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Abstract: Aromatic secondary organic aerosol (SOA) particles are known to contribute to radiative
forcing and light absorption of atmosphere. However, the complex refractive index (CRI),
single-scattering albedo (SSA) and other optical parameters of aromatic SOA are not well understood.
SOA generated from photooxidation of toluene with a variety concentration of ammonium sulfate
((NH4)2SO4) seed particles in a smog chamber were investigated in the current study. The real
part CRI of toluene SOA without seeds derived and based on aerosol albedometer measurements
is 1.486 ± 0.002 at λ = 470 nm, showing a good agreement with available experimental data, and its
SSA was measured to be 0.92 ± 0.02 at λ = 470 nm, indicating that the SOA particles without seeds
have strong scattering ability. The SSA of SOA formed in the presence of 300 µg/m3 (NH4)2SO4

seed was 0.81 ± 0.02 at λ = 470 nm, less than the SSA of SOA without seed. SSA of SOA decreased,
while the imaginary part of CRI (k) of SOA increased with increasing concentration of (NH4)2SO4

seed, demonstrating that the adsorption capacity of SOA formed in the presence of (NH4)2SO4

seed is enhanced. Different from the carboxyl compounds measured in the SOA without seed,
imidazoles with strong chromophores of C=N that are responsible for the light absorption were
detected as the principal constituents of SOA formed in the presence of (NH4)2SO4 seed. These would
provide valuable information for discussing the optics and components of aromatic SOA in the urban
atmosphere containing a high concentration of (NH4)2SO4 fine particles.

Keywords: secondary organic aerosol; complex refractive index; single-scattering albedo; brown
carbon; imidazoles

1. Introduction

The photooxidation of toluene and other monocyclic aromatic compounds from anthropogenic
emission sources leads to the formation of semi- and non-volatile oxygenated compounds, which result
in secondary organic aerosol (SOA) particles [1,2]. Interest in SOA has been renewed because of its
contribution to radiative balance and visibility degradation [3–5]. Generally, the complex refractive
index (CRI) and single-scattering albedo (SSA) are used to characterize the fundamental optical
parameters of aerosol particles. CRI is expressed as m = n + i k, n and k is the real and imaginary
part, corresponding to the scattering and absorption of aerosol particles, respectively. SSA is the ratio
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of aerosol scattering (αscat) to extinction (αext, the sum of scattering and absorption) coefficient [6].
However, the CRI and SSA of aromatic SOA are still poorly characterized, due to the inherent complexity
in aerosol composition and difficulty in accurate measurement of particulate intrinsic optics.

Cavity ring down spectroscopy (CRDS) has been employed in several chamber studies for the
investigation of the CRI of aromatic SOA particles generated in the presence of NOx. For toluene
SOA particles, Nakayama et al. [7,8] determined the n value of SOA particles to be 1.483 at 532 nm,
while the imaginary part of CRI, k-value was observed to increase with increasing NOx concentration.
Li et al. [9,10] measured that the real part of CRI of aromatic SOA particles at 532 nm fall in 1.38–1.59,
and attributed the decrease of real CRI to the gas-phase partitioning. The real CRI of m-xylene SOA
formed without seed and in presence of (NH4)2SO4 seed decreased as time gone on, when CRI was
nearly stable, the real part value of CRI for m-xylene SOA was found to decrease by 0.09 and 0.15
compared to the earliest formed SOA, respectively [10]. However, CRDS applied in the work by
Nakayama et al. [7,8] and Li et al. [9,10] operated at 532 nm, and the gaseous absorption may bias the
extinction result [11]. Additionally, aerosol SSA is not measured in these experiments. Fortunately,
the aerosol albedometer can measure the real-time particle optical parameters, such as direct SSA and
retrieved CRI [6]. The albedometer generally includes an integrating sphere and incoherent broadband
cavity-enhanced absorption spectroscopy (IBBCEAS) for detecting αscat and αext; CRI and SSA can
be acquired simultaneously. IBBCEAS can quantitatively measure gaseous absorption and aerosol
extinction; gaseous absorption was subtracted for accurate measurement of αext coefficient [12,13].
Recently, our group has developed an albedometer based on IBBCEAS combined with integrating
sphere, and measured the SSA of polystyrene latex, ammonium sulfate particles, the optical properties
of fine particles and columnar aerosol in Beijing successfully [14–16].

The ubiquitous inorganic fine particles contribute substantially to SOA transformation by providing
condensation surface in gas-particle partitioning, modifying reaction environment, involving reactions,
or promoting their deposition [17,18]. Atmospheric fine particle pollution is serious in the urban areas
of China. The average mass concentrations of particles are in the range of 100–300 µg m−3 during haze
days in mega-cities of China [19,20]. Ammonium sulfate ((NH4)2SO4) is the major constituent of fine
particles during haze days [21]. (NH4)2SO4 fine particles can act as efficient seeds to promote SOA
formation, mainly due to their large specific surface area. Moreover, the presence of seed particles shall
change the optical and chemical results of SOA. Although the real part of CRI of aromatic SOA have
been measured [7–10], and the real CRI of m-xylene SOA formed in presence of (NH4)2SO4 seed was
observed to decrease with reaction time [10], no investigations on the influences of (NH4)2SO4 seed on
the SSA of SOA are performed. Thus, experiments were carried out to measure the SSA of toluene
SOA formed without, and in the presence of, (NH4)2SO4 seed in the current study. Moreover, αscat and
αext coefficients were detected by the aerosol albedometer in real-time, and SSA (=αscat/αext) of the
toluene SOA particles were obtained immediately. Additionally, the optical and chemical properties of
SOA were further characterized by ultraviolet-visible (UV-Vis) spectrometer and mass spectrometer.
The effects of (NH4)2SO4 seed on the optical parameters and the compositions of SOA are discussed
in detail.

2. Experiments

2.1. Material

Toluene (>99%) and H2O2 (30%) were supplied by Sigma-Aldrich Chemistry Corporation,
Germany. Ammonium sulfate (99.9%) and methanol (>99%) were obtained from The Third Reagent
Factory of Tianjin.

Seed particles were generated by aspirating the 4 g/L (NH4)2SO4 solution via the atomizer
(TSI Inc, Shoreview, MN, USA, Model 3076), passed through the dryer (TSI Inc, Shoreview, MN, USA,
Model 3062) and a neutralizer (TSI Inc, Shoreview, MN, USA, Model 3054) successively, then introduced
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into the chamber [22,23]. The mean diameter of the (NH4)2SO4 seed was ~100 nm, and seed was
established at a certain concentration by controlling the filling time of the seed particles into the chamber.

2.2. Toluene SOA Particles Formation without and in Presence of (NH4)2SO4 Seed

Formation of toluene SOA particles without and in the presence of different concentration of
(NH4)2SO4 seed was performed in a 850 L chamber [22,23]. After flushing the chamber, toluene, H2O2

and (NH4)2SO4 seed were delivered into the chamber, which was then filled with zero air to full volume.
The concentration of toluene and H2O2 in the chamber was fixed at 600 and 3000 ppb, respectively.
Eight experiments were performed without and in presence of (NH4)2SO4 seed in the concentration
of 25, 50, 100, 150, 200, 250 and 300 µg/m3, respectively. The temperature in the chamber was kept
at about 300 ± 2 K, while relative humidity (RH) was 25 ± 2% for all the experiments. Two small
fans were installed inside the flange of the chamber to mix the gases, which ensures the uniform
mixing of chemical compounds in the chamber. Four UV lamps were turned on to irradiate H2O2 to
generate OH radicals [24], which initiated the photooxidation of toluene to form SOA. As illustrated in
Figure 1, the concentrations of NOx, toluene, the mass concentration and optics of SOA particles in the
chamber was detected using NO-NO2-NOx analyzer (Thermo Fisher Scientific Inc, Walsham, MA, USA,
Model 42i), GC-FID (Agilent Technologies Inc, Palo Alto, CA, USA, Model 7820A), scanning mobility
particle sizer (SMPS, TSI Inc, Shoreview, MN, USA, Model 3080L Differential Mobility Analyzer
(DMA), Model 3775 Condensation Particle Counter (CPC)) and aerosol albedometer, respectively.
Each experiment was conducted for three times, and the average of the results was used as the final
data. It is worth noting that no NOx was added for better investigating the effect of (NH4)2SO4 seed
aerosol on the optical parameters of toluene SOA. The NOx concentration measured by NO-NO2-NOx
analyzer is less than 1 ppb in the whole reaction process. Thus, the NOx concentration in the chamber
is not analyzed in this study.
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Figure 1. Schematic diagram of the aerosol albedometer and chamber.

2.3. Aerosol Albedometer

As displayed in Figure 1, light (190–2100 nm) emitted from a laser-driven light source (LDLS) was
coupled into the optical fibers, and passed through the collimators and a 450 nm-centered bandpass
filter (Thorlabs FB 450-40, full-width at half-maximum (FWHM) of 40 nm). Thus, light of 410–490 nm
was entered into the optical cavity. The cavity includes integrating sphere, truncation reduction tubes
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and highly reflective (HR) mirrors. The sphere manufactured with aluminum was separated into
two hemispheres, and each hemisphere has a hole for the probe light beam. Moreover, a hole in the
side wall is used to measure the scattered signal. SOA particles were introduced into the optical
cavity via the forward truncation reduction tube, and then by encountering and interacting with the
light in integrating sphere, the generated scattering signal was detected with a photomultiplier tube
(PMT). A light baffle was utilized to eliminate the stray light, and a 470 nm-centered (FWHM of 9 nm)
bandpass filter was used to prevent the scattered light from directly reaching the PMT. The PMT
signal was acquired with a data acquisition card, which provided an integrated scattering signal over
465–474 nm. Meanwhile, the exited light was coupled into the fiber and sent to the CCD spectrometer
to measure the extinction signal. The scattering and extinction coefficient at 470 nm was deduced as an
averaged scattering and extinction value in the range of 465–474 nm, and utilized for data analysis [14].

2.4. Characterization Compositions of Toluene SOA

After 4 h photooxidation, the toluene SOA particles were collected onto the polytetra fluoroethylene
membrane filter and extracted into 5 mL 2% methanol water solution with 30 min sonication [25].
A secondary extraction was performed to confirm that the primary extraction was complete when
the absorption spectrum of its extraction is approximately a straight line. The extraction was
filtrated with syringe organic filter (33 mm × 0.22 um, Millipore Corp, Billerica, MA, USA) before the
UV-Vis and liquid chromatography-mass spectrometer (LC-MS) measurements. The double beam
UV-6100S spectrophotometer (Mapada Instruments, Shanghai, China) was utilized to determine the
ultraviolet-visible spectrum of extract solution, with 2% methanol water solution as the reference
solution. Moreover, extract solutions were measured by LC-MS with electrospray ionization (ESI)
(Agilent Technologies Inc, Palo Alto, CA, USA, Model 1200 and 6320). The autosampler injected the
extract sample (20 µL) into the LC system, which introduced the sample into the ESI source region.
The extract sample was detected without LC column. The mobile phase was ultra-pure water and
methanol (1:1 v/v), with the rate of 0.20 mL/min. The extract solutions were analyzed in 50–1000 amu
of the negative mode with a fragmentor voltage of 40 V and a capillary voltage of 3000 V. N2 was
the drying gas (350 ◦C, 24 psig, 10 L/min). The mass spectra were recorded on Agilent software
(Chemstation Rev.b.01.03) and exported to Excel for statistical analysis and interpretation [25].

It should be noted that we have not phased out the effect of salt in UV-Vis and subsequent MS
measurements of the toluene-SOA extraction. According to the experimental results of Bone et al. [26],
imidazoles formed via the aqueous reaction with limonene SOA and NH4

+ ion over days. Toluene SOA
particles were extracted and detected by UV-Vis and LC-MS immediately, so the effect of (NH4)2SO4

on the aqueous reaction was negligible. In addition, the m/z of sulfate was 48, and the toluene-SOA
extraction was detected in 50–1000 amu of the negative mode, thus, (NH4)2SO4 in the solution would
not affect the measurement of chemical components of SOA.

3. Results

3.1. Validation of the Retrieved CRI from the Albedometer

The accuracy and precision of the retrieved CRI, scattering and extinction coefficient from the
cavity-enhanced albedometer were tested and evaluated using laboratory-generated mono-disperse
polystyrene latex (PSL) particles and polydisperse ambient particles in our previous published
papers [13–15]. PSL particles were generated with the atomizer (TSI Inc, Shoreview, MN, USA,
Model 3076), and 200, 240, 300 and 400 nm particles were selected by the classifier (TSI Inc, Shoreview,
MN, USA, Model 3080L) and supplied to the albedometer to measure the scattering (Iscat) and extinction
(Itrans) signal, respectively. It should be noted that a small number of multiplied charged particles
emerged from the differential mobility analyzer (DMA) selector. These particles were characterized by
the tandem DMA method suggested by Bueno et al. [27], and the error of aerosol extinction cross section
caused by multiply charged particles was estimated to be 5–20% for the particle diameters smaller
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than 300 nm, and less than 5% for the particle diameters larger than 400 nm [13]. As suggested by
Washenfelder et al. [28] and Thompson et al. [29], the extinction (αext) and scattering (αscat) coefficient
can be calculated from the measured Iscat and Itrans. The CRI can be retrieved from the simultaneous
measurement of αext and αscat coefficients, subsequently, and the detailed retrieval algorithm was
presented in our previous works [13,14]. The retrieved CRI of PSL particles was m = 1.676 + i 0.015 via
the scattering signal and m = 1.674 + i 0 via the extinction signal at λ = 470 nm, which agreed with the
reported result of 1.633 + i 0.005 at λ = 420 nm from Washenfelder et al. [28], and 1.627 + i 0.005 at
λ = 560 nm provided by Miles et al. [30] However, the imaginary part value of PSL particles retrieved
from the scattering channel was larger than these reported values, which may be due to the large
internal volume, the longer residual time and the greater agglomeration effect on small particles.
The potential uncertainty for the retrieved CRI value was about 5% and 3% via the scattering and
extinction signal, respectively [14].

Polydisperse ambient particles measurements were performed outside the laboratory for 24 h.
The scattering, extinction coefficients and SSA of the ambient air were measured with the aerosol
albedometer, and the scattering coefficients are compared with the measurements from the TSI 3563
integrating nephelometer. A good agreement between the albedometer and the TSI nephelometer
is observed [14], demonstrating that albedometer can measure αext, αscat and SSA of polydisperse
aerosol particles simultaneously. Simultaneous measurement of αext and αscat coefficients provides
an approach for retrieval of CRI. The detailed retrieval algorithm has been presented in our previous
paper [15]. The total uncertainty for the retrieved real CRI value of polydisperse aerosol particles was
estimated to be less than 3% and 2% via the scattering and extinction signal, respectively. Additionally,
the relative uncertainty for the imaginary part of CRI was estimated to be between 15% and 20% for the
k-value less than 0.010, and less than 7% for the k-value greater than 0.010 from the scattering channel,
while the uncertainty of the associated imaginary CRI value was better than 10 % for the k-value less
than 0.010, and less than 5% for the k-value greater than 0.010 through the extinction channel. The total
uncertainty in the measurement of SSA was estimated to be less than 5% [13–15].

3.2. Optics of SOA without and in Presence of (NH4)2SO4 Seed

The mass concentration and optics of SOA without (NH4)2SO4 seed were measured firstly. Unless
mentioned otherwise, the optical properties of SOA were derived at 470 nm. Similar to our previous
work, the density of 1.23 g/cm3 was used to estimate the mass concentration of particle measured by
SMPS [31]. Wall loss was described as a first order process dependent on the loss coefficient, kdep (dp):

kdep(dp) = adb
p + c/dd

p (1)

where a, b, c, and d were optimized to be 4.17 × 10−13, 4.66, 10.18, and 0.75, respectively [22,31].
The mass concentration of SOA was corrected for wall loss by fitting the particle number concentration
decay at the end of the experiment. For the mixed gases of 600 ppb toluene and 3000 ppb H2O2,
the corrected mass concentration, particle number concentration, mean diameter, SSA and other optical
parameters of toluene SOA with different reaction time measured by SMPS and albedometer are shown
in Figures 2 and 3. In the first 5 min of the photooxidation time, only few particles with a corrected
mass concentration of 1.5 µg/m3 was observed. OH radicals generated from the photolysis of H2O2

undergo hydrogen extraction and addition reactions with toluene to form semi- and non-volatile
products. According to the theory of gas/particle partitioning [32], these gaseous products nucleate
homogeneously only after exceeding their saturation concentration. So, nearly no SOA particles
would be formed until sufficient toluene had reacted to generate gaseous concentrations that exceed
saturation concentration. Meanwhile, afterward, the fine particles less than 100 nm increased sharply.
Within 5–35 min, the particle number concentration of toluene SOA increased from ~200 pt/cm3 to
~150,000 pt/cm3, the corrected mass concentration of SOA increased from 1.5 µg/m3 to 74 µg/m3, and the
scattering and extinction coefficient measured by the albedometer increased to about 450 and 480 Mm−1,
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respectively. In the following 35–65 min, the particle number concentration of SOA decreases and
the particle size increases gradually, due to more gaseous products condensed on the pre-exiting
particles and collision between fine particles. At about 65 min, the particle number concentration of
toluene SOA decreases to ~100,000 pt/cm3, the mean diameter increases to 240 nm, the corrected mass
concentration of SOA increases to 145 µg/m3, and αscat and αext reach the maximum value of 680 and
740 M m−1, respectively. Thereafter, no toluene react to form new particles; the size distribution of
SOA remained basically unchanged. However, due to turbulence and gravity deposition, toluene
SOA particles deposited on the chamber wall [22,23], resulting in a gradual decrease in the number
concentration, scattering coefficient and absorption coefficient of toluene SOA particles, as illustrated
in Figure 3. As the wall loss is the main factor in reducing the mass concentration of SOA, the corrected
mass concentration of SOA was almost constant after 65 min, as shown in Figure 2.
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Figure 2. The corrected mass concentration of toluene secondary organic aerosol (SOA) formed in
absence of seed and in presence of 300 µg/m3 (NH4)2SO4 seed as a function of reaction time.

It can be seen from Figure 3 that αext, αscat and SSA of SOA increase with the increasing of
particle size. According to the measurement results of GC, toluene in the chamber has been almost
completely consumed after 65 min of illumination, after that the mean diameter and size distribution
of SOA were maintained almost constantly. Although the wall effect causes the particle number
concentration, extinction and scattering coefficient of toluene SOA to decrease gradually, SSA remains
substantially unchanged. SSA characterizes the relative strength of the scattering and absorption.
Its value ranges from 1 for purely scattering to 0 for completely absorbing particle [6]. The SSA of
SOA was measured to be 0.92 ± 0.02, indicating that toluene SOA particles without (NH4)2SO4 seed
have strong scattering ability. This was further confirmed by the retrieved CRI from the scattering and
extinction channel. The retrieved real and imaginary part of the CRI of the toluene SOA is 1.486 ± 0.002
and 0.006 ± 0.001 via the scattering signal, and 1.479 ± 0.002 and 0.004 ± 0.001 via the extinction signal,
respectively, when the size distribution of SOA is kept nearly unchanged. The real CRIs of toluene
SOA retrieved from scattering and extinction channels fall well within the range of 1.431–1.498 at
λ = 532 nm reported by Nakayama et al. [8] and 1.450–1.518 at λ = 532 nm measured by Li et al. [9]. It is
worth noting that the CRI retrieved by the scattering channel is slightly larger than that obtained by
the extinction channel. Since the real CRI of toluene obtained by the scattering channel is closer to the
corresponding value (1.518) of toluene SOA with low-NOx and H2O2 was utilized as an OH precursor
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performed by Li et al. [9], the CRI retrieved by the scattering channel was shown in Figure 3 and used to
investigate the effect of (NH4)2SO4 seed on the optical properties of toluene SOA. The imaginary part
k is the characterization of the ability of absorbing light radiation. The larger the k value, the stronger
the light absorption of aerosol particles. The measured k-value of toluene SOA particles shown in
Figure 3 is only 0.006 ± 0.001, indicating that toluene SOA without (NH4)2SO4 seed has weak absorb
ability and contributes mainly to a cooling effect.
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Figure 3. The particle number concentration, mean diameter, extinction and scattering coefficients,
SSA and complex refractive index (CRI) of SOA without (NH4)2SO4 seed as a function of reaction time.

The SSA and CRI of SOA particles formed in the presence of different concentration of (NH4)2SO4

seed were measured to explore the influences of (NH4)2SO4 seed on the optics of toluene SOA.
For the (NH4)2SO4 seeded experiments, the corrected mass concentration of SOA was calculated by
subtracting the initial seed mass concentration from the wall loss corrected aerosol mass concentration.
The obtained curves of the corrected mass concentration, particle number concentration, mean diameter,
extinction and scattering coefficients, SSA and CRI of toluene SOA particles formed in the presence of
300 µg/m3 (NH4)2SO4 seed with different reaction time displayed in Figures 2 and 4 are similar to the
situation without (NH4)2SO4 seed. However, the corrected maximum concentration of toluene SOA
reached 242 µg/m3 at 65 min, which was 67% higher than that without seed aerosol, indicating that
(NH4)2SO4 seed aerosol can promote the formation of toluene SOA. Different from the case without
(NH4)2SO4 seed where the extinction coefficient is approximately equal to the scattering coefficient, the
measured extinction coefficient of toluene SOA formed in the presence of 300 µg/m3 (NH4)2SO4 seed
is larger than that of scattering coefficient after 65 min of illumination. The measured SSA illustrated
in Figure 4 was 0.81 ± 0.02, less than the SSA of toluene SOA particles without (NH4)2SO4 seed of 0.92,
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and slightly lower than SSA of biomass burning organic aerosols range in 0.84–0.93 [33], indicating that
the toluene SOA formed in the presence of (NH4)2SO4 seed had a certain light-absorption capacity.
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single-scattering albedo (SSA) and CRI of SOA formed in presence of 300 µg/m3 (NH4)2SO4 seed as a
function of reaction time.

As shown in Figures 3 and 4, the real CRI of toluene SOA formed in the absence and presence of
300 µg/m3 (NH4)2SO4 seed decreased as time went on. The real part value of CRI for toluene SOA
without seed was found to decrease from 1.608 to 1.486 when CRI was nearly stable. Furthermore,
the real CRI of SOA formed in presence of (NH4)2SO4 seed was smaller than that of without seed,
and its real CRI decrease from 1.592 to 1.285. Similar to the system of m-xylene SOA performed
by Li et al. [10], the relatively low volatile gaseous product of photooxidation of toluene nucleated
to generate SOA particles in the absence of seed. As the reaction proceeded, the concentration of
organics increased, particles got larger, and volatile products with low CRI would condense on the
particles, which led to the real CRI of SOA to decrease with time, as shown in Figure 3. The presence
of (NH4)2SO4 seed promoted the condensation of volatile organics [10,34], condensation of gaseous
products of photooxidation of toluene and further heterogeneous reactions on the surface of seed can
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possibly form a core-shell mixing state at RH = 25%. More and more higher volatility products with
lower CRI condensed on the particles as time gone on, and the real CRI of SOA formed in presence
of 300 µg/m3 (NH4)2SO4 seed displayed in Figure 4 decreased significantly when compared to that
without seed.

Figure 5 displayed the corrected maximum mass concentration of tolunene SOA detected by
SMPS, SSA, the real (n) and imaginary (k) part of CRI of SOA measured at different concentrations of
(NH4)2SO4 seed when the size distribution of SOA particles remains basically unchanged. As shown
in Figure 5a, the corrected maximum concentration of tolunene SOA at different concentrations of
(NH4)2SO4 seed is in the range of 166–242 µg/m3, which is higher than that without seed (145 µg/m3).
It should be noted that, when the concentration of (NH4)2SO4 seed aerosol was greater than 200 µg/m3,
the maximum concentration of toluene SOA did not continue to increase. SSA and real CRI of SOA
decrease, while k of SOA increases with the increasing concentration of (NH4)2SO4 seed (Figure 5b–d).
Similarly, when (NH4)2SO4 seed exceeds 200 µg/m3, the optical parameters of SOA tend to be stable.
The n-value of toluene SOA formed in the presence of 300 µg/m3 (NH4)2SO4 seed is 1.285, 14%
less than that of without seed (1.486), and the k-value of SOA is 0.042, 6 times larger than SOA
generated in absence of (NH4)2SO4 seed of 0.006, demonstrating that (NH4)2SO4 seed is involved in the
photochemical reaction of toluene with OH radicals, resulting in products with light absorbing ability.
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3.3. Components of Toluene SOA without and in Presence of (NH4)2SO4 Seed

The OH-initiated photooxidation of toluene generates methyl-hydroxy-cyclohexadienyl and
benzyl radical radical via OH addition and hydrogen abstraction, respectively [35,36]. As shown in
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Figure 6, the reactions of the benzyl radical with O2 led to the generation of benzaldehyde, and the
methyl-hydroxy-cyclohexadienyl radical reacts with O2 by H-abstraction to form cresol and O2 addition
to yield peroxy radical, which undergo a series of reactions to yield 5-methyl-6-oxo-2,4- hexadienal,
glyoxal, and other aldehydes. Furthermore, aldehyde products, such as glyoxal, methylglyoxal can
further be oxidized to carboxylic acids [37]. As proposed by Suh et al. [38], the reaction channel
of methylhydroxycyclohexadienyl radical with O2 by hydrogen abstraction had been shown to be
relatively minor, demonstrating that carboxyl compounds are the principal components of toluene
SOA in the absence of (NH4)2SO4 seed. These results are further confirmed by the ESI-MS and UV-Vis
spectra of SOA without (NH4)2SO4 seed illustrated in Figures 7 and 8.Atmosphere 2020, 11, x FOR PEER REVIEW 10 of 17 
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Due to the small volume of our chamber (850 L), coupled with wall effects and other effects,
the mass of the collected particulate matter is only tens to hundreds of micrograms, and we cannot
accurately measure its mass with the electronic balance (accurate to 0.0001 g). The UV-Vis absorption
spectrum was used to qualitatively verify the component of toluene SOA. Therefore, we estimated
the mass of the SOA collected on the filter, based on the concentration of the particles measured by
SMPS at the end of the reaction. The concentration of toluene SOA without seed at the end of the
reaction is about 60 µg/m3, the remaining volume in the chamber is about 700 L, and the mass of
toluene SOA collected is estimated to be about 40 µg; the concentration of extract for SOA is about
8 mg/L. As suggested by Carlton et al. [39], ESI deprotonated compounds and the formed negative
ions are molecular-related ions [M–H]–, which provided the information of organic’s molecular
weight. The [M–H]– ions of carboxyl compounds, such as glyoxal (m/z 57), methylglyoxal (m/z 71),
methylglyoxylic acid (m/z 87), oxalic acid (m/z 89), 4-oxo-2-pentenoic acid (m/z 113) and benzoic
acid (m/z 121), 2-methyl-4-oxo-2,3-epoxy-butyric acid (m/z 129), 2-methyl-2,3-epoxy-succinic acid
(m/z 139), 5- methyl-6-oxo-2,4-hexadienoic acid (m/z 145) and 5-methyl-2,4-hexadiendioic acid (m/z 155)
appear in the ESI-MS shown in Figure 7. In addition, the absorption band at 205 nm of characteristic
light absorption of carboxyl compounds [38] emerged in the ultraviolet-visible spectrum of SOA,
as displayed in Figure 8a. The formed aldehydes and carboxylic acids contain only C=C and C=O
double bonds, and do not contain strong chromophores and auxochromes [40]. Thus, toluene SOA
particles without (NH4)2SO4 seed have weak light absorption.

Toluene SOA concentration formed in the presence of 300 µg/m3 (NH4)2SO4 seed at the end of
the reaction is about 340 µg/m3, and the mass of collected particles is estimated to be about 240 µg.
In order to estimate the mass of the collected toluene SOA formed in the presence of seed, 300 µg/m3

(NH4)2SO4 seed was separately prepared for photooxition reaction. After 4 hours’ photooxidation,
the particle concentration was about 250 µg/m3, and the mass of collected ammonium sulfate was
estimated to be about 175 µg. Thus, the mass of collected toluene SOA formed in the presence of
300 µg/m3 (NH4)2SO4 seed was about 65 µg, and the concentration of extract for SOA formed in the
presence of 300 µg/m3 (NH4)2SO4 seed was about 13 mg/L. As suggested by Updyke et al. [41], the
mass absorption coefficient (MAC, m2/g) can be calculated from the absorbance A(λ) of the SOA extract,
with solution mass concentration Cmass (g/m3) measured over pathlength b (m):

MAC(λ) =
A(λ) × ln 10
b×Cmass

(2)

Figure 8b gave absorbance of 0.0045 at 470 nm, and the corresponding MAC was estimated to
be 0.080 m2/g, which was comparable to MAC values of brown carbon produced by aging SOA with
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NH3 performed by Updyke et al. [41] This indicated that the measured UV-Vis spectrum can reflect the
optical characteristics of toluene SOA.

The UV-Vis absorption profile of toluene SOA formed in the presence of 300 µg/m3 (NH4)2SO4 seed
shown in Figure 8b is different from that of without seed. There is a distinctive band at 280 nm in spectra
of toluene SOA formed in presence of (NH4)2SO4 seed, indicating the generation of new products.
The band of 280 nm was also emerged in the spectra of aqueous reaction products of (NH4)2SO4

and glyoxal measured by Kampf et al. [42], Lee et al. [43] and Maxut et al. [44] They considered that
the chromophores were probably imidazole products formed from the reactions between NH4

+ and
glyoxal, and the n→π* transition in the C=N of imidazoles was the main contributor to the 280 nm
band. As glyoxal and methylglyoxal are the principal α-dicarbonyl gaseous products formed by
photooxidation of toluene [36,45], similar reactions to form imidazole compounds may occur after
α-dicarbonyls condensate on the surface of (NH4)2SO4 seed. Furthermore, the obtained negative
mass spectra of toluene SOA formed in the presence of 300 µg /m3 (NH4)2SO4 seed illustrated in
Figure 9 contained [M–H]– of CxHyNnOz family of imidazole derivative compounds. In addition,
[M–H]– of 67, 81, 95, 123 could be attributed to C3H3N2

−, C4H5N2
−, C4H3N2O− and C6H4N2O−,

respectively, which were also detected by Liu et al. [46] in the experiment of heterogeneous uptake of
NH3 by m-xylene SOA and the previous study of aged benzene SOA formed in presence of (NH4)2SO4

seed [23]. These results indicated that imidazoles are the newly formed particulate products of toluene
SOA in the presence of (NH4)2SO4 seed.
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According to the experimental results of Trainic et al. [47], heterogeneous reactions between
glyoxal and dehydrated ammonium sulfate cannot occur at RH of 35%. Compared with the reaction
system of glyoxal and ammonium sulfate seed performed by Trainic et al. [47], the composition
of our reaction system is more complex. In addition to glyoxal, carboxylic acids such as formic
acid, acetic acid and glyoxylic acid were also produced from the photooxidation of toluene [36,45].
Some studies have reported that the presence of organics in SOA-coated (NH4)2SO4 particles could
increase the particles’ water uptake compared to that of pure (NH4)2SO4 particles, even with RH less
than 30% [48–50]. Meyer et al. [50] found that SOA coating enhanced the water uptake of (NH4)2SO4

seed, and led to a partially dissolved (NH4)2SO4 seed. Thus, (NH4)2SO4 seed can partially be hydrated
by absorbing water from its covered outer organic layer, with RH of 25% of our reaction system.
Additionally, the gaseous carboxylic acid products of toluene condense on the water layer of the
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seed to produce acidic aqueous layer for heterogeneous imidazole formation [22]. The gas/particle
partitioning of degradation products on seed particle are principal contributions to the formation
of toluene SOA formed in presence of (NH4)2SO4 seed [46]. When glyoxal, methylglyoxal and
other α- dicarbonyls are partitioned on the (NH4)2SO4 seed, heterogeneous acid-catalyzed reactions
occur to form imidazole products. Glyoxal and methylglyoxal can be protonated by H+ ion and
hydrolyzed to tetrol product (1), as displayed in Figure 9. Additionally, the protonated α-dicarbonyls
can react with NH4

+ ions to produce diimine product (2). Tetrol product (1) can react with diimine
(2) to form (3) through the dehydration reaction. However, (3) is unstable, N atom attacks C atom,
generating (4) after dehydration. Moreover, (4) forms HCOOH (or CH3COOH) and imidazole
(m/z 67) (or 4-methyl-imidazole (m/z 81)) via rearrangement and dehydration reaction. Additionally,
(4) occurs rearrangement illustrated in Figure 10 to produce (5), which could be dehydrated to yield
imidazole-2-carbaldehyde (m/z 95) (or 4-methyl-imidazole-2- acetaldehyde (m/z 123)). As depicted
in Figure 10, the formed imidazole (or 4-methyl-imidazole) can subsequently interact with (1) to
produce hydrated N-glyoxal substituted imidazole (m/z 143) (or hydrated N-methylglyoxal substituted
4-methyl-imidazole (m/z 171)), hydrated glyoxal dimer substituted imidazole (m/z 201) (or hydrated
methylglyoxal dimer substituted 4-methyl-imidazole (m/z 243)), respectively [42–44].
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Figure 10. Suggest mechanism for imidazole compounds.

The high concentration of (NH4)2SO4 seed provides more surface area for condensation and
reaction of gaseous α-dicarbonyls. Thus, the content of imidazoles in SOA increases with the
concentration of seed aerosol, which leads to the increase of absorptivity of SOA with the concentration
of seed aerosol, as shown in Figure 5. It is noteworthy that the concentration of toluene, H2O2 and other
conditions are basically unchanged in all experiments, and the amount of the formed α-dicarbonyls is
also nearly constant for each experiment. When (NH4)2SO4 seed is increased to a certain concentration
(200 µg/m3), all the α-dicarbonyls are consumed completely, and the formation of imidazoles would
not increase with the increasing concentration of (NH4)2SO4 seed. Thus, the optical properties of
toluene SOA remain basically unchanged when (NH4)2SO4 seed exceeds 200 µg/m3, as illustrated in
Figure 5.
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It should be pointed out that, due to the low sensitivity of UV-Vis spectrophotometer with 1 cm
optical length, almost no absorption of toluene SOA is measured at 380 nm, as shown in Figure 8.
However, the albedometer with 3.7 km effective optical path can detect the absorption of toluene
SOA with 465–474 nm [14]. Compared to the studies of Nakayama et al. [7,8] and Li et al. [9,10],
the present study extended (NH4)2SO4 seed to 300 µg/m3, and the optics of SOA were detected
by aerosol single-scattering albedometer in real-time. The measured SSA of toluene SOA formed
in the presence of 300 µg/m3 (NH4)2SO4 seed was 0.81 ± 0.02, showing a certain light-absorption
capacity [6,40]. Additionally, the SSA of toluene SOA was observed to decrease from 0.91 to 0.81,
while the imaginary part of CRI (k) was found to increase from 0.013 to 0.042 with increasing the
(NH4)2SO4 seed concentration from 25 to 300 µg/m3, demonstrating that the adsorption capacity of
toluene derived SOA increased with the increasing concentration of (NH4)2SO4 seed. From absorption
and mass spectrum of SOA, we confirmed that the decrease of SSA and increase of k caused by
(NH4)2SO4 seed are due to the increase of imidazoles in SOA. The C=N chromophores of imidazoles
enhance the absorption capacity of SOA. According to the UV-Vis absorption spectra shown in Figure 8,
toluene SOA formed in the presence of (NH4)2SO4 seed has strong absorption ability in the UV range.
Owing to the rate of global production of anthropogenic SOA is larger than biomass burning organic
aerosols [51]; aromatic SOA in the urban atmosphere containing high concentrations of (NH4)2SO4

fine particles may contribute remarkably to climate forcing.

4. Conclusions

The aromatic SOA in the urban atmosphere with high concentrations of (NH4)2SO4 seed are
considered as a potential major component of brown carbon. The toluene SOA particles were
formed with different concentrations of (NH4)2SO4 seed in the chamber, and measured by the aerosol
single-scattering albedometer, spectroscopic and mass spectrometer in the present study. The detected
SSA of SOA formed in the presence of (NH4)2SO4 seed is less than the SOA without seed, and the
imaginary part of CRI (k) was found to increase with increasing the concentration of (NH4)2SO4 seed.
Compared with the SOA without seed, imidazoles inferred from absorption and mass spectra of SOA
formed in the presence of (NH4)2SO4 seed were confirmed to be responsible for the decreased SSA and
increased k. As the SSA of SOA formed in presence of (NH4)2SO4 seed is lower than BBOA detected at
λ = 550 nm, while absorption capacity in the ultraviolet range is higher and the rate of production of
SOA is larger than BBOA, the anthropogenic SOA with high concentration of (NH4)2SO4 fine particles
may contribute to the radiative balance in urban atmosphere. Although the concentration of (NH4)2SO4

seed in the chamber is higher than actual atmosphere, the influence of high mass concentration of
(NH4)2SO4 seed is still expected to be prevalent in Chinese Urban atmosphere as organic aerosol mass
loading is low, under which condition the incidence of mass concentration of (NH4)2SO4 effect could
be high [52]. These experimental results could be utilized to improve the estimation of radiative forcing
of anthropogenic SOA in some regions. Nevertheless, the components of SOA were qualitatively
measured by UV-Vis and LC-MS; a suitable chromatographic column should be selected to separate
and quantitatively analyze the constituents of toluene SOA. Additionally, SOA were generated in the
presence of (NH4)2SO4 seed with a relative humidity (RH) of 25 ± 2%; the effects of RH on the optics of
aromatic SOA should be carried out in future experiments.
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