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İstanbul 34469, Turkey
3 Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
* Correspondence: bektasfi@itu.edu.tr (F.B.B.); paul.glantz@aces.su.se (P.G.)

Received: 12 July 2020; Accepted: 23 August 2020; Published: 26 August 2020
����������
�������

Abstract: This study validated MODIS (Moderate Resolution Imaging Spectroradiometer) of the
National Aeronautics and Space Agency, USA, Aqua and Terra Collection 6.1, and MERRA-2
(Modern-ERA Retrospective Analysis for Research and Application) Version 2 of aerosol optical
depth (AOD) at 550 nm against AERONET (Aerosol Robotic Network) ground-based sunphotometer
observations over Turkey. AERONET AOD data were collected from three sites during the period
between 2013 and 2017. Regression analysis showed that overall, seasonally and daily statistics of
MODIS are better than MERRA-2 by the mean of coefficient of determination (R2), mean absolute
error (MAE), and relative root mean square deviation (RMSDrel). MODIS combined Terra/Aqua
AOD and MERRA-2 AOD corresponding to morning and noon hours resulted in better results
than individual sub datasets. A clear annual cycle in AOD was detected by the three platforms.
However, overall, MODIS and MERRA-2 tend to overestimate and underestimate AOD, respectively,
in comparison with AERONET. MODIS showed higher efficiency in detecting extreme events than
MERRA-2. There was no clear relation found between the accuracy in MODIS/MERRA-2 AOD and
surface relative humidity (RH).
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1. Introduction

Anthropogenic aerosols influence the Earth’s radiation budget and climate directly by scattering
solar light in the cloud-free atmosphere and indirectly by changing the cloud properties [1,2].
Anthropogenic aerosols on the whole cool the climate, while black carbon and mineral dust absorb
solar radiation. Monitoring air quality parameters in the atmosphere, such as aerosols, is crucial to
identify sources of pollutants and to estimate the effects of human exposure for air pollution, as well as
providing early alerts to the public. Since aerosol optical depth (AOD) is related to aerosol loads in the
atmosphere, it is a widely used parameter to study and monitor anthropogenic aerosols. By studying
long-term variations and trends in AOD, the latter can be used to quantify aerosol’s impact on climate
and air quality [3,4]. Ground-based remote sensing is widely used worldwide and can be used to
estimate AOD accurately. Aerosol Robotic Network (AERONET) provides high-quality sunphotometer
measurements of AOD at multiple wavelengths, where computerized procedures for cloud-screening
and pre- and post-field calibration generalization are used [5]. However, these measurements are
associated with sparse coverage over the Earth and a lack of long-term observations at many of the
ground-based sites.

Atmosphere 2020, 11, 905; doi:10.3390/atmos11090905 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
https://orcid.org/0000-0003-3039-6846
http://www.mdpi.com/2073-4433/11/9/905?type=check_update&version=1
http://dx.doi.org/10.3390/atmos11090905
http://www.mdpi.com/journal/atmosphere


Atmosphere 2020, 11, 905 2 of 17

Sensors mounted on polar satellites provide large scenes of AOD at multiple spectral wavelengths
that cover the Earth to a large extend. However, satellite-derived AOD is associated with low temporal
resolution and relatively low pixel resolution, and no data are available if clouds are presented in
the atmosphere [6]. Scenes of AOD are also available as gridded reanalysis, such as Modern-ERA
Retrospective Analysis for Research and Application (MERRA-2), where satellite and ground-based
measurements of AOD have been assimilated into Earth system modeling.

Recent advances in satellite sensors concerning spatial and spectral resolution mean that accurate
historical aerosol related datasets are available for climate monitoring and air quality studies. Li et al. [7]
has exploited various sensors’ spatial coverage, Moderate Resolution Imaging Spectroradiometer
(MODIS), Microwave Integrated Retrieval System (MIRS), and Sea-Viewing Wide Field-of-View Sensor
(SeaWiFS), along with the Environmental Protection Agency’s (EPA) in situ monthly mean PM2.5 data
to investigate time series of AOD and PM2.5. The results obtained showed consistent interannual
variation in satellite-derived AOD and PM2.5, where an R (correlation coefficient) of 0.89 was obtained
for approximately 60% of the dataset’s total variance. R equal to 0.83 was obtained for approximately
35% of the total variance. In addition, MODIS and MIRS AOD were most compatible with AERONET
measurements, both with respect to annual and seasonal variation. By combining data obtained
from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) satellite and Chemical
Transport Method (CTM), and applying the Multiple Imputation (MI) method, Xiao et al. [8] created
a complete daily time series of MODIS Aqua/Terra-derived PM2.5 over the Yangtze River Delta of
China. For MODIS Terra/Aqua combined, this study also shows that days with high availability in
AOD are associated with high R2 compared to days with low availability. Kahya et al. [9] studied
spatio-temporal variation in PM2.5 over the Marmara region in Turkey according to 13 ground-based
stations. They found that 70% of the PM2.5 dataset exceeded the WHO’s (World Health Organization)
PM2.5 annual standards.

Li et al. [10] used AERONET AOD data to conduct a spatio-temporal comparison of four AOD
satellite products (MODIS, MIRS, SeaWiFS, and Ozone Monitoring Instrument (OMI)) using the
Combined Maximum Covariance Analysis (CMCA) decomposition technique. With this approach,
they found that all four satellite sensors had a high ability to detect extreme events of dust and biomass
burning aerosols. In addition, satellite-derived seasonal AOD agreed well with AERONET, where a
mean R of 0.95 is obtained. Bhaskaran et al. [11] have studied the spatio-temporal variation in MODIS
Terra AOD with respect to three different wavelengths. The study was conducted by validating MODIS
AOD products against semi-simultaneous AERONET AOD measurements. It was found that MODIS
AOD tends to overestimate AERONET AOD over most of the study sites and then particularly over
inlands. Bhaskaran et al. [11] also found that the highest and lowest AOD, both for MODIS and
AERONET, occur in May and June (up to 0.4), and at the end of the year, respectively.

The complexity between the Earth surface and atmosphere makes the satellite retrieval of AOD
a challenging process, and it causes discrepancies between different sensors used [12,13]. Therefore,
a combination of ground-based and satellite remote sensing of aerosols via comprehensive and regular
validation processes is important [13,14]. Hauser et al. [15] used AVHRR NOAA-16 (Advanced Very
High Resolution Radiometer of the National Oceanic and Atmospheric Administration) AOD in
combination with eight AERONET stations to retrieve field maps of AOD over central Europe. AVHRR
AOD scenes were found to be more spatially homogeneous than the MODIS Aqua and Terra AOD
scenes. Although MODIS AOD correlated well with AERONET AOD, it biased significantly more
than AVHRR, with approximately 0.2 on average. Sayer et al. [16] evaluated the initial version of the
AVHRR-based AOD (V0001) by performing validation against AERONET land and ship-borne AOD
datasets. This study also included a comparison of the dataset against NASA GESTAR (Goddard Earth
Science Technology and Research) AVHRR AOD products. They stated that the AVHRR sensor tends
to perform satisfied retrievals of AOD over densely vegetated surfaces, while sensor calibration-related
bias was found for both MODIS Deep Blue and Dark Target algorithms. Tan et al. [17] validated
POLDER(Polarization and Directionality of the Earth’s Reflectances)-delivered four aerosol parameters



Atmosphere 2020, 11, 905 3 of 17

(AOD, Fine AOD, Coarse AOD, and Ångström Exponent (AE)) using AERONET AOD data over
China, and the results were compared to MODIS AOD. The performances of POLDER-3 and MODIS
AOD products were found to be close to each other; however, the POLDER-3 aerosol product is more
sensitive to fine aerosol type than MODIS.

Aerosol optical properties in the atmosphere are sensitive to atmospheric relative humidity
(RH) [18,19]. RH affects aerosols’ microphysical properties and the scattering of solar light due to
hygroscopic growth by water uptake [20]. Shmirko et al. [21] computed light-scattering properties
of three types of irregular particles. The authors aimed to study the impact of water coating on light
scattering by irregularly shaped agglomerated debris particles. The relation between RH and aerosol
optical properties are quantized by the scattering enhancement factor f (RH, λ), which describes the
change in particle light scattering coefficient σsp(RH,λ) as a function of RH. This relationship was
explained in detail in previous studies [20,22,23]. According to the World Meteorological Organization
(WMO) and Global Atmosphere Watch (GAW), in situ aerosol measurements are recommended to be
steered under low relative humidity (RH% < 40) [24]. Thus, atmospheric RH and water content are
crucial to evaluate aerosol climatic influence [25]. It has been shown that assessment of the effects of
RH on AOD derived from satellite observations is necessary as well [26,27].

In this study, MODIS C6.1 and MERRA-2 AOD at 550 nm were compared to each other and
validated against AERONET AOD according to three ground-based stations in Mersin, Turkey, Cyprus
and Athens, Greece (Mersin METU-ERDEMLI, Cyprus CUT-TEPAK, and Athens NOA, respectively).
The work aims to assess the efficiency of MODIS Terra, MODIS Aqua, and MERRA-2 derived AOD
datasets to retrieve aerosol-related AOD data over Turkey. In addition, the statistical and temporal
differences between the datasets and the effect of atmospheric RH on AOD have been quantified.
To the best of our knowledge, this study is the first that validates satellite-retrieved AOD over Turkey,
and here, we provide spatial fields and time series of AOD. The numbers of extreme events caused
by mineral dust and biomass burning aerosols are presented for AERONET, MODIS, and MERRA-2.
Here, we also evaluate the possibility of using MERRA-2 AOD to compensate for missing MODIS
data due to clouds present in the atmosphere. The present study assesses the reliability in MODIS and
MERRA-2 AOD to be used in mapping PM2.5 over Turkey in a subsequent study.

2. Experiments

2.1. Study Area

The present study area (33◦ N–42◦ N, 21◦ E–44◦ E) for the satellite retrievals cover the whole
Turkey (783,000 km2), for which 97% of the total area lies in Asia, while only 3% falls in the European
continent. Agricultural areas cover 44% of the total area in Turkey, while only 15% is covered by
forests [28]. Turkey’s population has increased by 1.09% in 2016 to reach 79.81 million inhabitants by
2017 [29]. The climate in Turkey is varying significantly. The Mediterranean climate is common in the
Mediterranean and Aegean coastal regions, the continental climate is common in the Black Sea region,
while the Anatolian plateau is characterized by the steppe climate. Industrialization, urbanization,
massive construction movements, and high fuel consumption have dramatically influenced air quality
in Turkey [9]. According to the European Environment Agency (EEA), 97.2% of Turkey’s population
breathes harmful air [30], and Turkey contributes to more than half of the industry-originated PM10

emissions is in Europe [31].

2.2. Aerosol Products

2.2.1. MODIS-Derived AOD

MODIS operates on two satellite platforms, Aqua and Terra, to obtain spatial and spectral optical
characteristics of aerosols. Terra was launched in 1999 and performs observations for morning hours
(7:00 to 10:59 (EOS AM)) and Aqua was launched in 2002 for noon hours (11:00 to 13:00 (EOS PM)).
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The instrument has 36 channels, ranging from 0.4 µm to 14.4 µm with different spatial resolutions [32].
Eight of these channels (between 0.47 µm and 2.13 µm) are used to retrieve aerosol optical properties
over land and ocean for different algorithms developed by the MODIS aerosol team.

The Level 2 Collection 6.1 (C6.1) aerosol product is provided at a nominal spatial resolution
of 10 × 10 km2 at nadir. According to the surface Normalized Difference Vegetation Index (NDVI),
values smaller than 0.2 and 0.3 are used in the Deep Blue (DB) and Dark Target (TG) algorithm,
respectively [33]. Datasets obtained by combining the two algorithms (DTDB) applied on MODIS
Terra and Aqua AOT at 550 nm of the period 2013–2017 have been investigated in the present study.
The data investigated are associated with 10 × 10 km2 spatial resolution and 1-day temporal resolution.

2.2.2. MERRA-2 AOD Reanalysis

MERRA-2 is a second version of the MERRA global reanalysis model. It is the first satellite
reanalysis data to include aerosol interaction with other climatic parameters. MERRA-2 uses MODIS
C6.1 and MIRS satellite-derived AOD as well as AERONET ground-based observations assimilated in
Earth system modeling. In this study, MERRA-2 AOD at 550 nm, with 62.5× 50 km spatial resolution and
hourly temporal resolution, was downloaded from the “Goddard Earth Sciences Data and Information
Services Centre “GIOVANNI” platform [34]. AOD was averaged for MODIS Terra and Aqua separated
and combined with respect to morning hours (7:30, 8:30, and 9:30 LT), noon hours (10:30, 11:30,
and 12:30 LT) and combined morning and noon hours (semi-daily, 7:30 to 12:30 LT), respectively.

2.2.3. AERONET Ground-Based AOD

AERONET ground-based networks provide globally distributed AOD measurements. In this study,
AERONET level 2 version 3 (L2/V3) AOD (cloud-screened and quality-assured) were downloaded from
the AERONET official website [35] for three AERONET stations: METU-ERDEMLI in Mersin-Turkey,
CUT-TEPAK in Cyprus, and Athens-NOA in Athens, Greece. One of the selected AERONET stations,
METU-ERDEMLI, is located within the border of Turkey, while the other two stations, CUT-TEPAK
and Athens-NOA, are located near Turkey (see Table 1). The hourly AERONET AOD at 440 nm and
Ångström exponent (AE440/675) were used to derive AOD at the MODIS and MERRA-2 wavelength of
550 nm.

Table 1. Aerosol Robotic Network (AERONET) ground-based stations and obtained mean aerosol
optical depth (AOD) for the period 2013–2017.

Station City/Country Coordinates AMSL a (m) Land Use AOD b (550 nm)

METU-ERDEMLI Mersin/Turkey 36.34◦ N/34.14◦ E 71 Rural Area 0.213
CUT-TEPAK Limassol/Cyprus 34.68◦ N/33.04◦ E 11 Urbanized Area 0.168

Athens-NOA Athens/Greece 37.97◦ N/23.72◦ E 105 Moderately
Populated Area 0.157

a AMSL = above mean sea level. b Averaged according to hourly mean AOD [36–38].

2.2.4. ECMWF Relative Humidity

Retrieving aerosol optical characteristics are sensitive to RH [39]. Five years (2013–2017) of gridded
RH raster layers (12.5 km spatial resolution and 1-day temporal resolution) were downloaded for the
present investigation area from the European Centre Medium-Range Weather Forecasts (ECMWF).
Daily surface RH was averaged with respect to season to analyze the impact of relative humidity on
the validation statistical results.

2.3. Methodology

In this study, MODIS and MERRA-2 AOD at 550 nm were validated against and seasonally
compared to AERONET AOD with respect to the period 2013–2017. The following nine steps
explain the approach used in the comparison between MODIS/MERRA-2 and AERONET.
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(i) AOD DB/DT retrievals were obtained from the MODIS Terra and Aqua scientific datasets
of “Dark_Target_Deep_Blue_AOD_550_Combined” by extraction and georeferencing against
corresponding geolocation files using ENVI IDL iterative script. (ii) Mosaicking was conducted
to merge the adjacent layers in each dataset over the study area to produce daily layers using an
ArcGIS automated model. (iii) MODIS Aqua and Terra AOD collocated pixels values were averaged
separately and combined. (iv) MERRA-2 AOD hourly values were averaged over the morning and
noon hours (7:00–11:00 and 11:00–14:00, respectively) as well as over these two periods (named with
a semi-day period) and extracted over the three AERONET sites. (v) The mean wind speed in the
study area is about 4.4 m s−1 [40], which means that aerosol particles can be transported approximately
16 km during one hour. Both MODIS and MERRA-2 daily values were extracted using a surface area
of 30 × 30 km2 (3 × 3 MODIS pixels in line with (iv)) with the help of an automated ArcGIS extraction
model. The nine pixels were selected so that the AERONET station is located in the centered satellite
pixel. Pixel windows that contained at least four pixels out of 9 were included for MODIS. For MODIS
AOD data quality assurance, we filtered the DTDB AODs retrievals for the high-quality flag (QF = 3)
using Dark_Target_Deep _Blue_AOD_550_ Combined QA Flag. (vi) Since AERONET stations are
not providing AOD at 550 nm wavelength, the AE440/675 and AOD at 440 nm were used to calculate
AOD at the MODIS wavelength 550 nm using (1) (vii) AERONET AOD hourly observations were
separated and averaged according to the three periods described in (iv). (viii) ECMWF daily RH
was extracted over the three stations and averaged for each season. (ix) The statistical parameters
coefficient of determination (R2), relative root mean square deviation (RMSDrel), root mean square
error (RMSE), mean absolute error (MAE), and relative mean bias (RMB), obtained in the comparison
between satellite and ground-based AOD, were investigated. RMB larger or lower than one indicates
overestimation and underestimation, respectively, of MODIS/MERRA-2 AOD. N is the number of
collocated points. Equations (2)–(6) are the formulas used to calculate the aforementioned statistical
metrics, respectively.

AOD550 = AOD440
(440

550

)AE440/550
(1)

R2 = 1−

∑N
i=1(AOD(SD)i−AOD(AER)i)2∑N
i=1(AOD(SD)i− µAOD(SD))2 (2)

RMSDrel =

√
1
N

∑N
i=1(AOD(SD)i−AOD(AER)i)2

µAOD(AER)
(3)

RMSE =

√√√
1
N

N∑
i=1

(AOD(SD)i−AOD(AER)i)2 (4)

MAE =
N∑

i=1

∣∣∣AOD(SD)i−AOD(AER)i
∣∣∣ (5)

RMB =
µAOD(SD)

µAOD(AER)
(6)

AE440/550: Ångström Exponent represented for the 440 nm and 550 nm wavelengths;
AOD (SD) = satellite-derived AOD (MODIS or MERRA-2) and AOD (AER) = AERONET AOD;
µ = population mean, MAE = mean absolute error, R2 = coefficient of determination, RMB = relative
mean bias, RMSDrel = relative root mean square deviation.
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3. Results

3.1. Validation Against AERONET

MODIS and MERRA-2 daily AOD are compared to the AERONET measurements in Figure 1,
which are subdivided with respect to the time of the day. MERRA-2 reanalysis contain the highest
number of collocated values (N), as it is a continual time series. The figures show that MODIS agree
according to the 1:1 line and squared correlation coefficient somewhat better than MERRA-2. However,
slightly lower RMSDrel and MAE values are found for MERRA-2. For AOD corresponding to MODIS
Aqua and Terra combined, and MERRA-2 Semi-Day, higher R2 values and RMSDrel are found compared
to separated platforms and for morning and noon hours, respectively. With respect to the 1:1 line and
R2, in comparison with AERONET, Shaheen et al. [41] also found relatively good agreement for MODIS,
although MERRA-2 AOD was found to be slightly closer to the 1:1 line and associated with less bias.
The latter study suggests merging MODIS and MERRA-2 AOD to optimize the validation against
AERONET and minimize bias. The present results obtained with MODIS and MERRA-2 over land
surfaces are in line with the previous study by Sogacheva et al. [42]. The largest deviation to the 1:1
line was found for MODIS Terra and MERRA-2 AOD obtained for morning hours. The result obtained
with MODIS Terra is consistent with that of Levy et al. [43], who found significantly larger bias for
this satellite sensor compared to MODIS Aqua. Therefore, the MODIS Aqua AOD was generalized
to represent the MODIS dataset by Schutgens et al. [44]. However, Georgoulas et al. [45] found that
MODIS Terra AOD exhibited the best agreement with AERONET over the eastern Mediterranean.
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Figure 1. Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra,
and Modern-ERA Retrospective Analysis for Research and Application (MERRA-2) AOD against
Aerosol Robotic Network (AERONET). (a) MODIS TERRA vs. AERONET, (b) MODIS Aqua vs.
AERONET, (c) MODIS Aqua and Terra combined vs. AERONET, (d) MERRA-2 morning vs. AERONET,
(e) MERRA-2 noon vs. AERONET, (f) MERRA-2 combined (semi-day) vs. AERONET. The color bars
indicate the frequency of match points values.
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3.2. Time Series of MODIS, MERRA-2, and AERONET AO

MODIS and MERRA-2 monthly averaged AOD were compared to AERONET AOD over the study
period of 5 years. MODIS and AERONET observations are not continuous time series, while combining
monthly values resulted in only one missing month out of 60 for both platforms. For MODIS, available
days included in the monthly averaging ranged between 44% in January and 92% in August. Figure 2
shows for all three platforms that the highest and lowest AOD occur in summer and winter, respectively.
Georgoulas et al. [45] explain this with transport of mineral dust aerosol in summer from North Africa
and the Middle East over the Anatolian Plateau in Turkey. This is supported by Perez et al. [46].
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Figure 2. MERRA-2, MODIS, and AERONET monthly mean AOD, averaged according to three
ground-based sites in Turkey (Section 2.2.3), and with corresponding statistics.

Figure 2 shows that the MODIS AOD values are higher compared to both AERONET and
MERRA-2 with respect to the period 2013–2015, while they are more comparable with AERONET
for 2016 and 2017. Figure 2 shows also that MODIS and MERRA-2 somewhat overestimate and
underestimate AOD, respectively, with respect to AERONET AOD when the full period is taken
into consideration. The underestimation in AOD by MEERA-2 is in line with previous studies that
investigated AOD globally (Che et al. [2]; Shi et al. [47]; Buchard et al. [48]). However, with a focus on
storm episodes of mineral dust over four sunphotometer ground-based sites in Australia, Mukkavilli
et al. [49] found overestimation in MEERA-2 AOD. In addition, with respect to MODIS DB/DT and DT
algorithms in comparison with AERONET, significant overestimations in AOD were found by Shaheen
et al. [41] and Tian et al. [50], respectively. A larger deviation in RMB is found in the present study for
MODIS than MERRA-2, with respect to both monthly and daily averaging (Figure 1).

Table 2 presents statistics between MODIS and MERRA-2 against AERONET with respect to
season and the three present AERONET sites. For the purpose of investigating seasonal variation, four
seasons were classified: (i) winter (December, January, and February—DJF), (ii) spring (March, April,
and May—MAM), (iii) summer (June, July, and August—JJA), and (iv) autumn (September, October,
and November—SON). For MODIS, available days are 63%, 85%, 71%, and 51% for summer, autumn,
and winter, respectively. The availability for AERONET AOD is largest in August (94%) and reached
a minimum in January (44%), while the seasonal availability is 57%, 75%, 57%, and 44% for spring,
summer, autumn, and winter, respectively. For the ATHENS-NOA station, Table 2 shows that the
lowest RH and highest R2 were recorded in summer for both MODIS and MERRA-2. Similar findings
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are found for the stations METU-ERDEMLI and CUT-TEPAK according to spring/summer and winter,
respectively. Considering the other statistical parameters in Table 2, no clear relation with RH is found.

Table 2. Statistical metrics of MODIS and MERRA-2 AOD against AERONET AOD according to season
for the stations (I) Athens-NOA, (II) METU-ERDEMLI, and (III) CUT-TEPAK.

Dataset MODIS C6.1 MERRA-2

Season Winter Spring Summer Autumn Winter Spring Summer Autumn

Station (I) ATHENS-NOA Athens

RH(%) 73 67 64 72 73 67 64 72
N 51 95 241 148 148 157 322 235

Slope 0.604 0.831 0.882 0.673 0.564 0.662 0.691 0.540
Intercept 0.061 0.063 0.072 0.094 0.031 0.054 0.033 0.062

R2 0.545 0.590 0.666 0.527 0.533 0.576 0.652 0.511
RMSE 0.051 0.079 0.083 0.125 0.059 0.074 0.062 0.073
MAE 0.036 0.061 0.063 0.079 0.039 0.053 0.044 0.047

Station (II) METU-ERDEMLI Mersin

RH(%) 64 56 56 63 64 56 56 63
N 101 176 277 183 120 235 323 215

Slope 0.771 0.819 0.746 0.804 0.653 0.596 0.559 0.464
Intercept 0.069 0.079 0.053 0.067 0.016 0.050 0.015 0.042

R2 0.563 0.641 0.614 0.560 0.503 0.567 0.539 0.520
RMSE 0.071 0.086 0.079 0.078 0.069 0.084 0.137 0.082
MAE 0.054 0.067 0.058 0.056 0.052 0.060 0.114 0.058

Station (III) CUT-TEPAK Cyprus

RH(%) 56 64 65 63 56 64 65 63
N 105 170 100 97 140 201 103 110

Slope 0.780 0.794 0.723 0.921 0.567 0.646 0.668 0.435
Intercept 0.054 0.102 0.111 0.050 0.030 0.053 0.062 0.063

R2 0.798 0.645 0.639 0.699 0.634 0.589 0.542 0.573
RMSE 0.047 0.104 0.085 0.066 0.062 0.087 0.062 0.093
MAE 0.036 0.075 0.060 0.048 0.040 0.048 0.049 0.053

Figure 3 shows annual mean scenes of MODIS Aqua and Terra combined and MERRA-2 AOD (left
and middle column, respectively) and corresponding differences in AOD between the two platforms
(right column) with respect to the present investigation period. For the years 2013, 2015, and 2016, the
figures show that MODIS AOD is higher than MERRA-2 for nearly the full study area.
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Figure 3. First and second columns present average annual scenes of MODIS Aqua and Terra combined
and MERRA-2 AOD over Turkey, according to 50 × 50 km2 grid cells. MODIS 10 × 10 km2 and
MERRA-2 50 × 62.5 km2 pixel sizes were converted to a grid of 50 × 50 km2 to obtain the same spatial
resolution when comparing the two datasets. The third column shows the difference in AOD between
MODIS and MERRA-2. A positive pixel value indicates that the MODIS annual AOD value is higher
than that of MERRA-2, while a negative pixel value indicates the opposite.

3.3. Extreme Events

Aerosol extreme events were specified for MODIS/MERRA-2 and AERONET as daily mean AOD
greater than or equal to the threshold value 0.5 [51,52]. Extreme events were investigated separately
for the three AERONET stations and included if daily mean values are available for all three platforms.
According to AERONET-derived AOD, Athens, METU, and CUT-TEPAK have recorded 8, 20, and 7
extreme events, respectively, during the five years included in the present investigation. Table A1 in
Appendix A shows that MODIS detected a total of 18 (54%) extreme events out of the 33 by AERONET,
while MERRA-2 detected only 8 (24%). Previous studies such as that of Shi et al. [47] showed that
AOD events of dust and haze were not detected very well by MERRA-2. Li et al. [53] demonstrated the
poor performance of MODIS in detecting extreme loadings of mineral dust aerosol over 13 AERONET
stations in China. Jin et al. [54] showed that although MODIS somewhat underestimated extreme
aerosol events, the satellite sensor was actually effective in detecting extreme events recorded by four
AERONET stations around the Yangtze River in China.
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Among the current AERONET stations in this present study, the most extreme events were
detected for the ATHENS-NOA’s station, which means 88% and 50% for MODIS and MERRA-2,
respectively. The lowest number of extreme cases was found for the METU-ERDEMLI station: 25%
and 10% for MODIS and MERRA-2, respectively. Previous studies such as that of Shi et al. [47] showed
that AOD events of dust and haze were not detected very well by MERRA-2. Li et al. [53] found
poor performance of MODIS in detecting extreme dust aerosol conditions over 13 AERONET stations
in China. Jin et al. [54] showed that although MODIS underestimated very high aerosol loadings,
the satellite sensor was actually effective in detecting extreme events, which was also recorded by four
AERONET stations around the Yangtze River in China. A summary of results obtained from different
remote sensing studies is presented in Table A2.

4. Discussion

The present study evaluated AOD (550 nm)-derived from MODIS observations and MERRA-2
reanalysis against three AERONET ground-based stations: one is located in Turkey, while the others
are in Athens, Greece, and on Cyprus, with respect to the period 2013–2017. The availability in both
MODIS Aqua and Terra AOD is found to be low due to cloudy conditions [2] and hazy days [55].
Even so, the statistics are higher when combining AOD from the two platforms. By considering
MODIS Aqua and Terra combined, the availability in AOD is 37%, 32%, and 34% for the AERONET
Athens-NOA, Mersin ERDEMLI, and Cyprus CUT-TEPAK stations, respectively. In the validation
against AERONET, AOD derived by MODIS Aqua and Terra combined is associated with higher R2

and lower RMSDrel compared to AODs derived from separated platforms. These findings are in line
with retrievals of AOD over land and ocean by [42] and [56], respectively. However, in the latter study,
the opposite occurs for retrievals of AOD over land.

In the comparison with AERONET, it was found that MODIS overestimates AOD by about
20%, both considering daily and monthly averaging. This is in line with previous studies [53,57].
On the other hand, MERRA-2 underestimates AOD with 9–20% with respect to daily and monthly
averaging. Shi et al. [47] found also an underestimation of MERRA-2 AOD. This might be due to nitrate
pollutants that are not included in the AOD model [48]. The spatial resolution of MERRA-2 AOD is
substantially lower than MODIS (62.5 × 50 km2 and 10 × 10 km2, respectively), which may contribute
to the underestimation of the former platform. In addition, AODs derived from MISR (Microwave
Integrated Retrieval System) are included in the MERRA-2 reanalysis, which are associated with higher
uncertainties than the MODIS AODs. The Error Envelope (EE) is ± (0.2 AOD) and ± (0.05 + 0.15 AOD)
for MISR and MODIS, respectively [58].

The discrepancies that are found in the present study between satellite-retrieved and ground-based
measured AOD may be due to a variety of factors such as the selection of satellite pixels and the
approach to reducing surface reflectance. Increasing the number of available AODs with respect to the
box with the number of satellite pixels used and collocation window size during sampling increases
correlation and declines bias [45]. Increasing the numbers of available MODIS and AERONET AOD
values for each MODIS–AERONET pair reduces bias and improves the results of the validation [59].
Globally, satellite-derived AOD is usually associated with smaller bias compared to retrievals of AOD
at a particular site, and the high spatial resolution of aerosol gridded data reveals aerosols features
efficiently [43]. Inhomogeneous land cover and surface properties cause large uncertainties in the
estimations of surface reflection and thus satellite AOD [54].

AOD derived from both MODIS observations and MERRA-2 reanalysis is the highest in summer
and lowest in winter over Turkey. One reason for this finding might be due to soil moisture declining
in summer associated with higher temperatures, which resuspends surface dusts [60]. The long-range
transport of dust aerosols from the Middle East and North Africa probably also increases aerosol
loadings over Turkey in the summer [61,62]. For example, the same results have been found for
AOD over Saudi Arabia [48], India, and Nigeria [63,64]. Equation (2) shows that the R2 obtained
in the comparison between MODIS/MERRA-2 and AERONET AOD is correlated to atmospheric
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RH. These results are compatible with previous studies [65–67]. However, when investigating other
statistical parameters in the present study, such as slope, offset, RMSE, and RMB, a relation with RH does
not occur when all three AEROENET sites are taken into consideration. Furthermore, extreme aerosol
conditions such as dust events were detected more effectively by MODIS than MERRA-2. Furthermore,
the accuracy of MERRA-2 AOD with respect to AERONET measurements was found to be lower than
that of MODIS AOD. The latter was also found by Jin et al. [54]. These findings may be due to the spatial
resolution, which is substantially higher for MODIS compared to MERRA-2. The results obtained
in this study can be used to empirically relate AOD with in situ measurements of PM2.5 to study air
quality effects over Turkey. This work is planned to be carried out in a subsequent investigation.

5. Conclusions

Combining MODIS Terra and Aqua observations over the present AERONET ground-based
sites increases the number of available daily AODs from 30%, when only one platform was taken
into consideration, to 34%. For MODIS, available days included in the monthly averaging ranged
between 44% for January and 92% for August, while with respect to season, the range is between
51% and 85% for winter and summer, respectively. The comparison between MODIS and AERONET
showed that the combined datasets of MODIS and MERRA-2 are associated with the highest R2 and
lowest RMSDrel/MAE values. MODIS AOD agrees better with AERONET than MERRA-2, which
means higher R2 and lower RMSDrel/MAE. There is a clear annual variation in AOD detected by the
three platforms. However, MODIS and MERRA-2 overall tend to overestimate and underestimate
AOD, respectively, in the comparison with AERONET. Furthermore, MODIS detected substantially
more days with extreme events (AOD>0.5) than MERRA-2, which means 55% and 24%, respectively,
in comparison to AERONET. Finally, based on the statistical analysis, there was no clear relation found
between the accuracy in MODIS AOD and RH.
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Appendix A

Table A1. Daily mean AOD for days classified as extreme events according to AERONET values equal
or above the threshold 0.5, with respect to the three ground-based stations. The numbers 0 and 1 for
MODIS and MERRA-2 indicate if detection of extreme events has been done or not, respectively.

Station (I) ATHENS-NOA

AERONET MODIS MERRA-2 MODIS C6.1 MERRA-2

0.722 0.841 0.552 1 1
0.621 0.632 0.228 1 0
1.210 1.171 1.107 1 1
0.810 0.707 0.167 1 0
0.575 0.591 0.422 1 0
0.694 0.833 0.549 1 1
0.532 0.676 0.264 0 0
0.607 0.592 0.614 1 1

Number of extreme events with respect to AERONET (in %) 88 50
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Table A1. Cont.

Station (II) METU-ERDEMLI

0.527 0.295 0.255 0 0
0.672 0.703 0.271 1 0
0.860 0.891 0.372 1 0
0.657 0.354 0.292 0 0
0.658 0.707 0.456 1 0
0.681 0.201 0.712 0 1
0.501 0.447 0.331 0 0
0.515 0.443 0.338 0 0
0.525 0.616 0.307 1 0
0.604 0.317 0.211 0 0
0.644 0.439 0.252 0 0
0.531 0.282 0.170 0 0
0.521 0.445 0.131 0 0
0.530 0.336 0.282 0 0
0.510 0.177 0.161 0 0
0.536 0.324 0.312 0 0
0.507 0.495 0.245 0 0
0.514 0.508 0.315 1 0
0.567 0.388 0.280 0 0
0.527 0.295 0.255 0 0

Number of extreme events with respect to AERONET (in %) 25 10

Station (III) CUT-TEPAK

0.613 0.607 0.292 1 0
0.684 0.687 0.506 1 0
0.512 0.521 0.416 1 1
0.977 0.979 0.721 1 0
0.768 0.700 0.936 1 0
0.642 0.692 0.505 1 1
0.529 0.400 0.280 0 0

Number of extreme events with respect to AERONET (in %) 86 29
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Table A2. Comparison of a results of seven previous studies that were conducted over Europe, Asia, Middle East, and Africa. Comparison was done by the mean of (i)
Study area, (ii) Number of ground stations included sites, (iii) Used gridded datasets, (iv) Overestimation and underestimation of ground station data by gridded data,
(v) Ability of gridded data to detect extreme events that were measured by the ground stations, and (vi) Brief statistical numeric of the whole dataset regression of
gridded data as a function of ground stations AOD.

Study Study Area Ground Stations Gridded Datasets Overestimation/
Underestimation Extreme Events Statistical Results

[50] Asia, Middle East
and North Africa 16 AERONET DB, DT, and DB/DT of the

MODIS C6.1

DT and DB/DT
overestimated AERONET.

DB underestimated.
N/A

DB/DT:
A = 0.934, b = 0.073, R2 = 0.707,

RMSE = 0.238, RMB = 1.082.

[15] Central Europe 8 AERONET
AVHRR (NOAA-16),

Aqua and Terra of
MODIS C004

Both Aqua and Terra
overestimated AERONET,

while AVHRR underestimate.
N/A N/A

[47] Global 400 AERONET MODIS C6.1, MERRA-2
and MERRAero

MODIS overestimated while
MERRA-2 and MERRAero

underestimated AERONET.

MODIS C6.1 detected
extreme events better

than MERRA-2
and MERRAero.

MODIS: a = 0.976, b = 0.016, R2 = 0.790,
RMSE = 0.110, MBE = 0.011.

MERRA-2: a = 0.726, b = 0.043,
R2 = 0.700, RMSE = 0.119, MBE = −0.008.

[53] China 13 AERONET MODIS C005
Overestimated small AOD

values; underestimated
large ones.

Poor MODIS
performance to detect

extreme events.

MODIS: a = 1.008, b = 0.132, R2 = 0.661.
RMSE and RMB are N/A.

[54] Yangtze River China One local station site
in Wuhan University MODIS C6.1

Overestimated ground
station data, though
underestimated in

extreme events.

Effective at detecting
extreme events, though
it underestimated them.

Terra: a = 0.747, b = 0.089, R2 = 0.795,
RMSE = 0.129.

Aqua: a = 0.703, b = 0.136, R2 = 0.788,
RMSE = 0.181.

[45] Eastern
Mediterranean 13 AERONET MODIS C5.1 Terra

and Aqua

MODIS overestimated
AERONET in both Terra

and Aqua.

Both Terra and Aqua
were effective

in extreme
events detection.

Terra: a = 1.007, b = 0.022, R2 = 0.578,
RMSE = 0.129, RMB = 11.59%.

Aqua: a = 1.113, b = 0.027, R2 = 0.608,
RMSE = 0.12, RMB = 25.18%.

[41] Eastern
Mediterranean 9 AERONET MODIS C6.1

and MERRA-2

MODIS overestimated
while MERRA-2

underestimated AERONET.

MODIS was more
effective in detecting

extreme events
than MERRA2.

MODIS: a = 0.64, b = 0.12, R2 = 0.505,
RMSE = 0.122, RMB = 1.198.

MERRA-2: a = 0.59, b = 0.06, R2 = 0.576,
RMSE = 0.104, RMB = 0.862%.

N/A: Not Available, a: Slope, b: Intercept, DB: Deep Blue, DT: Dark Target, MBE: Mean Biased Error, NMB: Normalized Mean Bias.
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