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Abstract: Air temperature and precipitation are two important meteorological factors affecting the
earth’s energy exchange and hydrological process. High quality temperature and precipitation
forcing datasets are of great significance to agro-meteorology and disaster monitoring. In this
study, the accuracy of air temperature and precipitation of the fifth generation of atmospheric
reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ERA5) and
High-Resolution China Meteorological Administration Land Data Assimilation System (HRCLDAS)
datasets are compared and evaluated from multiple spatial–temporal perspectives based on the
ground meteorological station observations over major land areas of China in 2018. Concurrently,
the applicability to the monitoring of high temperatures and rainstorms is also distinguished.
The results show that (1) although both forcing datasets can capture the broad features of spatial
distribution and seasonal variation in air temperature and precipitation, HRCLDAS shows more
detailed features, especially in areas with complex underlying surfaces; (2) compared with the ground
observations, it can be found that the air temperature and precipitation of HRCLDAS perform better
than ERA5. The root-mean-square error (RMSE) of mean air temperature are 1.3 ◦C for HRCLDAS
and 2.3 ◦C for ERA5, and the RMSE of precipitation are 2.4 mm for HRCLDAS and 5.4 mm for
ERA5; (3) in the monitoring of important weather processes, the two forcing datasets can well
reproduce the high temperature, rainstorm and heavy rainstorm events from June to August in 2018.
HRCLDAS is more accurate in the area and magnitude of high temperature and rainstorm due to its
high spatial and temporal resolution. The evaluation results can help researchers to understand the
superiority and drawbacks of these two forcing datasets and select datasets reasonably in the study
of climate change, agro-meteorological modeling, extreme weather research, hydrological processes
and sustainable development.
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1. Introduction

Climate change poses a substantial challenge to agriculture and food security, water availability
and quality [1–4]. Many studies have shown that the global climate is undergoing significant changes
that greatly influence extreme precipitation, drought and extreme high temperature events [5,6],
which bring serious loss of human life, agricultural production, economic development and natural
systems [7–11]. In recent years, an increase in the intensity and frequency of extreme weather
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events has been reported [12]. High-quality meteorological forcing datasets are the essential basis for
understanding the characteristics and trends in extreme weather events and can effectively improve
the accuracy of crop models [13,14].

Although the conventional station-based observations can provide measured variables with
high accuracy and precision, these observations can only represent local scale information [15–17],
which cannot fully describe the spatial changes due to the limitation of the number and locations
of stations [18]. Remote sensing monitoring technology has developed rapidly but is limited by the
satellite orbit and detection band; it is difficult to obtain real-time continuous high-resolution ground
meteorological data [19]. Numerical model data can perform well in spatial–temporal simulation but
is affected by the parameterization scheme; the simulation results are often uncertain [20]. In recent
years, the development of data assimilation and fusion techniques provides an effective way to
assimilate ground station observation data, remote sensing information and numerical weather
forecast data [21,22]. Based on these techniques, different sources of meteorological data are fused
to produce spatial–temporal and long time series of gridded fusion datasets, which can make up
for the shortcomings of different sources of data [13]. Many gridded fusion forcing datasets are
now available, including the Global Land Data Assimilation System (GLDAS) [23], the European
Land Data Assimilation System (ELDAS) [24], the China Meteorological Administration (CMA) Land
Data Assimilation System (CLDAS) [13,25,26], the fifth generation of atmospheric reanalysis (ERA5)
produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) [27] and other
datasets. Through these datasets, high-quality meteorological factor fields such as temperature,
humidity, wind, air pressure, precipitation, radiation and other data can be obtained. At the same time,
the land surface data assimilation system with high spatial and temporal resolution is also gradually
developing. On the basis of CLDAS, the National Meteorological Information Center (NMIC) has
further developed a high-resolution land data assimilation system (HRCLDAS) [20] to meet the needs
of business and scientific research.

Temperature and precipitation are two important input elements of agro-meteorological modeling.
At present, most agro-meteorological modeling is driven by station meteorological data but affected
by the spatial distribution of stations; there is great uncertainty in regional simulation. In order to
accurately carry out regional quantitative simulation research, it is necessary to take the gridded forcing
meteorological data as the input of the model. However, the assessment of gridded forcing temperature
and precipitation data from multiple spatial and temporal perspectives over major land areas of China
and especially the comparative study on their ability to monitor high temperature and rainstorm is still
relatively insufficient. In this study, the accuracy and applicability of air temperature and precipitation
of HRCLDAS and ERA5 over major land areas of China are evaluated from different temporal and
spatial perspectives by using ground automatic weather station observation data, and the ability of
HRCLDAS and ERA5 to monitor high temperature and rainstorm is further evaluated. Based on
the evaluation results, it is helpful for researchers to understand meteorological forcing datasets and
select appropriate datasets for climate change and extreme weather events research, water and energy
interaction research and agro-meteorological modeling.

2. Data and Methods

2.1. Datasets Introduction

HRCLDAS is a set of high-resolution land forcing datasets which is produced by using the
multi-grid variational analysis technique [21], discrete ordinates radiation transfer model [28],
hybrid radiation estimation model [20] and terrain correction algorithm [29] to blend the observation
data of automatic ground station, numerical prediction data and satellite data. HRCLDAS provides
2-m air temperature, 2-m humidity, 10-m U wind, 10-m V wind, surface air pressure, ground incident
solar radiation, precipitation and other factors. The temporal resolution of HRCLDAS is 1 h and the
spatial resolution is 1 km. The real-time datasets download lag time is 1 h. The datasets are in NetCDF
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format. The spatial extension of the datasets ranges from 15◦ N to 60◦ N (latitude) and from 70◦ E to
140◦ E (longitude) in the geographic coordinate system.

ERA5 is the fifth generation of atmospheric reanalysis produced by ECMWF, which is an important
activity within the Copernicus Climate Change Service (C3S) as it provides a lot of improved and
consistent records for the C3S Climate Data Store [27]. Activities on atmospheric reanalysis of ECMWF
started in 1979 with the FGGE project, followed by the production of ERA-15 in the mid-1990s, ERA-40
from 2001 to 2003 and ERA-Interim from 2006 to 2019 [13]. ERA5 is produced using the version of
ECMWF’s Integrated Forecast System (IFS), CY41r2, based on a hybrid incremental 4D-Var system [30].
ERA5 contains an ensemble component (EDA) [31] of one control and nine perturbed members which
provide background-error estimates. The assimilation data of ERA5 mainly include conventional
meteorological observation data of the surface and upper atmosphere from different regions and sources
in the world, satellite remote sensing data and observation data of some international research programs
including the First GARP Global Experiment (FGGE), the Pseudo Surface-Pressure Observations
(PAOBS), the First GARP Global Experiment (FGGE), the Tropical Ocean Global Atmosphere (TOGA),
the Coupled Ocean-Atmosphere Response Experiment (COARE), the Alpine Experiment (ALPEX),
the GARP Atlantic Tropical Experiment (GATE) and so on. The number of meteorological factors
provided by ERA5 is very large, including 2-m temperature, 2-m relative humidity, sea level pressure,
10-m wind and other surface factors, as well as high-altitude factors such as relative humidity, potential
height and wind field. The temporal resolution of ERA5 is 1 h and the spatial resolution is 31 km.
ERA5 is available within 5 days of real time.

The China daily ground observation datasets from NMIC are used to evaluate the air temperature
and precipitation. The stations participating in the evaluation are more than 2400 national automatic
weather stations (NAWS). Detailed information of datasets used in this study are listed in Table 1.

Table 1. Datasets information.

Datasets NAWS 1 Observations HRCLDAS 2 ERA5 3

Data type point grid grid

Spatial coverage over major land areas of China 70–140◦ E; 15–60◦ N global

Spatial resolution more than 2400 stations 1 km 31 km

Temporal coverage from 2008 to present from 2015 to present from 1979 to present

Temporal resolution daily hourly hourly

Download lag 1 day 1 h 5 days
1 NAWS: national automatic weather stations; 2 HRCLDAS, High-Resolution China Meteorological Administration
Land Data Assimilation System; 3 ERA5, the fifth generation of atmospheric reanalysis produced by the European
Centre for Medium-Range Weather Forecasts.

2.2. Evaluation Method

The observation data from more than 2400 national automatic weather stations (NAWS) are used
to evaluate HRCLDAS and ERA5 for air temperature and precipitation over major land areas of China.
The time range is from 1 December 2017 to 30 November 2018. Because the temporal resolutions of
HRCLDAS and ERA5 products are both hourly, the maximum value of temperature in 24 h for each
grid is regarded as the daily maximum temperature, the average value of temperature in 24 h for each
grid is calculated as the daily mean temperature, and the accumulation of all precipitation values
in 24 h for each grid is calculated as the daily precipitation. The ability of HRCLDAS and ERA5 to
monitor high temperature and rainstorm is also compared.

The bilinear interpolation method is implemented to interpolate the gridded air temperature and
precipitation data to the station, and the specific formula is as follows:

Z(I1, J) =
J − J2

J1 − J2
Z(I1, J1) +

J − J1

J2 − J1
Z(I1, J2) (1)
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Z(I2, J) =
J − J2

J1 − J2
Z(I2, J1) +

J − J1

J2 − J1
Z(I2, J2) (2)

A linear interpolation is further conducted along the J-direction:

Z(I, J) =
I − I2

I1 − I2
Z(I1, J) +

I − I1

I2 − I1
Z(I2, J) (3)

where Z(I1,J1), Z (I1,J2), Z (I2,J1) and Z (I2,J2) are values of the variable on the corresponding grids;
Z(I1,J) and Z(I2,J) are results at I1 latitude and I2 latitude after the linear interpolation; Z(I,J) is the
value at a specific station after the interpolation.

The correlation coefficient (COR), root-mean-square error (RMSE) and bias are implemented
to compare NAWS observations with HRCLDAS and ERA5 for air temperature and precipitation.
These indices are defined as follows:

Bias =
1
N

N∑
i=1

(Gi −Oi) (4)

RMSE =

√√√
1
N

N∑
i=1

(Gi −Oi)
2 (5)

COR =

∑N
i=1

(
Gi −Gi

)(
Oi −Oi

)
√∑N

i=1

(
Gi −Gi

)2
√∑N

i=1

(
Oi −Oi

)2
(6)

where Oi represents the observations at weather station i, Gi is the value obtained by interpolating the
gridded data to the corresponding station i, N is the number of stations participating the evaluation.

3. Results

3.1. Evaluation of Air Temperature

3.1.1. Spatial–Temporal Distribution of Air Temperature

The mean air temperatures in winter 2017/2018, spring 2018, summer 2018 and autumn 2018 are
displayed in Figure 1. The mean air temperatures of HRCLDAS and ERA5 have the same seasonal
variation characteristics. The seasonal variation shows that the mean air temperature is high in summer,
with the temperature higher than 30 ◦C in Xinjiang (Figure 1i) and Southeast China, low in winter,
with the temperature lower than minus 10 ◦C in the Tibetan Plateau and Northeast China, and is close
in spring and autumn.

In the same season, the mean air temperatures of both HRCLDAS and ERA5 capture the broad
features of spatial distribution. Except for the Tibetan Plateau, where the mean air temperature in each
season is lower than that in other areas, the mean air temperature decreases with the increase in latitude
elsewhere. The result shows that the spatial distribution of mean air temperature of HRCLDAS and
ERA5 is consistent. However, the description of mean air temperature of HRCLDAS is more precise
than that of ERA5, especially in the southwest of China, with high altitude and complex terrain.
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Figure 1. Distribution of mean air temperature in four seasons. (a–d) represent the spatial distribution 
of the mean air temperature of HRCLDAS in winter, spring, summer and autumn, respectively; (e–
h) represent the spatial distribution of the mean air temperature of ERA5 in winter, spring, summer 
and autumn, respectively; (i) geographical map. 
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latitude elsewhere. The result shows that the spatial distribution of mean air temperature of 
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is more precise than that of ERA5, especially in the southwest of China, with high altitude and 
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3.1.2. Evaluation of Air Temperature on Each Station 

The spatial distribution of COR, RMSE and bias between the mean air temperature of HRCLDAS 
and ERA5 and the observed mean air temperature at local stations in China are displayed in Figure 2. 
From the comparison of Figure 2a,d, it is shown that the COR of HRCLDAS and ERA5 basically 
present a decreasing trend from east to west. There are 97.9% of cases between the HRCLDAS 
interpolated data and observations which have COR higher than 0.95, while the corresponding 
percentage between ERA5 interpolated data and observations is 94.4%. In the southwest of China, 
with high altitude and complex topography, the COR of HRCLDAS is significantly higher than that 
of ERA5, and the COR of ERA5 is generally lower than 0.95 in this region. 

The RMSE for HRCLDAS and ERA5 on each station are shown in Figure 2b,e. Through 
comparison, it is found that there are 81.4% of cases between the HRCLDAS interpolated data and 
observations which have an RMSE lower than 2 °C, while the corresponding percentage between 
ERA5 interpolated data and observations is 78.8%. The RMSE of HRCLDAS is significantly lower 
than that of ERA5 in the west of China. 

From the comparison of bias in Figure 2c,f, it is shown that there are 95.6% of cases between the 
HRCLDAS interpolated data and observations which have bias ranging from −0.4 to 0.4 °C, while the 
bias of ERA5 is generally within −0.8 to 0.8 °C in the east but higher than 1.6 °C in the west. The mean 
air temperature of ERA5 is lower than the observations in the west of China. 

In general, HRCLDAS performs better than ERA5 at local station scale, especially in the 
southwest of China.  

Figure 1. Distribution of mean air temperature in four seasons. (a–d) represent the spatial distribution
of the mean air temperature of HRCLDAS in winter, spring, summer and autumn, respectively;
(e–h) represent the spatial distribution of the mean air temperature of ERA5 in winter, spring, summer
and autumn, respectively; (i) geographical map.

3.1.2. Evaluation of Air Temperature on Each Station

The spatial distribution of COR, RMSE and bias between the mean air temperature of HRCLDAS
and ERA5 and the observed mean air temperature at local stations in China are displayed in Figure 2.
From the comparison of Figure 2a,d, it is shown that the COR of HRCLDAS and ERA5 basically present
a decreasing trend from east to west. There are 97.9% of cases between the HRCLDAS interpolated
data and observations which have COR higher than 0.95, while the corresponding percentage between
ERA5 interpolated data and observations is 94.4%. In the southwest of China, with high altitude and
complex topography, the COR of HRCLDAS is significantly higher than that of ERA5, and the COR of
ERA5 is generally lower than 0.95 in this region.
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Figure 2. Spatial distribution of correlation coefficient (COR), root-mean-square error (RMSE) and bias
between the daily mean air temperature of HRCLDAS and ERA5 and the observed daily mean air
temperature. (a–c) represent the spatial distribution of COR, RMSE and bias of HRCLDAS, respectively;
(d–f) represent the spatial distribution of COR, RMSE and bias of ERA5, respectively.

The RMSE for HRCLDAS and ERA5 on each station are shown in Figure 2b,e. Through comparison,
it is found that there are 81.4% of cases between the HRCLDAS interpolated data and observations
which have an RMSE lower than 2 ◦C, while the corresponding percentage between ERA5 interpolated
data and observations is 78.8%. The RMSE of HRCLDAS is significantly lower than that of ERA5 in
the west of China.

From the comparison of bias in Figure 2c,f, it is shown that there are 95.6% of cases between the
HRCLDAS interpolated data and observations which have bias ranging from −0.4 to 0.4 ◦C, while the
bias of ERA5 is generally within −0.8 to 0.8 ◦C in the east but higher than 1.6 ◦C in the west. The mean
air temperature of ERA5 is lower than the observations in the west of China.

In general, HRCLDAS performs better than ERA5 at local station scale, especially in the southwest
of China.

3.1.3. Evaluation of Air Temperature in Daily Time Series

The time series of COR for daily mean air temperature of HRCLDAS and ERA5 from 1 December
2017 to 30 November 2018 averaged over major land areas of China are shown in Figure 3a. The COR
of HRCLDAS is largely within the range of 0.92 to 0.99 and the mean COR is 0.98, while the COR
of ERA5 is mainly distributed from 0.85 to 0.98 and the mean COR is 0.94. The COR of HRCLDAS
is higher than that of ERA5 throughout the year. Especially in summer, the COR of HRCLDAS is
generally around 0.98, while the COR of ERA5 is around 0.94. The time series of RMSE for daily mean
air temperature of HRCLDAS and ERA5 are shown in Figure 3b. The RMSE of HRCLDAS is basically
lower than that of ERA5 throughout the year. The RMSE of HRCLDAS is mainly within the range of
0.8 to 2.0 ◦C and the mean RMSE is 1.3 ◦C, while the RMSE of ERA5 is mainly distributed from 1.6 to
3.0 ◦C and the mean RMSE is 2.3 ◦C. The frequency distribution of bias for daily mean air temperature
of HRCLDAS and ERA5 is displayed in Figure 3c. It is shown that, among 365 days, there are 78.8%
days of HRCLDAS with bias ranging from –0.5 to 0.5 ◦C, while there are only 67.4% days of ERA5 with
bias ranging from –0.5 to 0.5 ◦C.
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The time series of COR for daily maximum temperature of HRCLDAS and ERA5 are shown in
Figure 3d. The COR of HRCLDAS is largely within the range of 0.84 to 0.99 and the mean COR is 0.98,
while the COR of ERA5 is mainly distributed from 0.80 to 0.98 and the mean COR is 0.91. The COR
of HRCLDAS is higher than that of ERA5 throughout the year. The time series of RMSE for daily
maximum temperature of HRCLDAS and ERA5 are shown in Figure 3e. The RMSE of HRCLDAS is
basically lower than that of ERA5 throughout the year. The RMSE of HRCLDAS is mainly within the
range of 0.8 to 2.5 ◦C and the mean RMSE is 1.4 ◦C, while the RMSE of ERA5 is mainly distributed
from 2.5 to 4.0 ◦C and the mean RMSE is 3.0 ◦C. The frequency distribution of bias for daily maximum
temperature of HRCLDAS and ERA5 is displayed in Figure 3f. It showed that, among 365 days, there
are 90.0% days of HRCLDAS on which bias ranged from 0 to 1 ◦C, while there are only 94.5% days
of ERA5 on which the bias ranged from −1 to 2 ◦C. The maximum temperature of HRCLDAS is a
little lower than the observations, while the maximum temperature of ERA5 is seriously lower than
the observations.

In general, both the daily mean air temperature and daily maximum temperature of HRCLDAS are
closer to observations than that of ERA5, as HRCLDAS has higher COR, lower RMSE and smaller bias.

3.1.4. Evaluation of Air Temperature at Different Altitudes

In order to investigate the relationship between the evaluation results and altitude, the mean
air temperature and daily maximum temperature at different altitudes are also evaluated. Since the
highest altitude of the stations participating in the evaluation is 4800 m, the altitude is divided into four
levels, i.e., below 1000 m, 1000 to 2000 m, 2000 to 4000 m and above 4000 m, in this study. There are
1872 stations located below 1000 m, 430 stations located between 1000 and 2000 m, 146 stations located
between 2000 and 4000 m and 25 stations located above 4000 m.
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The COR, RMSE and bias of daily mean temperature and daily maximum temperature of
HRCLDAS and ERA5 are displayed in Table 2. For the daily mean air temperature, with the increase
in altitude, the COR of HRCLDAS and ERA5 both decrease, the RMSE of HRCLDAS and ERA5 both
increase, the bias of ERA5 increases, while the change in Bias of HRCLDAS is not obvious. For stations
below 1000 m, the COR, RMSE and bias of HRCLDAS and ERA5 are similar. For stations above
1000 m, the COR of HRCLDAS is greater than that of ERA5 at all altitudes, and the RMSE and bias of
HRCLDAS are both smaller than those of ERA5 at all altitudes. Overall, the mean air temperature
evaluation results of HRCLDAS and ERA5 become worse with the increase in altitude, but HRCLDAS
performs better than ERA5 at high altitudes.

Table 2. The COR, RMSE and bias of daily mean temperature (Tmean) and daily maximum temperature
(Tmax) of HRCLDAS and ERA5 at different altitudes.

Altitude (m)
COR RMSE (◦C) Bias (◦C)

HRCLDAS ERA5 HRCLDAS ERA5 HRCLDAS ERA5

Tmean

Alt ≤ 1000 0.98 0.98 1.61 1.66 −0.06 0.05
1000 < Alt ≤ 2000 0.98 0.97 1.49 2.19 −0.15 0.50
2000 < Alt ≤ 4000 0.98 0.95 1.79 4.63 0.03 3.15

Alt < 4000 0.93 0.92 2.79 4.91 0.61 3.43

Tmax

Alt ≤ 1000 0.99 0.98 1.40 2.19 0.48 1.10
1000 < Alt ≤ 2000 0.99 0.96 1.53 2.88 0.58 1.83
2000 < Alt ≤ 4000 0.97 0.92 2.11 6.02 0.94 4.85

Alt < 4000 0.91 0.90 3.39 6.10 1.46 4.83

For the daily maximum temperature, with the increase of altitude, the COR of HRCLDAS and
ERA5 decrease from 0.99 to 0.91 and from 0.98 to 0.90, respectively; the RMSE of HRCLDAS and
ERA5 increase from 1.40 to 3.39 ◦C and from 2.19 to 6.10 ◦C, respectively; the bias of HRCLDAS
and ERA5 increase from 0.48 to 1.46 ◦C and from 1.10 to 4.83 ◦C, respectively. For stations above
2000 m, the bias of ERA5 is higher than 4.8 ◦C, which indicates that ERA5 underestimates the daily
maximum temperature seriously, reflecting that ERA5 cannot accurately describe the high temperature
in high-altitude areas. Overall, the maximum temperature evaluation results of HRCLDAS and ERA5
become worse with the increase in altitude, but HRCLDAS performs better than ERA5 at each altitude.

3.1.5. Evaluation of High Temperature

Against the background of climate change, extreme high temperature events occur frequently.
The applicability of gridded datasets to extreme high temperatures is of great significance to the study
of risk assessment. In order to further evaluate whether the two gridded datasets can monitor high
temperature, the daily maximum temperatures from 1 June to 31 August in 2018 over major land areas
of China are analyzed.

The distribution of high temperature days (daily maximum temperature above 35 ◦C) of station
observations and two gridded datasets is shown in Figure 4. It can be seen from Figure 4a that the
stations with more high temperature days are mainly distributed in the middle east and south of China,
where the maximum number of high temperature days is more than 27 days. The distribution of
high temperature days of HRCLDAS is close to that of the observations and HRCLDAS can generally
describe areas where high temperature occurs frequently (Figure 4b). However, in the middle east
and south of China, where high temperatures are frequent, only a few samples of ERA5 are close to
the observations (Figure 4c). The frequency distribution of bias of high temperature days (Figure 4d)
shows that there are 86.8% samples of HRCLDAS with bias ranging from −5 to 5 days, while there are
only 55.6% samples of ERA5 with bias ranging from −5 to 5 days, and the bias of ERA5 is negative in
most samples. As the gridded datasets are relatively smooth compared to the observations, the gridded
datasets have a certain deviation in extreme high temperature, especially in areas with complex terrain.
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Figure 4. (a) Spatial distribution of high temperature (>35 ◦C) days from 1 June to 31 August in 2018
for observations; (b) spatial distribution of high temperature (>35 ◦C) days from 1 June to 31 August in
2018 for HRCLDAS; (c) spatial distribution of high temperature (>35 ◦C) days from 1 June to 31 August
in 2018 for ERA5; (d) frequency distribution of bias of high temperature (>35 ◦C) days from 1 June to
31 August in 2018 for ERA5 and HRCLDAS.

The numbers of high temperature stations from 1 June to 31 August in 2018 are also compared
between the two gridded datasets and observations. According to the statistics of samples with
daily maximum temperatures in the range of 35–38 ◦C (Figure 5a), it is found that the number of
samples of HRCLDAS is consistent with the observations in the whole period, while the number of
samples of ERA5 is systematically low. For the samples with daily maximum temperatures above
38 ◦C (Figure 5b,c), it is found that the results of HRCLDAS and ERA5 are relatively close due to the
relatively small number of samples. However, taking the results of samples with daily maximum
temperatures above 40 ◦C as an example, for the high temperature process from 16 July to 26 July,
HRCLDAS has more samples that can accurately reflect this high temperature process, while ERA5
has fewer samples, which suggests that HRCLDAS is well indicative of high temperature process.

In general, HRCLDAS can well illustrate the distribution and magnitude of high temperature and
is able to monitor the high temperature weather, while ERA5 performs worse than HRCLDAS and the
ability to monitor high temperature needs to be improved.
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3.2. Evaluation of Precipitation

3.2.1. Spatial–Temporal Distribution of Precipitation

The accumulated precipitation in winter 2017/2018, spring 2018, summer 2018 and autumn 2018 is
displayed in Figure 6. As shown in the figure, the accumulated precipitation of HRCLDAS and ERA5
reflects the same seasonal distribution of precipitation in China, with more precipitation in summer
and less precipitation in winter. In the same season, the spatial distribution of precipitation of both
HRCLDAS and ERA5 is reasonable, with more precipitation in the southeast and less precipitation
in the northwest. The precipitation area is the same in general but different in some areas. In winter,
the precipitation area of ERA5 is larger than that of HRCLDAS in the Tibetan Plateau. The description
of precipitation of HRCLDAS is more precise than that of ERA5, especially in the Tibetan Plateau, with
high altitude and complex topography.
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Figure 6. Distribution of accumulated precipitation in four seasons. (a–d) represent the spatial
distribution of the accumulated precipitation of HRCLDAS in winter, spring, summer and autumn,
respectively; (e–h) represent the spatial distribution of the accumulated precipitation of ERA5 in winter,
spring, summer and autumn, respectively.
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3.2.2. Evaluation of Precipitation on Each Station

The spatial distribution of COR, RMSE and bias between the precipitation of HRCLDAS and ERA5
and the observed precipitation at local station in China is displayed in Figure 7. From the comparison
of Figure 7a,d, it is shown that the COR of HRCLDAS is significantly higher than that of ERA5 in
the major land areas of China. There are 98.1% of cases between the HRCLDAS interpolated data
and observations which have a COR higher than 0.80, while the corresponding percentage between
ERA5 interpolated data and observations is 11.7%, and there are 80.4% of cases between the ERA5
interpolated data and observations which have a COR ranging from 0.50 to 0.80.
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ERA5, respectively.
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From the comparison of Figure 7b,e, it is found that the RMSE of HRCLDAS and ERA5 is higher
in the south and lower in the north, and the RMSE of HRCLDAS is lower than that of ERA5 over
major land areas of China. There are 81.3% of cases between the HRCLDAS interpolated data and
observations which have an RMSE lower than 4 mm, while the corresponding percentage between
ERA5 interpolated data and observations is 26.4%, and there are 67.7% of cases between the ERA5
interpolated data and observations which have an RMSE ranging from 5 to 9 mm. The RMSE of ERA5
is higher than 9 mm in the southeast coastal areas.

As shown in Figure 7c,f, the bias of HRCLDAS is lower than that of ERA5. There are 70.7%
of cases between the HRCLDAS interpolated data and observations which have bias ranging from
−0.2 to 0.2 mm, while the corresponding percentage between ERA5 interpolated data and observations
is 51.7%. The bias of ERA5 is lower than −0.4 mm in the southwest of China, which indicates that the
precipitation of ERA5 is greater than the observations and ERA5 could not accurately describe the
precipitation in this region with high altitude and complex terrain.

3.2.3. Evaluation of Precipitation in Time Series

The time series of daily COR of HRCLDAS and ERA5 from 1 December 2017 to 30 November 2018
averaged over major land areas of China are shown in Figure 8a. The COR of HRCLDAS is largely
within the range of 0.70 to 0.99 and the mean COR is 0.92, while the COR of ERA5 is mainly distributed
from 0.30 to 0.90 and the mean COR is 0.59. The COR of HRCLDAS is higher and more stable than that
of ERA5 throughout the year.Atmosphere 2020, 11, x FOR PEER REVIEW 15 of 20 
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The time series of daily RMSE of HRCLDAS and ERA5 are shown in Figure 8b. The RMSE of
HRCLDAS is mainly within the range of 0.1 to 7.5 mm and the mean RMSE is 2.4 mm, while the RMSE
of ERA5 is mainly distributed from 0.2 to 15.0 mm and the RMSE is 5.4 mm. The RMSE of HRCLDAS
is basically lower than that of ERA5 throughout the year, especially in the summer, with heavy rainfall.
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The frequency distribution of bias of HRCLDAS and ERA5 is displayed in Figure 8c. It is found
that, among 365 days, there are 97.0% days of HRCLDAS with bias ranging from −0.5 to 0.5 mm,
while there are only 78.1% days of ERA5 with bias ranging from −0.5 to 0.5 mm.

3.2.4. Evaluation of Precipitation at Different Altitudes

The COR, RMSE and bias of precipitation of HRCLDAS and ERA5 at different altitudes are
displayed in Table 3. With the increase in altitude, the COR of HRCLDAS and ERA5 decrease from
0.94 to 0.85 and from 0.66 to 0.57, respectively. The COR of HRCLDAS is significantly higher than
that of ERA5, and the RMSE of HRCLDAS is obviously lower than that of ERA5 at each altitude.
The bias of ERA5 decreases from −0.16 to −0.90 mm with the increase in altitude, which indicates
that the precipitation of ERA5 is larger than the observed precipitation, reflecting that ERA5 could
not accurately describe the precipitation in high-altitude areas. Overall, the precipitation evaluation
results of HRCLDAS and ERA5 become worse with the increase in altitude, but HRCLDAS performs
better than ERA5 at each altitude.

Table 3. The COR, RMSE and bias of precipitation of HRCLDAS and ERA5 at different altitudes.

Altitude (m)
COR RMSE (mm) Bias (mm)

HRCLDAS ERA5 HRCLDAS ERA5 HRCLDAS ERA5

Alt ≤ 1000 0.94 0.66 3.03 6.94 0.06 −0.16
1000 < Alt ≤ 2000 0.92 0.64 2.27 4.75 0.01 −0.44
2000 < Alt ≤ 4000 0.91 0.61 0.07 4.39 −0.06 −0.75

Alt > 4000 0.85 0.57 2.29 3.76 −0.3 −0.9

3.2.5. Evaluation of Rainstorm

In order to further evaluate whether the gridded datasets can monitor extreme precipitation,
the number of rainstorm stations over major land areas of China from 1 June to 31 August in 2018 is also
compared between the two gridded datasets and observations. Generally speaking, the two gridded
precipitation datasets can capture the rainstorm (daily precipitation ranged from 50 to 100 mm) process
in summer (Figure 9a). HRCLDAS and ERA5 can accurately capture the two rainstorm processes on
24 July and 15 August, and the magnitude and trend of number of rainstorm stations are consistent with
the observations. However, the number of rainstorm samples of HRCLDAS is closer to observations
than that of ERA5. Figure 9b shows the number of heavy rainstorm stations (daily precipitation greater
than 100 mm) from June to August. The result indicates that the number of heavy rainstorm samples of
HRCLDAS and ERA5 is lower than that of observations. HRCLDAS has better monitoring of several
heavy rainstorm processes, and the number of heavy rainstorm stations is closer to the observations,
while ERA5 has poor monitoring ability for heavy rainstorms, especially during the period from June
16 to July 1. The frequency distribution of bias of rainstorm days (Figure 9c) shows that there are 79.7%
of cases between the HRCLDAS interpolated data and observations which have bias ranging from
−1 to 1 days, while the corresponding percentage between ERA5 interpolated data and observations is
only 60.6%, and the bias of ERA5 is negative in most stations.
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Figure 9. (a) Number of rainstorm (50–100 mm) stations in summer 2018 for observations, ERA5
and HRCLDAS; (b) number of heavy rainstorm (>100 mm) stations in summer 2018 for observations,
ERA5 and HRCLDAS; (c) frequency distribution of bias of rainstorm days in summer 2018 for ERA5
and HRCLDAS.

In general, HRCLDAS and ERA5 can monitor rainstorms, but HRCLDAS is more accurate than
ERA5 in monitoring rainstorms, especially heavy rainstorms, while ERA5 has poor ability to monitor
heavy rainstorms.

4. Discussion

In order to accurately carry out regional quantitative agro-meteorological modeling research, it is
necessary to evaluate the gridded forcing meteorological data of the model. In this study, air temperature
and precipitation as two important input elements are evaluated from multiple spatial and temporal
perspectives over major land areas of China. Based on the daily mean temperature, daily maximum
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temperature and precipitation data observed by more than 2400 national automatic weather stations,
the quality of air temperature and precipitation of HRCLDAS and ERA5 from 1 December 2017 to
30 November 2018 is evaluated over major land areas of China. Spatial and temporal distributions of
evaluation indices are comprehensively analyzed and the ability of HRCLDAS and ERA5 to monitor
high temperatures and rainstorms is also evaluated.

In this study, the daily mean temperatures of HRCLDAS and ERA5 are basically consistent with
the observations in spatial distribution and seasonal variation characteristics. HRCLDAS performs
better than ERA5 at a local station scale, especially in the southwest of China, with complex terrain.
Both the daily mean air temperature and daily maximum temperature of HRCLDAS are closer to
observations than ERA5. The COR of mean air temperature is 0.98 for HRCLDAS and 0.94 for ERA5,
and the RMSE of mean air temperature is 1.3 ◦C for HRCLDAS and 2.3 ◦C for ERA5. With the increase
in altitude and the decrease in the number of stations participating in the evaluation, the accuracy of
both HRCLDAS and ERA5 gradually decreases, but HRCLDAS performs better than ERA5 at high
altitudes. It has been reported that the accuracy of other gridded meteorological forcing datasets,
such as CLDAS and GLDAS, also decreases with the increase in altitude [13]. The possible reason is
that in high-altitude areas, it becomes more difficult for gridded meteorological datasets to accurately
reflect the true information due to various factors such as sparse station, high terrain, snow cover and
complex underlying surface conditions.

Global warming is well known as a major factor that intensifies the hydrologic cycle [32]. Whether
the gridded meteorological forcing datasets can accurately reflect high temperature is crucial to the
study of global warming. In this study, the ability of HRCLDAS and ERA5 to monitor high temperature
is also evaluated. The results show that HRCLDAS can well illustrate the distribution and magnitude
of high temperature while ERA5 performs worse than HRCLDAS. HRCLDAS is able to monitor the
high temperature weather, while the ability of ERA5 to monitor high temperature needs to be improved.
Compared with the observations, the gridded forcing datasets are relatively smooth; thus, the gridded
datasets have a certain deviation in extreme high temperature, especially in areas with complex
terrain. In addition to the daily mean temperature and daily maximum temperature, the hourly air
temperatures of HRCLDAS and ERA5 have also been evaluated in another study and the results show
that the hourly air temperature of HRCLDAS is also more accurate than that of ERA5 over major land
areas of China [20].

Accurate estimates of precipitation are essential for climate change research; meanwhile,
precipitation is the key meteorological forcing input for studies using land process models, including
crop simulation, hydrologic modeling and dryland expansion estimation [33,34]. In this study,
the precipitation of HRCLDAS and ERA5 is basically consistent with the observations in spatial
distribution, seasonal variation characteristics and time series. Meanwhile, the precipitation of
HRCLDAS is more accurate than that of ERA5, as the COR of precipitation is 0.92 for HRCLDAS and
0.59 for ERA5, and the RMSE of precipitation is 2.4 mm for HRCLDAS and 5.4 mm for ERA5.
With the increase in altitude, the accuracy of both HRCLDAS and ERA5 gradually decreases,
but HRCLDAS performs better than ERA5 at each altitude. The ability of HRCLDAS and ERA5 to
monitor rainstorms is also evaluated, and the results indicate that HRCLDAS and ERA5 can monitor
rainstorms, but HRCLDAS is more accurate than ERA5 in monitoring rainstorms, especially heavy
rainstorms, while ERA5 has poor ability to monitor heavy rainstorms. The study of precipitation
assessment in the middle and lower reaches of the Yangtze River indicates that CLDAS provides the
most realistic estimates of spatiotemporal variability in precipitation in this region among four forcing
datasets [17].

HRCLDAS and ERA5 represent the latest development of data assimilation and atmospheric
reanalysis. The comprehensive evaluation and analysis of HRCLDAS and ERA5 will be helpful
to the application and improvement of gridded meteorological forcing datasets. Overall, the air
temperature and precipitation of HRCLDAS and ERA5 are basically consistent with the observations
in spatial distribution, seasonal variation characteristics and time series, but the quality of HRCLDAS
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is better than that of ERA5 over major land areas of China. In particular, the capability of HRCLDAS
in monitoring high temperature and rainstorms is better than that of ERA5. HRCLDAS has much
higher spatial–temporal resolution than ERA5, and many local orographic and vegetation effects have
been considered. In addition, the high-resolution numerical forecast products from the European
Center for Medium Range Weather Forecast and the data collected from more than 30,000 automatic
observation stations deployed by the China Meteorological Administration are used to develop
HRCDLAS. Thus, HRCLDAS has high quality over major land areas of China and has a broad prospect
in fine meteorological service and local scale forecast. Although the resolution of ERA5 is lower than
that of HRCLDAS, ERA5 can basically capture the rainstorms and high temperature areas. ERA5 has
longer historical datasets than HRCLDAS and it is of great significance in climate time scale and
regional and global analysis. Previous studies have shown that mountain regions with complex
orography are a particular challenge for regional climate simulations [35]. Although the spatial and
temporal ranges of HRCLDAS and ERA5 are different, the quality of the two gridded forcing datasets
in high-altitude areas needs to be improved. In addition, this study only evaluated the gridded
meteorological forcing datasets for one year, and the inter-annual variation of gridded forcing datasets
and the application of climatic conditions will be further analyzed in the future.

5. Conclusions

Gridded forcing meteorological datasets play an important role in drought monitoring,
agro-meteorological modeling and water resource management. In this study, the air temperature
and precipitation of HRCLDAS and ERA5 are basically consistent with the observations in spatial
distribution and seasonal variation characteristics. However, the daily mean temperature, the daily
maximum temperature and the precipitation of HRCLDAS are more accurate than those of ERA5
over major land areas of China on different time and space scales. Especially, HRCLDAS is able
to monitor the high temperature weather and rainstorms, while the ability of ERA5 in this respect
needs to be improved. Therefore, HRCLDAS can play an important role in fine agro-meteorological
modeling, and ERA5 can be used to study climate state and global scale research due to its long
historical datasets. The results can help researchers to choose gridded forcing datasets reasonably
according to the research needs.
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