (ice storms, wetland formation,
droughts, windblows, etc.). However, there is considerable uncertainty about the processes
underlying tree response to the increase in the frequency of extreme events.

It is well known that tree growth results from complex physiological processes in
tree organs, and availability of resources for tree growth is largely determined by cli-
mate [8]. Tree growth processes and weather events can be understood using methods
of dendrochronology, which studies time series of tree ring widths (TRW) over many
years [9–12].

Data on long-term TRW variations are used to determine how much wood is formed
in the tree stem, which can be directly associated with the biomass increase and carbon
consumption [13–16]. In recent decades, dendrochronology methods have been used
to study interactions between species-specific growth and temperature and humidity
variations at the local, regional, and continental scales [17–21].

Although the data on tree rings provide the basis for accurate and retrospective
estimates of tree growth, to collect wood samples in the field and to measure them in the
laboratory are painstaking tasks. Therefore, the use of this approach in real-time monitoring
of forest growth at large spatial scales is limited [22]. Satellite remote sensing data, however,
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are successfully used to face these challenges. Over the past 30 years, extensive research
efforts have been devoted to determining biophysical variables of the forest based on
satellite measurements [23–30].

Normalized Difference Vegetation Index (NDVI) is the most commonly used vegeta-
tion index, which measures fractional absorbed photosynthetically active radiation [31].
The data derived from MODIS (Moderate-Resolution Imaging Spectroradiometer aboard
the Aqua satellite) observations are used to produce NDVI time series at a spatial resolu-
tion of 0.25 km. However, the time period covered by these data is too short (since 2000)
compared to the far longer series of the data obtained from tree rings.

Various vegetation indices determined using satellite data are effective indicators of
tree photosynthetic activity and productivity, and a number of studies reported attempts
to relate directly the data on TRW with the satellite data [32–38]. Those studies found a
moderate positive correlation between the NDVI interannual variations and annual growth
of the tree. There were other studies, though they did not find any significant positive
correlation [35,36,39–41]. The relationship between the satellite vegetation indices and
TRW is not obvious; it is determined by the species composition of the forest, landscape,
and the choice of the proper initial satellite and meteorological data [42].

In most of the studies cited above, the authors analyzed correlations between the time
series of TRW data and NDVI composite data for certain periods (e.g., 2 weeks or 1 month).
The use of statistical methods, though, is not the best approach to revealing the relationship
between NDVI and tree growth. For instance, annual wood formation is more strongly
related to the net primary production (NPP) calculated over long periods, as the increase in
tree biomass is not directly determined by the rate of photosynthesis but is rather associated
with stems, branches, and roots growing and forming wood [43,44]. Thus, the storage
of the long-lived phytomass in the woody parts of the trees is physically and temporally
separated from the growth of leaves, identified by NDVI. Therefore, the different climatic
conditions necessary for wood formation and for photosynthetic activity may disconnect
the NDVI–growth relationship, as higher temperatures are needed for growth than for
photosynthesis [45,46]. However, in boreal forests, NDVI indicates the physiological status
of the trees, and, thus, the state of the tree crowns in summer (June and July) is a more
important factor for tree growth than the length of the growing season [47].

As regards tree growth research, it can be conducted at a tree level, using, e.g., den-
drochronology methods, or at a level of the tree stand or plot–to determine total biomass
of trees or stands using various remote sensing techniques [48]. However, in the attempt to
combine both approaches, researchers are faced with the challenge of differences in the
time scales of crown formation processes, leaf photosynthesis (observed by satellites), and
wood formation processes (integrated in tree rings). The response of photosynthesis to
weather is relatively instantaneous, but there is a well-documented time lag between car-
bon absorption and increase in biomass of photosynthetic carbon [49]. Therefore, the TRW
data and vegetation indices cannot be expected to be completely consistent with each other,
as the space and time scales of TRW time series and satellite indices are different [46,50].

The reason for the spatial mismatch of the scales is that satellite data for NDVI
(MODIS) are a pixel of land surface of an area of 6250 m2, whereas the TRW data are
obtained for one tree with a crown projection area of up to 250 m2, and these data may
vary considerably within the pixel. Another problem arises from the temporal mismatch
between photosynthesis processes observed by satellite and wood formation processes
integrated in TRW. For these reasons, no direct correspondence between TRW data and
satellite vegetation indices can be expected. These processes will vary between ecosystems,
tree species, and climate regions [2–4].

The search for interactions between the data on radial stem growth and the satellite-
derived NDVI and LST (Land Surface Temperature) gives rise to the problem of selecting
significant variables for analysis. For each year, radial stem growth is characterized by one
value, while annual satellite data on NDVI and LST are time series. For instance, 8-day
seasonal composites of NDVI and LST data consist of 40–50 points. It is rather difficult to
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find correlations between one number and function. Attempts to choose a certain number
of variables in NDVI and LST time series and construct multiple regression equations of
relationships between tree ring widths and the selected remote sensing data are hampered
by the uncertainty about the choice of remote sensing variables for analysis. The problem
is that for the time series of remote sensing data, one can choose from a great number of
key variables or introduce additional variables such as the sums of temperatures for a
certain period (but which?) of the season. The present study deals with the methods of
constructing models of the relationship between the increase in woody phytomass and
remote sensing indicators based on using integrated parameters of NDVI and LST time
series transformed by principal component analysis.

2. Materials and Methods

Dynamics of radial stem growth was studied and phenological data were collected on
sample plots in pine (Pinus sylvestris L.) forests located around the city of Krasnoyarsk. Trees
aged about 100 years were selected to analyze radial stem growth on all sample plots. The
trees had the stems of diameter at breast height ranging from 12 to 32 cm, and the average
stand density was about 600–800 trees per ha. Time series of radial stem growth between
2003 and 2015 were analyzed. This time interval was chosen because the remote sensing
data were only available from 2003. Coordinates of sample plots and characterization of
tree stands are provided in Table 1.

An increment borer was used to extract core samples from all trees on the sample plots.
The tree ring width d(t) in year t was measured on the polished surfaces of the core samples
in the field of view of the microscope in the “Lintab 5 Tree-RingStation” (RINNTECH®)
(version No. 5) with an accuracy of 0.1 mm. The dating of tree rings was carried out visually,
using graphs in the TSAP-WinTM (RINNTECH®) software, and control of the dating
was performed using the COFECHA program (version 6.0P) from the dendrochronology
program library, DPL [51]. Figure 1 shows the positions of sample plots.

Table 1. Coordinates of sample plots and characterization of tree stands.

Plot No. Coordinates Number of Trees Mean Annual
TRW, mm Photograph

1 56.043725◦ N
93.161901◦ E 30 0.95 ± 0.076
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Table 1. Cont.

Plot No. Coordinates Number of Trees Mean Annual
TRW, mm Photograph

3 55.994809◦ N
92.735070◦ E 32 1.31 ± 0.07
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Figure 1. Positions of sample plots No. 1–4 around the city of Krasnoyarsk.

For the variables analyzed over the time interval selected in this study, no strong trend
of the NDVI and LST data was observed, but there was a temporal trend of TRW. A typical
TRW time series with trend is shown in Figure 2 (curve 1).
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Figure 2. Temporal dynamics of tree-ring widths (TRW) (curve 1) and TRW first differences (FD)
(curve 2), sample plot No. 1.

The procedure of estimating the relationships between the tree growth and NDVI
and LST data consisted of several stages. In Stage 1, the temporal trend of TRW was
excluded from the data on radial stem growth. Therefore, for each tree on each sample
plot, time series of the TRW first differences (TRW FD) between years were calculated:
TRW FD(t) = TRW(t) − TRW(t − 1). In subsequent calculations, the TRW FD time series,
which were stationary time series, were used instead of the time series of tree ring widths
(Figure 1, curve 2). The TRW FD time series was actually the rate of change of TRW.
The time series of the first differences were calculated for each tree, and then average first
differences were calculated for each sample plot for each year between 2003 and 2015.
Table S1 provides data on the average radial stem growth for all sample plots during
1987–2015.

To estimate the relationships between the current value of radial stem growth and the
corresponding values for the previous years, these relationships will be considered as the
autoregressive equation:

TRW FD(t) = z0 +
k

∑
w

zwTRW FD(t− w) (1)

where k is the order of the autocorrelation.
To estimate the order of the autocorrelation for the time series of the radial stem

growth on the sample plots between 1987 and 2015, partial autocorrelation function (PACF)
was calculated. Figure 3 shows the PACF for the TRW FD data on sample plot 1.
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PACF is significant only at k = 1, i.e., the current value of TRW FD is only determined
by its previous value (Figure 3). Calculations of PACF for other sample plots result in the
same value of k = 1, i.e., the current value of TRW FD(t) correlates with the value of TRW
FD(t − 1) in the previous year.

In Stage 2, integrated parameters characterizing NDVI and LST were considered. In
analysis of remote sensing data, NDVI was determined using the standard formula as:

NDVI =
NIR− Red
NIR + Red

,

where NIR (0.620–0.670 µm) and Red (0.841–0.876 µm) are normalized values of the
intensity of near-infrared and red light reflected by the land surface at a given point.

NDVI values were determined using the MYD09Q1 product of the MODIS (or Moder-
ate Resolution Imaging Spectroradiometer), a key instrument aboard the Terra (originally
known as EOS AM-1) and Aqua international research satellite. The MYD09Q1 product
included values of the red and infrared components of the reflected radiation for a 250 m ×
250 m pixel. For each pixel, an 8-day composite was used, taking into account atmospheric
conditions. The data for 2003–2017 were obtained from the Earth Observing System Data
and Information System EOSDIS resource [52]. The data on the land surface temperature
(LST) were obtained for the same period (the MYD11A2 product has 8-day composite at a
spatial resolution of 1 km).

Complete seasonal data of the MYD11A2, MYD09Q1, MOD11A2, and MOD09Q1
products on the Terra and Aqua satellites are available for the study area from 2003.

We assumed that NDVI data contain features of phenological dynamics of each
growing season [53] and LST data characterize weather changes. NDVI and LST seasonal
dynamics will be described using nonlinear regression equations, y(n) = a1n2 + a2n + a3,
where n is the first 8-day composite from the beginning of the year. This approximation is
possible for boreal forests if the winter period is excluded. The annual curve of NDVI is
used to find the n1 and n2 dates, which correspond to the beginning and end of the growing
season determined for the study tree stands (when NDVI was stably higher than 0.35 of the
NDVI maximum). Approximation of the NDVI and LST time series is done on the (n1 −
n2) section. The NDVI time series was preliminarily smoothed using a rectangular filtering
window of width of 3 composites to remove measurement artifacts.

A typical seasonal NDVI time series is shown in Figure 4 and an LST seasonal time
series in Figure 5. Quadratic regression equations of the NDVI and LST time series for
the growing season were calculated for each sample plot using the data for the 2003–
2015 period. The accuracy of the parabolic approximation is described by the coefficient of
determination, R2, which characterizes the proportion of the variance in the time series
of remote sensing data accounted for by regression. Parameters of approximation of the
NDVI and LST seasonal curves NDVI(k,j,n) = a1(k,j)n2 + a2(k,j)n − a3(k,j) and LST seasonal
curves LST(k,n,j) = b1(k,j)n2 + b2(k,j)n − b3(k,j) for sample plot k (k = 1, . . . 4), in season j (j
= 2003, . . . , 2015) and dates n can be used to estimate the relationships between the remote
sensing data and the growth of the tree ring width. Typical time series of NDVI and LST
are shown in Figures 4 and 5.

Calculations of parameters of the NDVI and LST seasonal time series and validation
of parabolic models using Fisher’s test for all study years and all sample plots are provided
in Tables S2 and S3.
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2 (2014) and processing procedure. 1–a series of 8-day NDVI time composites; 2–a filtered NDVI
time series; 3–series 2 clipped at critical values NDVIcrit = 0.35(NDVImax–NDVImin); 4–parabolic
approximation of NDVI series; n1, n2-dates of the beginning and end of the growing season, when
NDVI(n) > 0.5 NDVImax(n).
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Figure 5. A curve of Land Surface Temperature (LST)(n) seasonal dynamics, sample plot No. 2 (2014)
and the series data processing procedure. 1–a series of 8-day LST time composites; 2–series 1 clipped
at the dates of the beginning and end of the growing season, n1 and n2, determined for the NDVI(n)
time series; 3–parabolic approximation of LST series.

In Stage 3, the number of remote sensing variables was reduced. For this, parameters
of NDVI and LST regression time series (coefficients of nonlinear regression equations
and 1 − R2 values, where R2 is coefficient of determination of the regression equation for
an individual season j (j = 2003, . . . 2015) for 13 seasons for every sample plot k in the
present study) were used to construct matrices A(k) = ‖a(i,j)‖ and B(k) = ‖b(i,j)‖. In these
matrices, i = 1, . . . , 4 are numbers of parameters a1–a3 in equations of seasonal dynamics
for NDVI and a4 for variable (1 − R2

NDVI(j, k)); b1 − b3 in equation of seasonal dynamics
for LST; and b4 for variable (1 − R2

LST(j, k)); j = 2003, . . . , 2015 is the year from 2003
to 2015. R2 and (1 − R2) are interrelated, and either can be used. Principal component
analysis was used to make the transition from the variables of regression equations to
the new independent variables. The new variables were constructed as the sum of initial
variables with certain weights assigned to them. Principal component analysis is used to
find eigenvalues characterizing the contribution of each new variable to the explanation of
data variance. Further calculations may involve not all new variables but only those that
make the greatest contribution to the explanation of data variance. Thus, the number of
explanatory variables in the model of NDVI and LST dependence of tree ring width can be
reduced. Table 2 provides characterization of principal components for sample plot No. 1.
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Table 2. Weights for principal components G1–G4 and H1–H4 and eigenvalues (sample plot No. 1).

NDVI Matrix G1 G2 G3 G4

a1 0.978 −0.153 0.144 0.013
a2 −0.987 0.155 0.011 0.031
a3 0.971 −0.203 −0.128 0.017

1−R2a 0.710 0.704 −0.008 0.001
Eigenvalue 3.377 0.585 0.037 0.001

LST matrix H1 H2 H3 H4

b1 0.985 −0.009 0.173 0.012
b2 −0.995 0.097 −0.017 0.022
b3 0.957 −0.226 −0.181 0.010

1−R2b 0.343 0.938 −0.040 0.000
Eigenvalue 2.993 0.942 0.064 0.001

Based on Table 2, the value of the first principal component, G1(t), can be expressed in
the following equation:

G1(t) = 0.978 · a1(t)− 0.987 · a2(t) + 0.971 · a3(t) + 0.710 · (1− R2
NDVI(t)).

The values of other principal components can be determined in the same way from
Table 2. Table 3 provides contributions of the first eigenvalues to the total NDVI and LST
variance for all sample plots.

Table 3. Contributions of the first two principal components, G1 and G2 for NDVI and H1 and H2
for LST, to the total NDVI and LST variance for different sample plots.

NDVI LST

Sample Plot G1 G1 + G2 H1 H1 + H2

No. 1 84.42 99.04 74.83 98.37
No. 2 72.07 96.02 74.52 99.07
No. 3 81.37 99.06 77.22 99.83
No. 4 88.46 98.99 80.78 99.72

In all cases, the first principal components for NDVI and LST account for at least 72%
of variance, and the first two principal components taken together account for at least 96%
of variance (Table 3); thus, two variables, G1 and H1, or four variables, G1, G2, H1, and H2,
can be used instead of eight. Figure 6 shows the curves indicating temporal dynamics of
the first principal components G1(t) for the NDVI matrices (curve 1), H1(t) for LST matrices
(curve 2), and the time series of the first differences of radial stem growth, TRW FD(t)
(curve 3) for sample plot 1.

After such transformations, one can construct linear regression models of relation-
ships between the first differences of radial stem growth and values of the principal
components of matrices A and B. The quality of the proposed models can be assessed by
t-test for coefficients of the model, coefficient of determination, R2, of the model series,
and cross-correlation function of the TRW FD time series and the model series, characteriz-
ing synchrony of change of these series. Results of the calculations were used as the basis
for selecting variables for constructing models of the relationship between TRW FD, NDVI,
and LST.
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TRW FD(t) (curve 3) for sample plot 1.

3. Results

To construct the model of radial growth, we take into account the relationship of the
current year growth, TRW(t), to the growth of the previous year, TRW(t − 1), determined
by calculating PACF, and the effect of the weather will be characterized by the values of
the first principal components, G1(t) and H1(t). This model was tested using the ADL
(autoregressive distributed lag) model:

TRW FD(t) = c0 + c1G1(t) + c2H1(t) + c3TRW FD(t− 1). (2)

As model (1) had passed the test, it was used to make calculations for all sample plots
over the period considered in this study. Results are given in Table 4.

Table 4. Parameters of model (2) for sample plots.

Coefficients
Sample Plot

No. 1 No. 2 No. 3 No. 4

c0 0.050 –0.030 0.013 0.015
c1 0.049 * –0.004 0.059 * 0.052 *
c2 –0.048 * 0.052 * –0.089 * –0.069 *
c3 –1.058 * –0.535 * –0.342 * 0.445 *
R2 0.510 0.430 0.500 0.580

CCF (k = 0) 0.72 0.74 0.78 0.76

* coefficient is significant at p ≤ 0.10.

Cross-correlation function, CCF, was constructed to test time synchrony of the field
and model data (Figure 7). The CCF maximum was observed at the delay k = 0, suggesting
the high degree of synchrony between the field and model data series.

Almost all coefficients for sample plots were significant (Table 5). The significance level
of p < 0.1 was used, as some of the factors influencing phytomass increase (precipitation
and soil conditions) cannot be estimated using remote sensing measurements, although
they do affect the phytomass increase. Although satellite microwave data ASMR-E [54] can
be used to estimate precipitation and soil moisture, the low spatial and temporal resolution
and accuracies of such data are not appropriate for this research.
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Table 5. Parameters of model (2) based on the data averaged over the sample plots.

Variable Coefficient Standard Error t(9) p-Level

c0 0.010 0.035 0.292 0.777
G1 0.089 0.031 2.819 0.020
H1 –0.142 0.053 –2.670 0.026

TRW FD(t − 1) –0.510 0.183 –2.787 0.021
R2 0.70
p 0.005

CCF(k = 0) 0.84

Susceptibility of the mean radial stem growth to the change of the first principal
component for the NDVI data is positive, i.e., as G1 increases, TRW FD(t) increases as well.
By contrast, susceptibility of TRW FD(t) to H1 is negative. For almost all sample plots,
susceptibility of TRW FD(t) to the change of the mean radial growth in the preceding year
is negative.

The LST and NDVI data for the period of tree dormancy were excluded from the time
series of remote sensing data and were not used in calculations. Only the growing season
data were taken into account. The reduction in NDVI and LST date is needed to make it
possible to compare the time series of TRW with time series of remote sensing data.

Thus, when only satellite data were used to investigate growth processes in tree stands,
no direct relationship was found between integrated parameters of NDVI and LST and
radial stem growth rate.

4. Discussion

The signs of coefficients of Equation (2), which characterize susceptibility of the first
differences of radial growth to changes in the values of independent variables in model
(2), differ between sample plots. For example, for H1 on all sample plots (except No. 3),
the variables have the negative sign, i.e., the larger G1, the lower the first differences of
radial growth.

It could be assumed that TRW FD, D(t), might be related to not only the TRW FD
value of the preceding year, D(t − 1), but also phenological and weather parameters
of the preceding year G1(t − 1) and H1(t − 1). However, for model TRW FD(t) =
c0 + c1G1(t− 1)+ c2H1(t− 1) + c3TRW FD(t− 1), coefficients c1 and c2 are nonsignificant
even at p = 0.50, and the proportion of variance accounted by this model is only 0.30, i.e.,
the current TRW FD is not dependent on these parameters.

As the sample plots are located rather close to each other, the tree stands have com-
parable species compositions, and weather conditions are similar as well; therefore, the
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average values of G1, H1, and TRW FD(t) can be used in the model. Parameters of the
averaged model (2) are listed in Table 5.

Coefficients of model (2) for averaged data are significant at p < 0.03, coefficient of
determination reaches 0.70, and CCF(k = 0) = 0.84, i.e., the field and model data series are
practically time synchronous (Table 5).

Both amplitudes and phases of the averaged field data and model data are in good
agreement (Table 5). For some of the sample plots, model (2) accounts for more than 50%
of the variance of long-term data (Table 4). For the data averaged over all sample plots,
model (2) accounts for 70% of the data variance. Coefficients of Equation (2) are significant
for both individual sample plots and the averaged data, characterizing susceptibility of
growth processes to changes in independent variables of this equation.

To determine properties of tree assemblages on the sample plot, it is important to assess
temporal synchrony between tree growth processes in the assemblage. The synchrony of
changes in TRW FD values of individual trees could be assessed using the CCF(x,y) matrix
of the series of radial growth first differences between trees x and y. Radial growth can
be regarded as synchronous if the highest values of CCF in this matrix are close to 1 and
are observed at delay k = 0. For a sample of 25–30 trees, it would be necessary to calculate
about 400 paired CCF, and, thus, it may be more convenient to use the correlation matrix of
the first differences of radial stem growth. The correlation coefficient r(x,y) of the TRW FD
series for trees x and y corresponds to the value of CCF(x, y) at delay k = 0. If r(x,y) is close
to 1, these time series can be considered as synchronous. The average value of correlation
coefficients r(x,y) or the function of distribution f (r) of correlation coefficients for the tree
assemblage can be used as an indicator of the synchrony of radial stem growth in the tree
assemblage. For the tree assemblage with the high level of synchrony, the function of
distribution of correlation coefficients will peak close to r = 1. Figure 8 shows the function
of distribution f (r) of correlation coefficients for different sample plots.
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The TRW FD time series on sample plots No. 3 (average correlation coefficient 0.578)
and No. 1 (average correlation coefficient 0.571) are rather synchronous (Figure 8). The TRW
FD time series on sample plots No. 4 (average correlation coefficient 0.232) and No. 2
(average correlation coefficient 0.448) are considerably less synchronous, and changes
in some of the TRW FD time series on these sample plots are in antiphase, resulting in
negative correlation coefficients. The possible desynchronization of radial stem growth on
sample plots should be taken into account when determining the average values of TRW
FD. Such phase shifts of the TRW FD time series of individual trees may cause a decrease
in coefficients of determination in the models of current TRW FD.
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Choosing relevant parameters for models connecting ecological characteristics (such
as growth processes) with the environmental factors (such as weather) is always a chal-
lenge. The choice is difficult because of the diversity of the parameters, e.g., temperature
and precipitation for a certain period of the season or the totals for the entire season.
The approach to choosing independent model parameters proposed in this study makes it
possible to limit the number of parameters to the values of two first principal components
of approximated NDVI and LST series, considerably simplifying the analysis. The test
of the accuracy of a model can be based on, first, coefficient of determination, R2, char-
acterizing the similarity between the field and model data by amplitudes, and, second,
cross-correlation function, characterizing the synchrony between the dynamics of the field
and model time series.

The relationships between remote sensing data (NDVI) and radial stem growth were
studied by a number of researchers [39,47]. For example, NOAA AVHRR PAL time series
were used to analyze evolution of vegetation in the Komi Republic (the Northwest of
Russia) between 1982 and 2001. The authors revealed statistically significant correlation
(R2 = 0.44–0.59) between the Normalized Difference Vegetation Index (NDVI) and tree
ring width [37]. At the same time, comparison of the chronology of tree ring width (TRW)
and remote sensing data did not reveal any significant correlation between NDVI and
TRW [35].

There may be various reasons for the disagreement between the conclusions reached
by different researchers. For instance, most of the studies used the NDVI data obtained for
a 64-km2 pixel, and a synchronous NDVI signal can hardly be detected on such an area. The
forest vegetation on the study plot was not examined for uniformity, and the synchronicity
of the time series of the radial stem growth was not estimated for individual trees. However,
the present study demonstrates that as the level of synchronicity of the radial stem growth
of individual trees decreases, correlation between the NDVI and TRW data becomes weaker.
Moreover, analysis of the correlation between the time series of NDVI and TRW seasonal
dynamics should take into consideration that if the dynamics are similar, correlation may
be strong while there may be no functional relationship between the parameters.

The present study considered uniform tree stands on a 250 × 250 m2 pixel and esti-
mated the synchronicity of the time series of radial stem growth in individual trees on the
sample plot. Results of the study suggest that even on the small pixel area, the relationship
between NDVI and TRW may depend on the synchronicity of the processes of radial stem
growth, and both strong and rather weak correlations can be obtained between NDVI and
TRW. Thus, research on relationships between woody plant growth and remote sensing
data should take into account specific spatiotemporal dynamics of tree growth.

5. Conclusions

The model proposed in this study relates the average value of TRW FD for the
tree stand to the current seasonal integrated remote sensing parameters NDVI and LST.
Parameters NDVI and LST were determined from the curves of the temporal dynamics of
time series using transformation of principal components. However, no direct relationship
was revealed between TRW FD and remote sensing parameters for the tree stands on the
study sample plots. The current modelled value of TRW FD was only determined by
the total principal components of remote sensing parameters for the season and TRW FD
of the preceding year. The first-order ADL-model, i.e., the model with the discrete-time
Markov process, was used for analysis. This model is able to find the relationships between
tree growth and NDVI and LST.

The present study shows that approximately 50–70% of the current radial stem growth
is determined by the growth of the previous year (i.e., has Markov properties) and inte-
grated properties of NDVI and LST. Both the current year growth and the growth of the
previous year are certainly affected by weather factors, but the effect of the weather of
previous years in the proposed ADL equation is actually represented by the parameter of
radial stem growth of the previous year. Moreover, rather than determining the period
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in the season when the effect on the radial stem growth is the greatest (which may be a
problem), one can use a very simple procedure of calculating principal components of
the entire seasonal curve. The value of (1 − R2) can be used to estimate the contribution
of other, unknown, components to the growth. In such calculations, it is important to take
into account the synchrony of radial stem growth processes.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-443
3/12/1/12/s1. Table S1 Average values of TRW FD (mm) for all sample plots, Table S2 Parameters of
regression equation for seasonal dynamics of LST*, Table S3 Parameters of regression equation for
seasonal dynamics of NDVI.
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