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Abstract: The contribution in terms of long-range transport of CO2, CH4, and CO concentrations to
measurements at Lamto (5◦02′W–6◦13′N) was analyzed for the 2014–2017 period using the FLEXPART
model that calculates the retro-plumes of air masses arriving at the station. The identification of
the source-receptor relationships was also studied with a clustering technique applied on those
retro-plumes. This clustering technique enabled us to distinguish four categories of air mass transports
arriving at Lamto site described as follows: oceanic and maritime origin (≈37% of the retro-plumes),
continental origin (≈21%), and two hybrid clusters (≈42%). The results show that continental emission
sources contribute significantly to the increases in concentrations of CO2, CH4, and CO and explain
≈40% of their variance. These emission sources are predominantly from north and north-east
directions of the measurement point, and where densely populated and economically developed areas
are located. In addition, the transport of air masses from these directions lead to the accumulation
of CO2, CH4, and CO. Furthermore, the ratios ∆CO/∆CH4 and ∆CO/∆CO2 observed in the groups
associated with Harmattan flows clearly show an influence of combustion processes on the continent.
Thus, the grouping based on FLEXPART footprints shows an advantage compared to the use of
simple trajectories for analyzing source–receptor relationships.

Keywords: Lamto; West Africa; cluster analysis; long-range transport; source–receptor relationships;
CO; CH4; CO2

1. Introduction

CO2 and CH4 are the main anthropogenic greenhouse gases (GHGs) well-known for enhancing
radiative forcing [1]. In turn, this radiative forcing causes climate change, leading to changes in the
energy distribution in the Earth’s closed system and ultimately extreme climatic events [2]. For example,
frequent temperature peaks, droughts, heat waves, and important floods are recorded every year in
various regions of the world [1]. Like these regions, West Africa is very sensitive to ongoing climate
change. For example, it has seen a sharp decline of the order of 30% to 60% in the average annual flow
of major rivers, and a significant decrease in rainfall over the Sahel since the late 1970s [3]. CO2 and
CH4 are long lived greenhouse gases and are therefore well mixed in the atmosphere. Improving our
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knowledge of their regional sources and sinks, both natural and anthropogenic, relies on atmospheric
measurements of the mixing ratios of these species. Studies on the variability and large-scale fluxes
of these atmospheric species in Africa are scarce compared to studies in North America, Europe and
part of Asia [4,5]. The current network of continuous atmospheric measurements of CO2 and CH4 is
limited to ≈100 stations [6]. Such atmospheric measurement sites have the potential to link changes in
atmospheric mixing ratios to the regional sources and sinks distribution [7].

Linking sources and sinks to atmospheric measurements can be done using source–receptor
relationships (SRR). Many studies [8–14] took an interest in air masses origin through SRR in Europe,
America, etc. However, in the context of Africa in general and West Africa in particular, no such
study has been performed for greenhouse gas measurements. Previous SRR studies have described
the sensitivity of a receptor “Y” to a source “X”, taking into account anthropogenic and natural
emissions from regional and remote sources and atmospheric transport, chemical ageing conditions
and deposition [15,16]. Using the SRR protocol, Ncipha et al. [17] studied the influence of meteorology
and air transport on CO2 levels at various sites in South Africa. The study found that long-range air
transport can result in significant changes of atmospheric CO2, depending on the source region and type
of air flow. In addition, Henne et al. [18] found that variability of CO and O3 in Mt. Kenya is explained
by six representative flow regimes with air masses from eastern Africa, the Arabian Peninsula and
Pakistan, northern Africa (free tropospheric), the northern Indian Ocean and India, southern Africa and
southern India Ocean. The seasonal trends of CO and O3 at Mt. Kenya were significantly controlled by
monsoon circulation and also by the biomass combustion in southern Africa. Almeida-silva et al. [19]
characterized the possible influence of Sahara Desert dust on PM10 sampled on the Cape Verde islands
by analyzing air mass back-trajectories simulated by the Hysplit model. These authors indicated
a strong influence of the Sahara Desert dust events upon Cape Verde aerosol since these islands are
under the pathway of trade winds that transport dust from North African sources to the northern
tropical Atlantic.

In Côte d’Ivoire, continuous measurements of CO, CO2 and CH4 atmospheric concentrations have
been performed at the Geophysical Station of Lamto (LTO) (6◦31′ N–5◦02′ W) since 2008 using a cavity
ringdown spectrometer model G2401 from Picarro, Inc., while following as much as possible the ICOS
(Integrated Carbon Observation System) specifications [20] (submitted). The Lamto region is located
at the boundary between the humid savannah in the north and forest zones in the south [21]. It is
influenced by strong seasonality in wind regimes, with advection of continental air masses (Harmattan
flow) between November and February, and from the ocean (monsoon flow) between March and
October [22]. Tiemoko et al. [20] have shown high seasonal and inter-annual variations in CO2, CH4,
and CO concentrations at Lamto, strongly related to the atmospheric circulation patterns. This study
left several questions open, in particular on the contributions of atmospheric transport and regional
sources to the seasonal and interannual cycles observed.

The methodological approach that would help to address this concern is to deconvolve the impacts
of atmospheric transport on CO2, CH4, and CO concentrations by systematically identifying and
quantifying source–receptor relationships from the observed time series. This method consists of
classifying trace gas concentrations with a clustering technique to partition the associated footprints
obtained with a Lagrangian particle dispersion model (LPDM). The advantage of the LPDM is the
simultaneous calculation of a variety of retro-plumes (back-trajectories) (1) to represent air masses
dispersion, (2) to associate the dynamic of these air masses to a transport type, and (3) to highlight
potential regions affecting their composition [10,23,24]. Clustering techniques for grouping individual
retro-plumes into specific clusters to separate air masses with different properties are widely used
to interpret changes in trace gas concentrations [12,14,18,25–28]. Moreover, retro-plumes in this
study are strongly independent of both the knowledge of the source regions and the observations
themselves, contrary to other methods (e.g., clustering of back-trajectories based on their source region
and a back-trajectories partitioning technique of the Hysplit model) of systematic quantification of
source–receptor relationships, which are strongly linked to a prior knowledge of the source regions [29].
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The SRR obtained from the above methods does not take into account atmospheric turbulence and
convection [30], which could have an effect on air mass dispersion and transport, unlike the clustering
technique based on LPDM footprints used here.

The LPDMs have extended the capabilities of SRR studies using backward transport plumes with
multiple trajectories of individual particles to capture uncertainties in transport modelling [12,31].
In addition, the evaluation of emission characteristics in source regions, although preferentially carried
out using species emission factors [32], can also be obtained using concentration ratios [33,34]. Emission
factors present the advantage of facilitating the calculation of emission flows, the direct measurement
of which is considered long or complex. In contrast, calculation with concentration ratios should take
into account the fact that they combine several signatures, such as those of fires, plant respiration and
background trends, which could generate biases.

This study focused on the identification of the source–receptor relationships from the observed
series of CO2, CH4, and CO concentrations using a Lagrangian dispersion model and cluster analysis.
The present work was conducted over the period from 2014 to 2017. Section 2 is dedicated to the
description of the study area, the material, and the clustering method used. Sections 3 and 4 present
the results and discussions.

2. Material Data and Method

2.1. Site Description

The region of Lamto (5◦02′ W–6◦13′ N) is located in the center of Côte d’Ivoire (Figure 1) on
an area of about 2700 ha in a mosaic of Guinean forest-savanna. Its climate is of the subhumid type
in the Sudano-Guinean transition zone [21]. The rainfall regime is characterized by the influence of
the monsoon in the south and the Harmattan in the north [22], creating an intertropical convergence
zone called the ITCZ. The south–north and north–south movements of this ITCZ define the climatic
seasons during the year. In addition, the mean annual rainfall is about 1200 mm [21,35] spread over
four seasons (Figure 2) including a main dry season from December to February, a main wet season
from March to July, a short dry season in August, and a short wet season from September to November.
The local agricultural practices are associated with bush fires in the middle of the long dry season (i.e.,
mid-season fire).
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Figure 1. (a) Localization map of the Lamto-Côte d’Ivoire region (6◦31′ N–5◦02′ W). Green point
indicates Lamto location; Numbers in red are the mean annual precipitation (1962–1997) of some
synoptic stations and from north to south are located the types of vegetation (From Tiemoko et al. [36]).
(b) Zoom on the vegetation of Lamto.
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Figure 2. Precipitation–temperature diagram over 2014–2017. GDS, GWS, SDS, and SWS are respectively
the Great Dry Season, the Great Wet Season, the Short Dry Season and the Short-Wet Season.

2.2. Measurement of CO2, CH4, and CO

The CO2, CH4, and CO continuous measurement data of LTO are times series from August
2008 to May 2018 for both CO2 and CH4, and from March 2014 to May 2018 for CO concentrations.
Here we focus only on the 2014–2017 period where measurements of CH4, CO2, and CO are available.
Continuous measurements were made from CRDS (cavity ring-down spectroscopy) analyzers with
model G2401 (Figure 3b) [37–39]. The air analyzed is taken continuously at the top of a 50 m tower
(Figure 3a). The measuring system, data processing, and calibration strategy are explained by Tiemoko
et al. [20]. CO2, CH4, and CO measurement data presented here were calibrated using gases measured
by the Laboratoire des Sciences du Climat et de l’Environnement (LSCE/IPSL) in Gif-sur-Yvette, France
and are traceable to World Meteorological Organization (WMO) scales (CO2: WMO X2007; CH4:
WMO X2004A; CO: WMO X2014A) [6]. The quality control process (regular measurement of a target
gas) indicates precisions below 0.1 ppm, 0.5 ppb, and 16 ppb for CO2, CH4, and CO measurements
respectively (see [20]). In addition, the species CO2, CH4, and CO have been the subject of many
studies [40,41] to establish the emission maps. As an illustration, the emission maps based on GFEDS
data are shown in Figure 4. The months of January and September selected here correspond to the fire
regimes in the equatorial and southern part of Africa, respectively. It has been observed that during
these periods of the year significant amounts of carbon are emitted by fires. Fires are the main source
of carbon emissions in Africa, accounting for 50% of global carbon emissions from fire burning.
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Figure 4. Carbon emissions by biomass burning for January 2015 and September 2015 obtained from
GFED4s data.

2.3. FLEXPART Model

The Lagrangian Particle Dispersion Model (LPDM) FLEXPART version 9.0 used in this study
is driven by ECMWF (European Centre for Medium-Range Weather Forecasts) wind fields with 1◦

× 1◦ horizontal resolution and 3 h time steps [30,42]. In order to analyze the atmospheric transport
pathways from the potential source regions to the receptor position, and also to identify the different
source–receptor relationships, the FLEXPART model was run in “Backward” mode [43,44]. The inverse
simulation releases 1000 particles once every 24 h (at 12 local time) over the 2014–2017 period from the
LTO sampling inlet position; the particles are followed ten days backward in time. Prior positions
and residence times of these particles near the surface compose the potential emission sensitivity
(PES), in the form of a spatialized map (see e.g., [43,45]). PES stored on a 3D grid is an indicator of
where and when the air mass composition has probably been modified by surface emissions. It is
a response function of the influence of emissions on concentrations at the receptor location through
atmospheric transport. In this study, we consider that an air parcel can be affected by surface emissions
when it is below 2000 m agl. Our threshold of 2000 m can be compared to (1) the maximum daytime
atmospheric boundary layer (ABL) heights estimated at 1600 m in West Africa following the studies of
Aryee et al. [46] and (2) the daytime monsoon and Harmattan layer depth estimated at 1900 m following
the studies of Kalthoff et al. [47] over the region (West Africa). Our altitude threshold for sensitivity
to surface emissions should entail most situations of well mixed ABL, and potential sources having
significant injection heights such as biomass burning pyroconvection. We performed a sensitivity
test with two other selected thresholds to ensure that our choice did not introduce a significant bias.
The results of the distribution of PES with these two values are overall similar and are shown in Figures
S1 and S2.

2.4. Time-Series and Background Signals of CO2, CH4, and CO

Figure 5 shows the time series of atmospheric concentrations of CO2, CH4, and CO measured at
LTO from 2014 to 2017. The CO2 and CH4 concentrations show an increasing trend with pronounced
seasonal variations. Over the 2014–2017 period, annual means of CO2 and CH4 concentrations
increased by a factor of 1.023 and 1.021 at LTO station respectively. These coefficients lead to growth
rates of about 2.3 ppm.year−1 for CO2 and 9.4 ppb.year−1 for CH4, which are comparable to the global
trends estimated at 2.5 ppm year−1 for CO2 and 9.7 ppb year−1 for CH4 over the same period, based on
National Oceanic and Atmospheric Administration observing stations (www.esrl.noaa.gov/gmd/ccgg/

www.esrl.noaa.gov/gmd/ccgg/trends/gl_gr.html
www.esrl.noaa.gov/gmd/ccgg/trends/gl_gr.html
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trends/gl_gr.html; [48]). High values of CO2 (>450 ppm, Figure 5a), CH4 (>2100 ppb, Figure 5b),
and CO (>500 ppb, Figure 5c) systematically occur during the Great Dry Season (GDS) from November
to February.

Atmosphere 2020, 11, x FOR PEER REVIEW 6 of 23 

 

CH4 (>2100 ppb, Figure 5b), and CO (>500 ppb, Figure 5c) systematically occur during the Great Dry 

Season (GDS) from November to February. 

The evaluation of the CO2, CH4, and CO background signals is important to infer the 

concentration increases due to regional or local emissions, e.g., [45,49,50]. We have defined the 

background (in blue in Figure 5) as the concentrations measured when CO concentrations [18,34,51] 

are below their fifth percentile within a 7-day moving-window. To ensure that these two choices did 

not introduce a significant bias, we calculated background mole fraction levels based on moving-

windows of less than 7-days and lower percentiles. The results obtained were similar. Therefore, the 

percentile choice and the length of moving-window did not affect cluster analysis results. The 

backgrounds obtained were subtracted from the hourly average concentrations to determine the 

excess concentrations ΔX (see equation below), which are attributed to regional emissions (Tropical 

Africa, North Africa). 

ΔX = 𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑋𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 (1) 

where X is the concentration value in ppm (or ppb). 

Seasonal variations of the background signals of CO2, CH4, and CO show low values during May 

to October and high values during December to March. CO2 has a different seasonal cycle lagging by 

one months after CH4, and CO. The background CO value in June and July (≈117 ppb) is comparable 

to that obtained by Denjean et al. [49] (≈180 ppb) during the DACCIWA (Dynamics-Aerosol-

Chemistry-Clouds Interactions in West Africa) campaign in June and July 2016 in polluted coastal 

cities (e.g., Abidjan, Accra and Lomé). 

 

Figure 5. Time-series of atmospheric CO2 (a), CH4 (b), and CO (c) concentrations (in black) measured 

at the LTO station over the 2014–2017 period. The blue color represents the background obtained by 

the percentile method. 

2.5. Clustering Method 

Clustering is a multivariate statistical technique designed to explore a structure within a dataset 

with unknown prior properties [52]. The technique aims at affecting data to significant classes by 
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the percentile method.

The evaluation of the CO2, CH4, and CO background signals is important to infer the concentration
increases due to regional or local emissions, e.g., [45,49,50]. We have defined the background (in blue
in Figure 5) as the concentrations measured when CO concentrations [18,34,51] are below their fifth
percentile within a 7-day moving-window. To ensure that these two choices did not introduce
a significant bias, we calculated background mole fraction levels based on moving-windows of less
than 7-days and lower percentiles. The results obtained were similar. Therefore, the percentile choice
and the length of moving-window did not affect cluster analysis results. The backgrounds obtained
were subtracted from the hourly average concentrations to determine the excess concentrations ∆X
(see equation below), which are attributed to regional emissions (Tropical Africa, North Africa).

∆X = Xmeasured −Xbackground (1)

where X is the concentration value in ppm (or ppb).
Seasonal variations of the background signals of CO2, CH4, and CO show low values during May to

October and high values during December to March. CO2 has a different seasonal cycle lagging by one
months after CH4, and CO. The background CO value in June and July (≈117 ppb) is comparable to that
obtained by Denjean et al. [49] (≈180 ppb) during the DACCIWA (Dynamics-Aerosol-Chemistry-Clouds
Interactions in West Africa) campaign in June and July 2016 in polluted coastal cities (e.g., Abidjan,
Accra and Lomé).

www.esrl.noaa.gov/gmd/ccgg/trends/gl_gr.html
www.esrl.noaa.gov/gmd/ccgg/trends/gl_gr.html
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2.5. Clustering Method

Clustering is a multivariate statistical technique designed to explore a structure within a dataset
with unknown prior properties [52]. The technique aims at affecting data to significant classes
by maximizing similarity in each cluster while maximizing differences between clusters. In this
study, the clustering method was applied to classify PES. Although different clustering algorithms
exist, we used “k-means” which is a well-known non-hierarchical algorithm. It groups points in N
dimensions into a predefined number of clusters (i.e., classes) [53]. This iterative algorithm minimizes
the Euclidean distance between the elements to be classified and the cluster centers. At each iteration,
the class-K centers change until convergence (centroids stable) is obtained. The k-means algorithm
advantage is that it is easy to use, especially from a numerical point of view and because of relatively
low calculation’s requirements. However, the k-means is less-effective when applied over a large
number of dimensions; and its results improve when dimensions are reduced [54]. Here, the number
of dimensions is reduced by averaging PES over large regions of interest presented in Figure 6; see,
e.g., Paris et al. [12]. These regions are considered a priori as regions with different characteristics to be
explored, including species’ emission intensity [55] or sink potential. The choices of the numbers of
regions, their boundaries and sizes induce prior information and hence possible biases in our results.
To reduce biases due to adding residence times over very different region sizes, normalization by the
region’s area was applied to the time-series of regionally averaged PES.
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Figure 6. Regions selected for dimension reduction prior to the application of the clustering algorithm.
Anthropogenic CH4 emissions for 2015 from the EDGAR v5.0 database with a spatial algorithm.
All main anthropogenic sources, e.g., waste treatment, industrial and agricultural sources, are included.
Selected regions were: Temperate Atlantic (here Atlantic_Temp); South Africa (here South_Afri);
Atlantic Tropical (here Atlantic_Trop); local; Tropical Africa (here tropical_Afri); North Africa (here
North_Afri); Europe-Mediterranean (here Euro_Med). The star (in black) in the local area indicates the
sampling location.

In addition, the determination of the optimal number of cluster K is very important in a clustering
analysis. Many methods have been proposed by Kalkstein et al. [56] and Yan [57], among which the
“weighted-gaps/elbow criteria” method showed high performance. Indeed, this method deriving from
the k-means algorithm itself is automated and its application on voluminous and multi-dimensional
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datasets is robust [58]. The presented curve in Figure A1 for a series of k groups (2–14), of the time
series of PES was finally obtained using the “weighted-gaps/elbow criteria” method. The appropriate
number of clusters that minimize the weighted deviations between the centroid and each element
belonging to the cluster is 4. It should be noted at this point, that the explained variance method and
silhouette statistics were attempted to determine the number of clusters. In every case, we found 4 to
always be an optimum number of clusters.

3. Results

3.1. Correlations between PES over Each Region and CO2, CH4, and CO

Firstly, we aimed at identifying the main source regions affecting the concentrations observed at
LTO. Table 1 presents the statistical relationships between integrated PES over each region separately
and the daily means of CO2, CH4, and CO concentrations. The statistical parameters calculated are the
Pearson correlation (r) and Kendall’s rate (tau). The simulated PES is calculated once per day, and does
therefore not capture the diurnal dynamics of the CO2, CH4, and CO concentrations measured at LTO
Therefore, the use of Kendall’s rate to complement the Pearson statistic makes it possible to find rank
correlations in smaller signals. We observe a lack of relationship between CO2, CH4, CO concentrations
and averaged PES in the “local” region, defined as the area 300 km around Lamto. This result does not
exclude local influences; instead it reflects the challenge of representing near receptor influence with the
LPDM and its global driving wind fields [59,60]. For three continental regions (Tropical Africa, North
Africa, Europe and the Mediterranean), positive and significant correlations are observable. In addition,
the three-variable linear model analysis (see Table A1) shows that these three regions explain 40%
(p-value < 2 × 10−16) of CO2 concentration variance, 74% (p-value < 2 × 10−16) of CH4 concentration
variance, and 66% (p-value < 2 × 10−16) of CO concentration variance. The positive correlation
coefficients indicate that the 10-days of cumulative exposure of air masses to continental flows explains
at least 40% of the variance of the increase in concentration of CO2, CH4, and CO observed at LTO.
However, correlation values are higher (R > 0.50) for the Tropical Africa (i.e., Tropical_Afri) region. This
result clearly shows that residence of air masses in the boundary layer over tropical Africa significantly
affect the CO2, CH4, and CO concentrations. Air masses transiting over Europe present ≈14% of the
retro-plumes in the cluster B (single retro-plumes not shown), which could also play a significant role
in the CO2, CH4, and CO concentration levels with Pearson correlation coefficients (R > 0.26) and
Kendall correlation rates (tau > 0.30). Besides, the correlation values obtained in these continental
regions are significantly less in the case of CO2. Over the Atlantic zone (i.e., Atlantic Temperate and
Atlantic Tropical), CO2, CH4, and CO mixing ratios are significantly (p < 0.001) anti-correlated with
PES in both Atlantic Temperate (R < −0.48, tau < −0.38) and Atlantic Tropical (R < −0.08, tau < −0.15).

Table 1. Correlations between the respective potential emission sensitivity (PES) values for each region
and CO2, CH4, and CO.

Regions
CO2 CH4 CO

Pear (r) a Ken (tau) b Pear (r) a Ken (tau) b Pear (r) a Ken (tau) b

Local 0.12 0.07 −0.01 0.00 0.00 0.06
Atlantic_Tem −0.50 −0.40 −0.56 −0.54 −0.49 −0.54
Atlantic_Trop −0.15 −0.25 −0.21 −0.35 −0.09 −0.16
Tropical_Afri 0.52 0.39 0.82 0.64 0.66 0.46
South_Afri −0.22 −0.25 −0.40 −0.38 −0.41 −0.43
North_Afri 0.38 0.37 0.72 0.61 0.75 0.49
Euro_Med 0.27 0.30 0.59 0.45 0.66 0.43
a Pearson correlation coefficient. b Kendall’s tau. Values in Italic are statistically non-significant. (p-value > 0.001).
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3.2. PES Clustering Applied to CO2, CH4, and CO Concentrations

With the clustering of the PESs being independent of the observed concentrations, the statistical
separation of the concentrations between the different clusters is interpreted as confirmation of
the influences of the source air mass and associated surface flows. Figures 7–9 show, respectively,
the average PES for each cluster and box plots of the median and interquartile range of Relative
Humidity and CO2, CH4 and CO concentrations associated with each cluster. In addition, Table 2
reports the correlations between CO2, CH4, and CO atmospheric concentrations and PES within each
of the four clusters (Figure A1). The correlation coefficients between the trace gases and PES are
positive and significant for all the clusters, except cluster A, which presents, by contrast, negative and
insignificant correlation values. High (R > 0.5) and significant (p-value < 0.001) correlations in clusters
B, C, and D indicate that the transport-related factors controlling CO2, CH4, and CO variabilities could
be the same, especially as their trends evolve synchronously.Atmosphere 2020, 11, x FOR PEER REVIEW 11 of 23 
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Table 2. Variations in CO2, CH4, and CO statistically associated with the different clusters.

Clusters
CO2 CH4 CO

Pear (r) a Ken (tau) b Pear (r) a Ken (tau) b Pear (r) a Ken (tau) b

Cluster A −0.07 −0.04 0.01 −0.005 −0.11 −0.03
Cluster B 0.47 0.39 0.74 0.61 0.76 0.64
Cluster C 0.31 0.21 0.61 0.45 0.54 0.39
Cluster D 0.20 0.16 0.60 0.38 0.51 0.20

a Pearson correlation coefficient. b Kendall’s tau. Values in Italic are statistically non-significant. (p-value > 0.001).

− Cluster A

Cluster A (oceanic) is the most frequent one with ≈37% of retro-plumes. It is characterized by
important relative humidity (i.e., higher than >80%) (Figure 8) and relatively low temperatures (median
= 25.20 ◦C) (not shown) at the receptor position. The retro-plumes in this cluster are clearly associated
with a southern flow extending over the Tropical and South Atlantic. The FLEXPART results indicate
that, for the majority of data in cluster A, transport of air over the South Atlantic happens mostly
below 1500 m altitude over the 10 days prior to arriving at the receptor. Similar results were also
obtained in the work of Denjean et al. [49] showing that air mass transport towards coastal areas (e.g.,
Abidjan, Lomé) from the South Atlantic is generally observed in the layer at less than 1500 m altitude
above sea level. As a result of the low emissions of CO2, CH4, and CO over the ocean, the average
PES in this cluster show relatively low levels of concentrations of those three gases (Figure 9b,d,f).
Low median CO (148 ppb), CH4 (1844 ppb), and CO2 (411.5 ppm) concentrations values were also
observed. In addition, the regional signals (∆CO, ∆CH4, ∆CO2) associated with this cluster are also
significantly lower than those of the other clusters (Figure 9), i.e., a reduction of 37% for CO, 23% for
CH4, and 9% for CO2 compared to the median value of the whole series (four groups) (Figure 9). The
excess concentration ratios ∆CO/∆CH4 and ∆CO/∆CO2 calculated in cluster A are 1.6 ppb.ppb−1 and
3.2 ppb.ppm−1 respectively (see Figure 10 and Table 3). For comparison, the biomass burning emission
ratio ∆CO/∆CH4 is in the range [5.8; 11] ppb.ppb−1 in the Lamto savannah [61]; the anthropogenic
emission ratio ∆CO/∆CO2 is in the range [10.4; 89.6] ppb.ppm−1 in the EDGARv4.2 inventory for
African continent [62]. The slope obtained from the concentration values is smaller than the emission
ratio of anthropogenic combustion sources and fires, suggesting that mixing with comparatively
CO-poor air during transport has taken place. Moreover, CO-CH4 and CO-CO2 within this plume
show positive and significant correlation values (p-value < 0.001) (Table 3), with better correlation
coefficients between CO and CO2 (R = 0.57).

− Cluster B

Twenty-one percent of the retro-plumes are associated with Cluster B (continental) by the
clustering algorithm. Unlike cluster A, it is characterized by low relative humidity (Figure 8) and
high temperatures (median = 26.7 ◦C). Moreover, the results presented in Figure 7b show that average
PES in this cluster reflect advection of air masses in contact with potential emissions from the African
continent. This cluster has the highest CO, CH4, and CO2 median atmospheric concentrations, and the
highest concentrations excess over the background (Figure 9). Cluster B has a median CO concentration
of 281.5 ppb, to be compared to an average of 207 ppb (see Section 2.4) ppb over the 2014–2017 period,
an excess over background (∆CO) levels of ≈128.5 ppb. CH4 (resp. CO2) also has a similarly high
median concentration, estimated at 1931.0 ppb (resp. 419.3 ppm), an excess over background levels of
≈74 ppb (resp. ≈6.3 ppm). Moreover, the concentration ratios ∆CO/∆CH4 and ∆CO/∆CO2 calculated
are 4.2 ppb.ppb−1 and 10.0 ppb.ppm−1 respectively (see Figure 10 and Table 3), which are similar to the
ranges found by Bonsang et al. [61] and Crippa et al. [62] for biomass burning emission ratio. A high
and significant correlation (R = 0.54, p-value < 0.001) was obtained between CO and CH4. However,
the correlation is low between CO and CO2 (R = 0.43), indicating the influence of the Earth’s biosphere
fluxes on the air masses from Cluster B.
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Table 3. Variations in CO2, CH4, and CO statistically associated with the different clusters.
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Cluster A 1.59 0.26 3.22 0.57
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− Cluster C

Cluster C’s main area of particle residence is common with cluster A. However, air masses
classified in cluster C originate from two privileged directions: south (trajectory of Atlantic origin)
similarly to cluster A, and east (trajectory of continental origin), conferring it a “mixed” status. It is
specifically related to strong local influences reflected by a high residence time nearby the station (dark
red in Figure 7c). Unlike other clusters, it is more sensitive to air masses from all directions. Only 11%
of data are associated with this cluster. Air masses have median CO, CO2 and CH4 concentrations
of 221, 417, and 1879 ppb respectively, lower than the observations in cluster B, C most likely due
to the presence of marine air masses. However, these median concentrations are higher than the
average (see Section 2.4). This cluster shows an excess above background levels of ≈68 ppb for CO, ≈4
ppm for CO2 and ≈22 ppb for CH4. The values of the correlation coefficient between CO and CH4,
and between CO and CO2 are high (R > 0.60) and significant (p-value < 0.001) in this cluster. These
strong correlations indicate that the factors controlling emissions and variability of these species could
be similar.

− Cluster D

This hybrid cluster represents 31% of data. It is comparable to clusters A and C because it
also combines trajectories from both Atlantic Ocean (southern flow) and continent (northeastern
flow). Comparatively, cluster D has a higher residence time above the Atlantic Ocean than cluster
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C, whereas cluster C has a higher residence time over the continent. In addition, the hybrid (i.e.,
oceanic and continental) air masses associated with cluster D have a median CO concentration of
164 ppb (Figure 9b) at a median relative humidity of 75%, to be compared to 148 ppb for cluster D.
Other characteristic of this air mass includes relatively low CH4 (median 1869 ppb) and an CO2 median
concentration of 414.7 ppm. This result suggests that air transport does not always follow the normal
advection pathway. Correlations between species are much lower compared to those of cluster C.
The concentration ratios ∆CO/∆CH4 (3.15 ppb.ppb−1) and ∆CO/∆CO2 (4.85 ppb.ppm−1) obtained are
slightly higher to those observed in the cluster A. These concentration ratios differ significantly by
a factor of 2 to 4 compared to those mentioned of Bonsang et al. [61] and Crippa et al. [62], even if PESs
in this cluster have a continental component (Figure 7d). This result could be explained by the fact that
these studies measured emission factors directly in the fire plumes, whereas our data mix different mix
different signatures.

3.3. Seasonal Frequency of Clusters

Figure 11 shows the seasonal frequency for each of the four clusters. Clusters A and B represent
two opposed poles of atmospheric transport patterns. Thus, we observed that these two clusters are
much more frequent (at least 50% of the data) from June to September for cluster A, and from November
to January for cluster B. The meteorological situations which correspond to the occurrences of these
clusters are marked by the presence of the Saharo–Libyan anticyclone (strong activity in December to
February) for cluster B and the Saint-Hélène anticyclone (strong activity in April to September) for
cluster A. Monsoon flows are frequent from May to September [63,64], consistent with the seasonality
of cluster A. Cluster B is sensitive to the advection of air masses due to Harmattan flows [19,65].
On the other hand, cluster C shows peaks (February–March and October) which are observed during
changes in rainfall regimes at Lamto (i.e., from dry season to wet season and wet season to dry season).
Cluster D is ubiquitous throughout the year with significant peaks observed in May and October,
corresponding to the months when the station records significant peaks of precipitation (Figure 2) [36].

Atmosphere 2020, 11, x FOR PEER REVIEW 13 of 23 

 

3.3. Seasonal Frequency of Clusters 

Figure 11 shows the seasonal frequency for each of the four clusters. Clusters A and B represent 

two opposed poles of atmospheric transport patterns. Thus, we observed that these two clusters are 

much more frequent (at least 50% of the data) from June to September for cluster A, and from 

November to January for cluster B. The meteorological situations which correspond to the 

occurrences of these clusters are marked by the presence of the Saharo–Libyan anticyclone (strong 

activity in December to February) for cluster B and the Saint-Hélène anticyclone (strong activity in 

April to September) for cluster A. Monsoon flows are frequent from May to September [63,64], 

consistent with the seasonality of cluster A. Cluster B is sensitive to the advection of air masses due 

to Harmattan flows [19,65]. On the other hand, cluster C shows peaks (February–March and October) 

which are observed during changes in rainfall regimes at Lamto (i.e., from dry season to wet season 

and wet season to dry season). Cluster D is ubiquitous throughout the year with significant peaks 

observed in May and October, corresponding to the months when the station records significant 

peaks of precipitation (Figure 2) [36]. 

Figure 12 shows annual cycles of excess concentrations of CO2, CH4, and CO, associated with 

each cluster. Analysis of the variance of seasonal cycles shows significant differences in excess CO2 

concentrations amongst clusters for the months of October, December, January, March, April, and 

May (maximum differences up to 7 ppm). For CO and CH4, the differences were observed in the 

months of December and January (maximum differences between cluster up to: 38 ppb for CH4 and 

100 ppb for CO). These differences could be explained by the fact that each cluster is associated with 

specific retro-plumes (i.e., continental and/or oceanic). In particular, continental retro-plumes are rich 

in CO, CO2, and CH4, unlike oceanic ones. This difference is well observed for CO and CH4 but not 

for CO2. Indeed, air masses associated with continental retro-plumes crossing vegetation zones 

during the day contribute to the absorption of CO2 (photosynthesis phenomenon), and thus to a 

strong depletion of CO2 in slow-moving air masses. The variability within each cluster is relatively 

small for CO2 (average variability: 1%), marked for CH4 (average variability: 2.4%), and very marked 

for CO (average variability: 36%). For all species, most of the clusters have minimum concentration 

levels between May and October and maximum in November to March, likely due to frequent 

changes (length of retro-plumes, Figure 7) in transport pathways, each with a different regional 

impact over the study period. This variability is less important for CO2 due to the stronger influence 

of the biosphere as noted earlier. The highest concentrations are associated with continental air 

masses (clusters B, C, D). From May to October no air masses were associated with Cluster B. CO2, 

CH4, and CO concentrations are lower in Cluster A due to the origin in the marine boundary layer of 

the remote Atlantic Ocean shown in the Figure 7a. 

 

Figure 11. Seasonal frequency of retro-plumes associated at each cluster (A–D). Figure 11. Seasonal frequency of retro-plumes associated at each cluster (A–D).

Figure 12 shows annual cycles of excess concentrations of CO2, CH4, and CO, associated with
each cluster. Analysis of the variance of seasonal cycles shows significant differences in excess CO2

concentrations amongst clusters for the months of October, December, January, March, April, and May
(maximum differences up to 7 ppm). For CO and CH4, the differences were observed in the months of
December and January (maximum differences between cluster up to: 38 ppb for CH4 and 100 ppb
for CO). These differences could be explained by the fact that each cluster is associated with specific
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retro-plumes (i.e., continental and/or oceanic). In particular, continental retro-plumes are rich in CO,
CO2, and CH4, unlike oceanic ones. This difference is well observed for CO and CH4 but not for CO2.
Indeed, air masses associated with continental retro-plumes crossing vegetation zones during the day
contribute to the absorption of CO2 (photosynthesis phenomenon), and thus to a strong depletion
of CO2 in slow-moving air masses. The variability within each cluster is relatively small for CO2

(average variability: 1%), marked for CH4 (average variability: 2.4%), and very marked for CO (average
variability: 36%). For all species, most of the clusters have minimum concentration levels between
May and October and maximum in November to March, likely due to frequent changes (length of
retro-plumes, Figure 7) in transport pathways, each with a different regional impact over the study
period. This variability is less important for CO2 due to the stronger influence of the biosphere as
noted earlier. The highest concentrations are associated with continental air masses (clusters B, C, D).
From May to October no air masses were associated with Cluster B. CO2, CH4, and CO concentrations
are lower in Cluster A due to the origin in the marine boundary layer of the remote Atlantic Ocean
shown in the Figure 7a.Atmosphere 2020, 11, x FOR PEER REVIEW 14 of 23 
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3.4. Interannual Frequency of Clusters

Figure 13 illustrates the interannual variability of the clusters. The seasonal pattern described
above is well reproduced from year to year, albeit with significant differences. Most differences occur at
the transition between the four seasons. Cluster C varies significantly between years. Its contribution to
air flows arriving at the measurement site in February 2017 (≈10%) is low compared to that of February
2015 (≈40%) and 2016 (≈40%). It presents almost no contribution in March 2017 while its contribution
is significant in March 2015 (≈25%) and 2016 (≈45%). As for B, its contribution during GDS varies less
(i.e., 10% interannual variability average). For other seasons, no clear trend emerges, reflecting specific
atmospheric conditions. Therefore, this shows that interannual variability in transport patterns likely
contribute to interannual variability of concentrations. Moreover, the proportion of trajectories from
the South (clusters A and D) is globally similar during each month throughout the year.Atmosphere 2020, 11, x FOR PEER REVIEW 15 of 23 
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4. Discussion

4.1. Impacts of Transport on the Concentrations of CO, CO2 and CH4

The large-scale advection pathways of air masses arriving in the Lamto region were analyzed
using clustering of PES. The origins and seasonal and interannual variability of these transport modes
partly determines the interannual and seasonal variability of CO, CO2, and CH4. This method also
allows the quantitative attribution of in-situ measurements to potential source regions (Figure 7).
Here, the long-range transport of air masses of oceanic origin (cluster A) clearly shows lower levels
of CO, CO2, and CH4 (Figure 9), which parallels the lower concentration of pollutants in marine
air masses. Ncipha et al. [17] showed that air flows over oceanic regions provide cleaner marine
air in southern parts of South Africa. For these authors, the consequence of the dominance of the
oceanic fluxes (westerly fluxes) is the seasonal minimum in surface CO2 mixing ratio. It was observed
that this oceanic cluster is much more frequent during the wet seasons (Figure 11), coinciding with
the West African Monsoon (WAM) period, which could have an impact on concentrations. Indeed,
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the WAM period is associated with less significant variability in temperature and radiative flux,
which are the main explicative variables of the seasonal dynamics of carbon fluxes in the region [36].
In addition, contributions from retro-plumes of exclusively Atlantic origins are ≈35% over the study
period, which shows that the transport of air masses associated with the WAM strongly influences
the air quality in the Lamto region. High CO, CO2, and CH4 concentration levels associated with
cluster B come exclusively from northeast-North African air masses, transiting through some West
African countries (Ghana, Togo, Benin, Nigeria, Niger, Burkina-Faso). The diversity of the origins
of these retro-plumes provides some evidence of the implication of transport from Northern Africa
and emissions from fires (≈72% of the carbon balance in Africa, Ref. [66]). Large urban emissions in
these countries could significantly increase atmospheric concentrations of the three studied trace gases
species in these air masses. This corroborates the work of Jonquières et al. [67] based on measurements
of the TROPAZ campaign in December 1987 in Côte d’Ivoire. These authors showed that high CO,
CO2, and CH4 concentrations are observed in air masses originating from combustion zones located
in the north-eastern and northern African regions. In addition, they highlighted that the increase in
concentrations of these species was due to the fact that the air masses were continuously loaded with
combustion products during their passage over active fires in the last two days before their sampling
in the study region. Moreover, Edwards et al. [68] and Pradier et al. [69] have also highlighted that any
air masses transiting through these regions would potentially be loaded in emissions from biomass
combustion. Frequent in hot period (December-March), cluster B corresponds to air mass below 2000
m generally associated with Harmattan flux. This flux is typically associated with dust transport from
North and North-East Africa to the Gulf of Guinea, and is also charged with combustion products
from anthropogenic activities and fires [61,70–74]. Based on modeling studies, D’Almeida. [75] and
Touré et al. [73] reported that the export of air from the continental boundary layer is mainly directed
(60% of Saharan and Sahelian dust) to the Gulf of Guinea, remaining essentially confined in this layer
and in the lower troposphere. However, few observations are available to confirm or disprove this
prediction. Moreover, the seasonality of this continental cluster corresponds to that of the Saharo-Libyan
anticyclone, which is a high-pressure system that could have an impact on air mass transport and
dispersion (e.g., [17,18]). The dynamics of this anticyclone could favor air mass accumulation rich
in CO, CO2, and CH4, and could explain the high concentration levels of these species. Moreover,
the continental episodes represent ≈21% of the total number of retro-plumes compared to 35% of
the ocean cluster. High concentration levels are also observed in cluster C that could be explained
by the presence of the Saharan thermal depression whose period of occurrence corresponds with
the observation of cluster C peaks (Figure 11). Indeed, this thermal depression, which marks the
alternation between two transport regimes, is observed from February to March in Burkina Faso and
Niger and induces a significant variation in dust and aerosol levels [76]. Cluster D is almost the same
as cluster A with low CO, CO2, and CH4 levels compared to clusters B and C. We expected higher
levels due to the air masses of continental origin coming from the northeast of the measurement station
(Figure 7). This could be explained by the fact that these continental air masses correspond to days
when potential sources (e.g., fires, anthropogenic emissions) are mixed and diluted in cleaner air
masses. In addition, the oceanic components could also be considered as the cause of low concentration
levels. Furthermore, the seasonality of each cluster (Figure 11) is well marked, due to the continuous
influence of long-range transport of air masses originating from multiple directions during the year
(cf. studies of Jonquières et al. [67]).

4.2. The Advantage of PES Clustering

Clustering of PES is useful for identifying the influences of unknown sources (and sinks) on
atmospheric concentration variations of species at observatories. Our classification method focuses
only on the transports and does not include emissions. When a high number of measurements is
recorded, classification of the data before analysis is necessary. Indeed, cluster analysis is a well-known
and accurate method for data classification, and represents an objective alternative compared to the
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more subjective method of trajectory classification [12,17,27,28,77]. The objective method was used in
many studies for retro-plumes clustering since the first tentative made by Moody and Galloway [78].
For example, Brankov et al. [79] used clustering of back-trajectory simulated by the Hysplit model to
analyze the role of synoptic scale circulations on observed pollutant levels at the Whiteface Mountain
site (New York). In addition, applying back-trajectory clustering on observations in Munich (Germany),
Lan et al. [77] have shown that the principal sources of CO2 emissions were found in both the north and
south-east directions of the measurement site. To assess the aerosol source regions of the investigated
air masses over the cities of Abidjan (Côte d’Ivoire), Accra (Ghana), and Lomé (Togo) from June to July
2016 during DACCIWA project, Denjean et al. [80] analyzed the backward-trajectories simulated by the
Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT). Our work is a continuation
of those studies, but using LPDM outputs instead of single back-trajectories. These LDPM outputs are
more quantitative than single trajectory positions (see e.g., [27]) and attempt to account also for the
atmospheric turbulence and convection [30], which conventional back-trajectory excludes. Except the
studies of Henne et al. [18] in Kenya, no attempt has been made yet in the area (West-Africa) and on
the continent, to our knowledge, using a clustering technique based on LPDM footprints. The method
shows a clear and different regional impact on the Lamto measurements. We recall that the clustering
in this study is based on the potential emission sensitivity (PES), and not on the contributions of sources
or concentrations themselves.

5. Conclusions

We have analyzed CO2, CH4, and CO concentration levels recorded at LTO from 2014 to 2017.
The dataset has been classified using clustering of the footprints of the individual measurements
(i.e., PES) simulated by the Lagrangian FLEXPART model, and correlation analyses. The application
of clustering analysis to retro-plumes identified four clusters (A, B, C, and D). These four clusters
have shown differences in the seasonal means and medians of CO2, CH4, and CO concentrations.
The plumes associated with these clusters can be described as follows:

− Cluster A (≈37% of the retro-plumes) is clearly associated with oceanic and maritime air masses
trajectories from the Souths.

− Cluster B (≈21% of plumes) indicates continental origin.
− Cluster C (≈11% of the retro- plumes) is associated with air mass advection from all directions

including plumes of Sahelian origin.
− Cluster D (≈31% of the retro-plumes) is attributed to the advection of air masses which have

a significant oceanic signal.

The use of a set of four groups in this study also made it possible to identify different variations in
the measures. High CO2, CH4, and CO concentrations were observed in cluster B and it was found that
an excess of about 128.5 ppb of CO, 74 ppb of CH4, and 6.3 ppm of CO over background concentrations
could be explained by long-range transport of air masses grouped in this cluster. This highlight both the
combined effects of emissions from biomass combustion (from November to March on the mainland)
and the anthropogenic activities on CO2, CH4, and CO levels recorded at Lamto. In contrast, cluster
A observations correspond to low levels of CO2, CH4, and CO. This cluster is generally observed at
low altitude and is composed of humid air which results in the dilution of trace gas concentrations at
Lamto. The concentration ratios ∆CO/∆CH4 and ∆CO/∆CO2 observed within each cluster depend on
the origin of air masses. They are higher when air masses come mainly from the north and northwest
(Harmattan flow) than when they are from the south and southwest (monsoon flow). However,
the concentration ratios ∆CO/∆CH4 and ∆CO/∆CO2 obtained within cluster B show a predominance
of anthropogenic emissions and combustion processes.

The correlations calculated between PES for each region and CO2, CH4, and CO concentrations
show high and positive values for the continental regions. The correlation coefficients are generally
significant (R ≥ 0.38 and tau ≥ 0.37) for Tropical Africa and North Africa. These two regions most affect
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the CO2, CH4, and CO concentrations at Lamto site. In this case, more than 40% of CO2, CH4, and CO
seasonal variances are explained.

The CO2, CH4, and CO concentration variations statistically associated with the PESs of the
different clusters show that the correlations are more significant between CO2, CH4, and CO and
the PES associated with cluster B (R ≥ 0.47). However, the correlation value with CO2 is the lowest
(R = 0.47). This finding indicates that the amplitude of the variation of CO2 induced by exchanges
with soils and vegetation is large enough to modify the signal due to combustion sources. This shows
the biospheric impact on CO2 concentrations and suggests that CO2 biospheric fluxes could be the
main factor of the intra-seasonal variation.

The classification method presented here was successful at separating air masses of different
chemical compositions (although the classification system was based only on simulated transport
properties) and was independently compared to the measured concentrations. This method also
allowed identifying source–receptor relationships within our dataset. Another advantage of this
cluster classification method is that it is independent of our prior knowledge of sources and sinks.
The technique used here, although it has sufficient resolving power, would benefit from further
refinements. The results of this study furthermore induce specific conclusions and highlight the
impacts of distant emitting sources on the in-situ measurements of CO2, CH4, and CO. It would be
necessary to also take into account the local impacts for explaining the totality of the CO2, CH4, and CO
variances on the site.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/9/903/s1.
Figure S1: Average PES in each cluster. Logarithmic color scale shows the log 10 of residence time, i.e., the PES
below 5000 m. Figure S2: Average PES in each cluster in the boundary layer. Logarithmic color scale shows the
log 10 of residence time.
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Appendix A

Table A1. Linear Models showing relationships between species (i.e., CO2, CH4, and CO) and the SEPs
over the regions of tropical Africa, North Africa, and the Mediterranean–Europe, and their correlation
coefficients (R2) and significance (p-value).

No. Linear Models R2

(2) CO2 = 0.57 ∗ PESTropical_A f rica − 0.01 ∗ PESNorth_A f rica + 1.34 ∗
PESEuro_Med + 411.84 0.40

(3) CH4 = 5.32 ∗ PESTropical_A f rica + 0.92 ∗ SEPNorth_A f rica +
30.94 ∗ PESEuro_Med + 1846.42 0.74

(4) CO = 4.99 ∗ PESTropical_A f rica + 15.76 ∗ PESNorth_A f rica +
85.70 ∗ PESEuro_Med + 151.59 0.66
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