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Abstract: The ongoing global warming and changing patterns of precipitation have significant
implications for crop yields. Process-based models are the most commonly used method to assess the
impacts of projected climate changes on crop yields. In this study, the crop-environment resource
synthesis (CERES)-Maize 4.6.7 model was used to project the maize crop yield in the Shaanxi Province
of China over future periods. In this context, the downscaled ensemble projections of 17 general
circulation models (GCMs) under four representative concentration pathways (RCP 2.6, RCP 4.5,
RCP 6.0, and RCP 8.5) were used as input for the calibrated CERES-Maize model. Results showed
a negative correlation between temperature and maize yield in the study area. It is expected that
each 1.0 ◦C rise in seasonal temperature will cause up to a 9% decrease in the yield. However,
the influence of CO2 fertilization showed a positive response, as witnessed by the increase in the
crop yield. With CO2 fertilization, the average increase in the maize crop yield compared to without
CO2 fertilization per three decades was 10.5%, 11.6%, TA7.8%, and 6.5% under the RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 scenarios, respectively. An elevated CO2 concentration showed a pronounced
positive impact on the rain-fed maize yield compared to the irrigated maize yield. The average water
use efficiency (WUE) was better at elevated CO2 concentrations and improved by 7–21% relative to
the without CO2 fertilization of the WUE. Therefore, future climate changes with elevated CO2 are
expected to be favorable for maize yields in the Shaanxi Province of China, and farmers can expect
further benefits in the future from growing maize.
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1. Introduction

In recent years, global warming has gained considerable attention by experts throughout the
world to see how the rapidly changing climate is affecting crop growths and what are the possible
solutions to minimize its influence. Such future global warming also reflects the changes in predicted
climate variables [1]. Crop yields directly correlate with climate variables, and they can bring positive
or negative impacts on the agriculture yield. The increase in temperature may have a severe negative
effect on crop yields, which may lead to decreased crop yields around the world [2–4]. The global
average maize yield is expected to decrease by 3.7% per 1 ◦C increase in the temperature [3,5]. In recent
studies, it was shown that a rise in temperature negatively affects the maize yield; however, an increase
in the CO2 concentration positively influenced the maize yield [6,7]. The fertilization of CO2 increased
the maize yield due to an increase in the photosynthesis process and improvement in the water use
efficiency (WUE) [8].

Maize yield demands in the world could increase by 66% in 2050 compared to current maize
yields [9]. Maize is an important food to fulfill the food requirements of humans around the world [10].
Among the maize yield countries, China is the second-largest producer of maize and exporter to the
world [9], and Shaanxi Province is considered the main producing region of China [11]. Like other
parts of the world, the maize yield in China will also be greatly affected by changes in the climatic
conditions [12,13], which could make it difficult to fulfill future maize demands in China. Therefore,
it is necessary to estimate the impact of changing climatic conditions on maize yields by using advanced
tools such as cropping system models.

A crop model is the best tool to measure the impact of climate change on the crop yield by using
historical and future climate data [14–16]. There are many available process-based models to measure
the response of climate changes on crop yields [17–20]. Crops models have been used to find answers to
future practical crop yield demands. For example, Dixt et al. [21] found that CO2 fertilization reduced
the negative effect of temperature on the crop yield and increased the crop yield compared to without
the fertilization of CO2. Different crop modeling studies have been conducted to analyze the impact
of future climate changes on different crops by using the climate change scenario data [19,22–24].
Climate change scenario data in previous studies were used from the Fourth Assessment Report (AR4)
of the IPCC [25]. To date, these have been replaced by the representative concentration pathway
(RCP) scenarios [1]. Climate data from general circulation models (GCMs) used in Coupled Model
Intercomparison Project Phase 5 (CMIP5) were explained by Collins et al. [26].

Currently, not enough studies have been evaluated based on the annual period, particularly the
impact of changing climate conditions on Chinese maize yield areas, where the temperature trend is
increasing [27] with an increase of 1.2 ◦C since 1960 [28]. In many studies, the Chinese maize yield
regions have been studied in a large scale, but the maize yield from the Shaanxi region has not been
specifically discussed. For example, Ray et al. [29] calculated the relationship between climate and yield
variability between 1979 and 2008 and showed that maize yields vary by 32% in China due to climate
variability at a large scale. A recent study of projected maize yields as influenced by climate change
was executed in China [30]. This assessment was mainly focused on future temperature impacts on
maize yields and predicted a decrease in yields by varying temperatures. However, such agricultural
impact assessments have not considered the effect of elevated CO2 concentrations on maize yields
under future climate changes. Furthermore, the water use efficiency and evapotranspiration will
change under future climate scenarios with increasing atmospheric CO2 concentrations [31,32]. Thus,
there is a need to assess the responses of evapotranspiration and water use efficiency under future
climate changes in China.

This study emphasized exploring the effects of elevated CO2 under future climate changes on the
maize yields, evapotranspiration, and water use efficiency. We used the CERES (crop-environment
resource synthesis)-Maize crop model to simulate the growth and development of maize crops
in future climate change scenarios, considering seventeen general circulation models (GCM) and



Atmosphere 2020, 11, 843 3 of 20

four representative concentration pathways (RCPs)—2.6, 4.5, 6.0, and 8.5—with different CO2

concentrations [1].

2. Data and Methods

2.1. Study Area Description

Shaanxi Province is located in Northwest China (34◦18′ N to 39◦34′ N and 107◦24′ E to 110◦31′ E).
The study area is in a sub-humid to semiarid climate zone, with mean annual temperatures of 6.0
to 13.4 ◦C, with minimum and maximum air temperatures ranging between −8.4 ◦C and 42 ◦C,
respectively. The total annual sunshine duration was 2196–2914 h, with precipitations of 400–600 mm.
Summer and spring maize are extensively cultivated in this region, and the average maize crop yields
are 4 to 9 t ha−1. Maize is grown in this region between April and September, with a growing season
interval between 100–150 days. The soil type in the South region is a loess loam; Heliu and dark loessial
are the soil types in the Northeast and Northwest regions of Shaanxi [33–35].

Maize plants were sown using normal practices: 6 plants per m−2, with row-row spacing of 50 cm
and fertilizer of 100–280 kg ha−1 N and 120 kg ha−1 P2O5 applied at the time of sowing. The crop
received no irrigation in the rainfed regions and three flood irrigations in the irrigated region prior
to crop maturity. The most common maize varieties cultivated are Zhong dan-02 and Wuke-02.
Five rainfed sites (Luochuan, Yanan, Suide, Wuqi, and Yanchang,) and seven irrigated sites (Yulin,
Dingbian, Jingbian, Hengshan, Shenmu, Yangling, and Jinghui qu) were selected to evaluate the effect
of climatic change on maize crop yields in the Shaanxi Province (Figure 1).
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Figure 1. The geographical location of the maize crop sites of Shaanxi.

2.2. Data

2.2.1. Crop Management Data

For this study, the crop data was collected from 4 experimental fields in Yangling district and
11 farmer fields in Shaanxi Province for four consecutive years (2010–2014). Crop data included:
planting date, fertilizer, grain yield, phenology, soil texture, and irrigation data of the maize crop from
the experimental and farmer sites.

2.2.2. Climate Data

Baseline (1961–1990) and future climate data were collected against the sites of experimental
and farmer fields in Shaanxi Province from the MarkSim model [36]. Projected data, against the
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four RCP scenarios of 2.6, 4.5, 6.0, and 8.5, were obtained from the output of the MarkSim model.
The MarkSim model is a weather generator that is extensively used to predict the daily weather
data, including solar radiation, maximum temperature, minimum temperature, and rainfall for crop
yield simulations [37–39]. MarkSim is a coarse-scale GCM (general circulation model) that outputs
to a 0.5◦ × 0.5◦ latitude/longitude grid resolution using stochastic downscaling and climate-typing
techniques [36]. MarkSim produces the daily solar radiation, as well as the maximum and minimum
temperatures using Richardson (1981) methodology and precipitation data based on the Third-Markov
stochastic model. The model has been applied to downscale the GCM outputs in different climate
zones around the world [21,38,39]. Nouri et al. [39] indicated that it successfully produces the essential
climate data for crop simulation modeling. An updated standalone version of MarkSim (V.2) that
includes data from 17 individual GCMs from the fifth phase of the Coupled Model Inter-Comparison
Project (CMIP5) was used in this study. MarkSim has new characteristics that allow the operator to
make any arrangement among the 17 GCMs. GCM modifications can also be made for high, medium,
and low RCP emissions [16]. Daily weather data for each RCP (2.6, 4.5, 6.0, and 8.5) during the study
years (2021–2080) was done by choosing all the GCMs with their mean ensemble in 99 replicates for
the experimental and farmer fields. The GCMs are detailed in Table 1. Daily maximum and minimum
temperatures (◦C), precipitation (mm d−1), and solar radiations against different CO2 concentrations
of RCPs: 2.6, 4.5, 6.0, and 8.5 were downloaded from http://gisweb.ciat.cgiar.org/MarkSimGCM/.
The CO2 concentration selected for the baseline (1961–1990) was 380 ppm and, in RCPs 2.6, 4.5, 6.0,
and 8.5, ranged from 380–420 ppm, 380–560 ppm, 380–650 ppm, and 380–950 ppm, respectively,
during 2021–2080.

Table 1. Detailed description of the general circulation models (GCMs) used in the study. Institutions
from Jones (2013).

Sr No. Model Institutions Resolution,
Lat.◦ × Long ◦

1 BCC-CSM 1.1 Beijing Climate Center, China Meteorological
Administration, China 2.8125 × 2.8125

2 BCC-CSM 1.1(m) Beijing Climate Center, China Meteorological
Administration, China 2.8125 × 2.8125

3 CSIRO-Mk3.6.0 CSIRO and the Queensland Climate Change Center of
Excellence, Australia 1.8750 × 1.8750

4 FIO-ESM The First Institute of Oceanography, China 2.8120 × 2.8120

5 GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA 2.0 × 2.5

6 GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, USA 2.0 × 2.5

7 GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, USA 2.0 × 2.5

8 GISS-E2-H NASA Goddard Institute for Space Studies, USA 2.0 × 2.5

9 GISS-E2-R NASA Goddard Institute for Space Studies, USA 2.0 × 2.5

10 HadGEM2-ES Met Office Hadley Centre, UK 1.2414 × 1.8750

11 IPSL-CM5A-LR Institute Pierre-Simon Laplace, France 1.8750 × 3.7500

12 IPSL-CM5A-MR Institute Pierre-Simon Laplace, France 1.2587 × 2.5000

13 MIROC-ESM
Atmosphere and Ocean Research Institute, National

Institute for Environmental Studies and Japan Agency
for Marine Earth Science and Technology, Japan

2.8125 × 2.8125

14 MIROC-ESM-CHEM
Atmosphere and Ocean Research Institute, National

Institute for Environmental Studies and Japan Agency
for Marine Earth Science and Technology, Japan

2.8125 × 2.8125

15 MIROC5
Atmosphere and Ocean Research Institute, National

Institute for Environmental Studies and Japan Agency
for Marine Earth Science and Technology, Japan

1.4063 × 1.4063

16 MRI-CGCM3 Meteorological Research Institute, Japan 1.1250 × 1.1250

17 NorESM1-M Norwegian Climate Centre, Norway 1.8750 × 2.5000

http://gisweb.ciat.cgiar.org/MarkSimGCM/
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2.3. Methods

2.3.1. Descriptions of the Experimental and Farmer Fields

At Yangling, the experimental field consisted of four growing seasons (2010–2014), where irrigation
scheduling was done by selecting the four successive phenology phases in the summer maize-growing
period (three leaves-jointing stage, jointing-anthesis stage, anthesis-filling stage, and filling-mature
stage). This experiment was conducted under a rainfall shelter. In each stage, three different irrigation
amount ratios (IAR), 1.0 (100%), 0.8 (80%), 0.6 (60%), defined as a ratio of irrigation amount in stressed
treatments to irrigation amount in the control treatment (CK), were applied. In the control irrigation
treatment (CK), the irrigation amount was enough to substitute for crop water consumption due to
evapotranspiration (ET). ET was measured with large weighing lysimeters with continuous electronic
data-reading devices installed in the experimental plots (Figure 2). The design scheme and irrigation
amount of the experimental site is specified in the Supplementary Materials (Tables S1 and S2). In the
farmer field, irrigation schedules were carried out at different levels of irrigation and fertilizer amounts
during the 2010–2014 growing seasons. Irrigation was applied at the joining, tasseling, and grain-filling
stages. The cropping sequence of this area was summer maize (mid-June–late-October) and spring
maize (late-April–late-September) during growing seasons 2010–2014.
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2.3.2. CERES-Maize Model

The CERES-maize crop simulation model (CSM), which is part of the Decision Support System
for Agro Technology Transfer (DSSAT) Version 4.6.7 [16], was used. A CERES-maize tool that
incorporates GCM-projected climatic data was used to assess the impact of climate changes on crop
yields [15]. The CERES-maize model uses inputs, including cultivar type, weather data on a daily
basis, soil properties, initial soil conditions, cultivar coefficients, planting density, and planting dates,
to simulate the growths of 30 different crops [40].

2.3.3. Model Calibration

In order to calibrate the model for separate sites, we used basic crop data (anthesis, physiological
maturity dates, and final grain yield) from the full-irrigation treatment (CK) in the experimental and
in the farmer fields during three growing seasons (2010–2012). Cultivar coefficients of the maize
crop were also estimated using these data. In a first step, the DSSAT-GLUE (generalized likelihood
uncertainty estimation) [41] package was used to determine the genetic coefficient for the summer
maize cultivar Wuke-02 and spring maize Zhong dan-02. GLUE was run 3000 times to obtain the
best cultivar coefficients. However, as these coefficients did not produce satisfying fits between the
simulated and observed values, a trial and error method [42] was used to identify cultivar coefficients
that led to the best simulation performance. The genetic coefficients identified during the calibration
process can be found in the Supplementary Materials (Tables S3 and S4 and Figure S1).

2.3.4. Model Evaluation Data

The model was evaluated using two years of experimental data (2012–2013) from Yangling and
the farmer field data (2013–2014). In Yangling in 2012 and 2013, the experiment was designed with nine
deficit irrigation treatments (CK-T9) with three replicates using the partial orthogonal experimental
design method. In the farmer fields, nonlimiting irrigation and fertilizer amounts were selected during
the growing seasons in 2013 and 2014. Data on the grain yields were used from the experimental and
farmer sites to evaluate the model. The model evaluation output of the experimental field and farmer
fields can be found in the Supplementary Materials (Figures S2 and S3).

2.3.5. Model Setting for Baseline and Future Projections

The calibrated CERES-maize model DSSAT version 4.6 was run to simulate the average maize
yield with a CO2 concentration of 380 ppm and baseline weather data (1961–1990). The parameter
settings for the baseline yield in the DSSAT seasonal analysis tool simulation option were selected by
taking information from previous and current experiments, interviews with farmers, and agronomist
knowledge from different field sites. According to the currently available data, the sowing dates of
late-April (28) for the spring maize and June (14) for the summer maize, irrigation water amount of
200 mm, and fertilizer of 180 kg ha−1 were selected in the study area sites for the average baseline yield
simulation. In addition, these assumptions were also used for the simulations under future climate
scenarios from 2021 to 2080.

2.3.6. Statistical Analysis

In this study, the model was evaluated using the coefficient of determination (R2), d-index value,
and normalized root mean square error (nRMSE) between the simulated and observed data. In addition,
a regression analysis was also used for the relationship between yield and temperature. The d-index
value was calculated using the following equation:

d = 1−


∑n

i=1 (Pi −Oi)
2∑n

i=1

(∣∣∣Pi
′
∣∣∣+ ∣∣∣Oi

′
∣∣∣)2

, 0 ≤ d ≤ 1, (1)
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where n = number of observations, Pi = predicted value for the ith measurement, Oi = observed value
for the ith measurement, O = the overall mean of observed values, Pi

′ = Pi − O, and Oi
′= Oi − O.

The normalized root mean square error (nRMSE) was calculated using the following equation:

nRMSE =
RMSE × 100

O
(2)

where RMSE is the root mean square error, which was calculated using the following equation:

RMSE =

√∑n
i=1 (Pi −Oi)

2

n
(3)

A higher d-index value and lower nRMSE value indicated a good fit between the simulated and
observed data. R2 and D-index values ranges from 0 to 1, and perfect agreement between the observed
and simulated data is represented by being closer to 1.

Generally, there are four categories of criteria for nRMSE to understand the relationship between
simulated and observed data: nRMSE < 10% was considered excellent, 10% < nRMSE < 20% was
considered good, 20% < nRMSE < 30% was considered fair, and nRMSE > 30% was considered poor.

Mann Kendall test
There are many statistical tests available for a trend analysis of climate data. The Mann Kendall

test was considered as a good tool to identify the values of the trends in the climatic time series [43–45].
The increasing warming and decreasing cooling trends were identified by positive (+ve) and negative
(−ve) values at the 0.05 significant level [43]. Further details of the Mann Kendall test can be found
in the literature [46]. In this study, the Mann-Kendall test was used to identify the trend values in
precipitation and temperature during the period 2020–2080 and calculated as:

S =
∑n−1

i−1

∑n

j−i+1
sgn

(
x j−xi

)
(4)

where x j xi are values of i and j(j > i) in the data series, and sgn
(
x j − xi

)
is the sign function, whereas n

denotes the data points:

sgn
(
x j − xi

)
+1, if x j − xi > 0
0, if x j − xi = 0
−1, if x j − xi = 0

 (5)

If the sample size is greater than 10, the variance is µ(s) = 0.

σ(s) = n(n− 1)(2n + 5) −

∑m
i−1 ti(ti − 1) (2ti + 5)

18
(6)

Zs is calculated as:

Zs =


S−1√
σ2(S)

if s > 0

0, if s = 0
S+1√
σ2(S)

if s < 0

 (7)

3. Results

3.1. Projected Climatic Conditions under Future Changing Climate Scenarios

This paper evaluated the spatial and temporal evolution processes of future climatic factors relative
to a baseline (1961–1990) on the 12 sites in the study area (Figure 1): precipitation (Pe), temperature
(Tmax. and Tmin.), and solar radiation (SRD) under prospected climate change scenarios. As noted
by the spatial distribution of these climate variables, the results showed that T and Pe were higher
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in the Southern region than the Northern region relative to the baseline. Furthermore, the responses
of the climate variables in each of the scenarios was different (Figure 3a–d). As studied from the
temporal evolution of the variables in all the scenarios at separate stations, temperature (Tmax. and
Tmin.) had an ascending trend and indicated a high significant ascending trend (p < 0.05) in all regions
in the RCP8.5 scenario. The highest temperature increase was found at Jinghui qu, and the trend test
of the Mann-Kendall (MK) value was 3.94 (p < 0.05). In the same period of time, the precipitation
trend also increased in most of the regions in all scenarios with a significant ascending trend (p < 0.05).
The highest precipitation was found at Yanan Station in the RCP8.5 scenario, and the trend test of the
Mann-Kendall (MK) value was 3.90 (p < 0.05). The solar radiation was not significant in all scenarios at
all stations. Further details about changes in the climate variables of different scenarios relative to the
baseline have been provided in the Supplementary Materials (Figure S4).
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(a) maximum temperature (◦C), (b) minimum temperature (◦C), (c) precipitation (mm), and (d) solar
radiation (MJ m−2/ month). RCPs: representative concentration pathways.

3.2. Spatial Evolution of Maize Yield, ET, and WUE under Future Climate Change Scenarios

3.2.1. Maize Yield

This study analyzed the evolution of the average maize yield under different future climate
scenarios. Figure 4a,b indicates the spatial distribution of the maize yield. The results showed that the
average simulated baselines of the rainfed and irrigated maize crop yields in the study area were in the
range of 4.8–6.0 t ha−1 and 5.9–8.0 t ha−1, respectively. With CO2 fertilization, the seasonal total average
maize yields simulated under the rainfed and irrigation conditions were in the range of 4.0–7.4 t ha−1,
3.7–6.8 t ha−1, 3.9–7.5 t ha−1, and 3.4–6.8 t ha−1 under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios,
respectively, in the 2050s. In the 2080s, the simulated maize yields ranged 3.7–6.8 t ha−1, 3.4–6.4 t ha−1,
3.2–6.0 t ha−1, and 2.8–4.9 t ha−1 under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively.
Without increased CO2, the seasonal total average maize yields were 3.4–6.9 t ha−1, 3.0–6.3 t ha−1,
3.0–7.0 t ha−1, and 2.8–6.6 t ha−1 under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively,
in 2050. In 2080, the simulated maize yields ranged from 3.0–6.6 t ha−1, 2.9–6.2 t ha−1, 2.75–5.9 t ha−1,
and 2.65–4.8 t ha−1 under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively. In most of the
regions, the average modeled maize crop yield indicated a decreasing trend under the RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 scenarios; the highest yield decrease was in the RCP8.5 scenario. The average
maize yield without the fertilization of CO2 at the Suide site indicated the lowest yields of 3.0 and
2.5 t ha−1 and other stations for the 2050s and 2080s, respectively. While the increases in the yields
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with the fertilization of CO2 at Dingbian and Jingbian were the highest relative to the baseline yield
and other stations in all scenarios for the 2050s but decreased in the 2080s. In this region, the irrigated
and rainfed total average yields increased compared to without the fertilization of CO2 10.5%, 11.6%,
7.8%, and 6.5% under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively, during the
years 2021–2080.
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3.2.2. Evapotranspiration

The distribution of the ET with and without increased carbon dioxide at each station had different
behaviors in all the scenarios (Figure 4c,d). The results showed that the simulated baseline ET of the
irrigated and rainfed maize in the study area ranged from 460–510 mm and 400–420 mm, respectively.
The simulated ET of the maize crops in all scenarios decreased with the fertilization of CO2 and
increased without the fertilization of CO2. With CO2 fertilization, the simulated ET ranged from
310–505 mm, 305–485 mm, 313–500 mm, and 300–487 mm and 303–465 mm, 305–476 mm, 301–470 mm,
and 294–440 mm under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios for the 2050s and 2080s,
respectively. Without CO2 fertilization, the simulated ET ranged from 332–512 mm, 345–507 mm,
326–486 mm, and 318–493 mm and 323–505 mm, 315–480 mm, 312–475 mm, and 306–426 mm under
the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios for the 2050s and 2080s, respectively. The highest
decrease in ET with the fertilization of CO2 was found in the RCP8.5 scenario compared to the RCP2.6,
RCP4.5, and RCP6.0 scenarios and the highest increase in ET without the fertilization of CO2 in the
RCP2.6 scenario compared to the RCP4.5, RCP6.0, and RCP8.5. The spatial variability of the ET was
higher in the Northern region and lower in the Southern region and Western region. The maximum ET
of the maize crop in the RCP2.6 scenario in the 2050s was 505 mm with increased CO2 and 512 mm
without fertilized CO2, respectively, at Jingbian Station.

3.2.3. Water Use Efficiency

The simulated water use efficiency under rainfed and irrigated conditions in the baseline in
the study area was 11.6–14.4 kg ha−1 mm−1 and 12.0–16.0 kg ha−1 mm−1, respectively. As exhibited
in Figure 4e,f, the results showed that the water use efficiency of the maize crops were not
increased in the scenarios with the fertilization of CO2 and without the fertilization of CO2.
The range of the simulated WUE with the fertilization of CO2 was 13.1–15.0 kg ha−1 mm−1,
12.0–12.7 kg ha−1 mm−1, 12.4–15 kg ha−1 mm−1, and 11.3–14.3 kg ha−1 mm−1 under the RCP2.6,
RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively, for the 2050s (Figure 4e). In the 2080s, the
simulated WUE ranged from 12.2–14.1 kg ha−1 mm−1, 10.4–13.7 kg ha−1 mm−1, 10.6–13.1 kg ha−1 mm−1,
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and 7.69–12.6 kg ha−1 mm−1 under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively
(Figure 4e). Without the fertilization of CO2, the simulated WUE ranged from 9.7–13.9 kg ha−1 mm−1,
9.3–12.9 kg ha−1 mm−1, 9.2–14.7 kg ha−1 mm−1, and 8.8–14.3 kg ha−1 mm−1 under the RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 scenarios, respectively, for the 2050s. In the 2080s, the simulated WUE range was
9.2–13.0 kg ha−1 mm−1, 8.7–12.74 kg ha−1 mm−1, 8.6–12.8 kg ha−1 mm−1, and 7.4–10.9 kg ha−1 mm−1

under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively (Figure 4f). The increase in
the WUE of the maize crops was highest in RCP2.6 and lowest in RCP8.5. Compared to the baseline
WUE, the increase in the total average WUE of the maize crop was 13% at Dingbian Station under the
RCP2.6 scenario in the 2050s; however, it was not increased under RCP8.5 in the 2080s. In this region,
on average, the irrigated and rainfed WUE of CO2 fertilization was increased 7% and 21%, respectively,
compared to without CO2 fertilization.

3.3. Temporal Evolution of Maize Yield, ET, and WUE under Future Climate Change Scenarios

During 2021–2080, the simulated irrigated and rainfed maize yields with CO2 fertilization fluctuate
and are steadily decreasing, with an average coefficient of variation of 5.93%, 10.87%, 14.86%, 21.46%,
and 12.56% in the respective RCP2.6, RCP4.5, RCP6.0, RCP8.5, and 4RCP average scenarios (Figure 5a,b)
and, similarly, without CO2 fertilization, the yields are steadily decreasing, with an average coefficient
of variation of 5.84%, 10.71%, 14.65%, 21.19%, and 12.37% in the respective RCP2.6, RCP4.5, RCP6.0,
RCP8.5, and 4RCP average scenarios (Figure 5c,d).
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Figure 5. Temporal evolutions of the maize crop yields, with and without increased CO2. (a) Irrigated +

CO2 (b) Rainfed + CO2 (c) Irrigation − CO2 (d) Rainfed − CO2.

The simulated irrigated and rainfed evapotranspiration with CO2 fertilization in all scenarios
varies, ranging from 485 to 320 mm, 480 to 312 mm, 483 to 306 mm, 475 to 299 mm, and 476 to 311 mm,
with the CV from 1.23% to 1.96%, 1.77% to 2.55%, 3.81% to 3.05%, 4.51% to 2.95%, and 2.63% to
1.75% for RCP2.6, RCP4.5, RCP6.0, RCP8.5, and the average of the four RCPs, respectively, during
the years 2021–2080 (Figure 6a,b). Without the fertilization of CO2, the simulated irrigated ET varies,
ranging from 487 to 336 mm, 480 to 330 mm, 482 to 324 mm, 475 to 318 mm, and 481 to 327 mm,
with CV 1.20% to 0.98%, 2.54% to 1.75%, 3.78% to 3.02%, 4.51% to 2.95%, and 2.64% to 1.98% for the
RCP2.6, RCP4.5, RCP6.0, RCP8.5, and 4RCP average scenarios, respectively, during the years 2021–2080
(Figure 6c,d).
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(a) Irrigation + CO2 (b) Rainfed + CO2 (c) Irrigation − CO2 (d) Rainfed − CO2.

The simulated irrigated and rainfed WUE with CO2 fertilization in all scenarios varies, ranging from
15.0 to 12.0 kg ha−1 mm−1, 15.0 to 11.5 kg ha−1 mm−1, 14.9 to 10.6 kg ha−1 mm−1, 14.1 to
7.6 kg ha−1 mm−1, and 14.5 to 10.4 kg ha−1 mm−1, with CV 5.49% to 4.6%, 9.9% to 8.47%, 11.42% to
10.9%, 17.51% to 7.8%, and 10.18% for RCP2.6, RCP4.5, RCP6.0, RCP8.5, and the average of the four
RCPs, respectively, during the years 2021–2080 (Figure 7a,b). Fertilization without CO2-simulated
irrigated and rainfed WUE varies, ranging from 13.9 to 10.5 kg ha−1 mm−1, 13.5 to 9.2 kg ha−1 mm−1,
14.1 to 8.5 kg ha−1 mm−1, 13.4 to 7.2 kg ha−1 mm−1, and 13.7 to 9.9 kg ha−1 mm−1, with CV 5.14% to
4.70%, 8.0% to 7.8%, 11.3% to 9.9%, 17.4% to 11.1%, and 9.9% to 7.9% for the RCP2.6, RCP4.5, RCP6.0,
RCP8.5, and 4RCP average scenarios, respectively, during the years 2021–2080 (Figure 7c,d).
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3.4. Relationship between Crop Yield and Temperature

We developed the regression relationship between the crop yields and seasonal changes in
temperatures, as well as the projected increased CO2 concentrations during the years 2021–2080.
With small temperature increases, as shown in Figure 8a–d, it is observed that, under the projected
increased CO2 relative to the baseline CO2, the irrigated maize yields slightly increase from the baseline
yield. When CO2 does not increase from the baseline CO2, then there is a reduction in the crop
yields relative to the baseline yield under small increases in the temperature. For example, when
the minimum changes in the seasonal temperature were 1.28 ◦C, 1.25 ◦C, 1.17 ◦C, and 1.37 ◦C with
increased CO2 from 350 to 450 ppm, the changes in the irrigated maize crop yields were 4.2%, 3.5%,
5%, and 1%, respectively, under RCP2.6, RCP4.5, RCP6.0, and RCP8.5 during the years 2021–2080
(Figure 8a). However, with the same changes in temperature, but without increased CO2, the change
in the crop yields showed small reductions of −1.3%, −4.9%, −0.56%, and −5.8% compared to the
baseline (Figure 8b). At the maximum changes in the seasonal temperature of 1.88 ◦C, 3.12 ◦C, 3.2 ◦C,
and 5.0 ◦C, the percent changes in the irrigated crop yields with increased CO2 were −17.0%, −25.0%,
−33.8%, and −47%, respectively, under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios during the
years 2021–2080. Similarly, in rainfed maize yields, with increased CO2 at the minimum changes in
the seasonal temperature of 2.0 ◦C, 1.9 ◦C, 1.8 ◦C, and 2.1 ◦C, the percentage changes in the yields
relative to the baseline yield were −9.3%, −9.0%, −8.9%, and −9.0%, respectively, under the RCP2.6,
RCP4.5, RCP6.0, and RCP8.5 scenarios during the years 2021–2080 (Figure 8c). While, without an
increased CO2 from the baseline CO2 and with the same changes in the seasonal temperature, the
percentage changes in the yields were −22.8%, −22.4%, −22.3, and −23.63% in RCP2.6, RCP4.5, RCP6.0,
and RCP8.5 during the years 2021–2080, respectively (Figure 8d). At the maximum changes in the
seasonal temperature of 2.6 ◦C, 3.4 ◦C, 3.9 ◦C, and 5.4 ◦C, the percent changes in the rainfed yields with
increased CO2 were −23.6%, −34%, −40%, and −48% under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5
scenarios, respectively.
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4. Discussion

4.1. Prospective Climate Anomalies in Shaanxi

Agricultural systems directly respond to climatic variables (precipitation, temperature, and solar
radiation). Research based on the prospective spatial and temporal evolutions of climate variables
and evapotranspiration can allow for directing basic information for the management of agriculture
yields and assist in the adaptation actions of changing climate conditions. In recent years, the climate
conditions in most parts of Shaanxi Province are changing, and studies on the aspects of the climate
changes in Shaanxi Province have become a major issue of focus for many researchers.

The climate change results were in agreement with the findings of Zhao et al. [47,48], who stated
that the temperature of this study area was on the increase under prospective changing climate
scenarios. In the South region, the precipitation was higher than the North region, and this is in-line
with the findings of Zhao et al. [47]. The ascending trend in precipitation was observed in all scenarios,
which was in-line with the findings reported by Cao et al. [49].

4.2. Impact of Climate Change on Maize Yield

In this study, we evaluated the crop yields with projected climate variables (precipitation,
temperature, and solar radiation). With projected changes in the climatic conditions, it is necessary
to quantify the impact of the climate changes on the crop yields for the sustainability of agricultural
systems and adaptations to changing climate conditions. Therefore, it is essential to identify the
changing climate conditions that are favorable or not for agriculture yields. The crop yields strongly
correlated with temperature, precipitation, and increases in the CO2 concentration. The climate
conditions in this study area were projected to vary with the passage of time under the RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 scenarios.

4.2.1. Effects of RCP on Yields under Irrigated and Rainfed Conditions

In RCP8.5, the increase in temperature was higher than that of other RCP scenarios during the
years 2021–2080. Irrigated and rainfed Maize yields in RCP8.5 dramatically decreased during the years
2065–2080 due to strong increases in the seasonal temperatures relative to the baseline temperature.
In RCP2.6, the decrease in the maize yields was lower during the years 2065–2080 due to changes in
the seasonal temperatures being lower compared to the other RCP scenarios. From the results, it is
clear that future climate changes have negative effects on maize yields, as previously described by
Zhao et al. [30]. Our findings showed that the average maize yield declined by 9% in response to a 1 ◦C
increase in temperature, which is greater than previously reported for the 21st century [50]. In contrast,
our yield reduction results are lower than those obtained by Schlenker and Roberts [51], who predicted
maize yields to decrease 20–30% by 2020–2049 and 45–80% by 2070–2099.

4.2.2. Comparison of CO2 Effect on Yields under Irrigated and Rainfed Conditions

Elevated CO2 are slightly favorable for maize crops to increase the maize yields by offsetting the
negative effects of temperature on the maize yields, which was consistent with earlier studies [52]. In our
study, the investigation of CO2 fertilization was carried out on irrigated and rainfed maize crops, and we
found that yield improvements by CO2 fertilization were lower under irrigated than rainfed conditions,
and they were lower as previously discussed in another research work (Twine et al., 2013). Increases in
the CO2 concentration increased the yields significantly only when water was a yield-limiting factor.
In other words, an increase of CO2 did not significantly contribute to yield promotions under optimum
water supplies, which is consistent with previous studies [8,53]. The results of this study clearly
indicated that greater rainfed yields increased due to increased CO2 concentrations when a rainfall
deficit condition was projected under the future climate conditions. Our comprehensive analysis
showed that elevated CO2 compensates the negative effects of future temperatures on the maize yields
and minimizes the yield losses, while the projected maize yields remained below the baseline yield



Atmosphere 2020, 11, 843 16 of 20

with and without CO2 fertilization. However, the extent to which it is possible that the maize-growing
period will be reduced and the crops will face early maturity due to future climate changes, which are
consistent with the previous studies [52], it can be inferred that the temperature-driven reductions in
crop-growing seasons may decrease the grain weight in the absence of CO2 fertilization, ultimately
leading to reduced yields. In addition, it seems that future temperatures are a sever risk for maize
yields, which is already highlighted in some parts of the world [54]. However, agriculture yields
effects, in response to variations in temperatures around the world, need some mitigation to offset the
negative effects of temperature on the crops. These temperature affects are also different for regions
and crops and may need urgent employing of adaptation strategies (planting, irrigation, and cultivar)
at the regional scale to cope with the negative effects of temperature on maize yields.

4.3. Effects of RCP on ET and WUE under Irrigated and Rainfed Conditions

In RCP2.6, the increase in temperature was lower than that of other RCP scenarios during the
years 2021–2080. The irrigated and rainfed WUE in RCP2.6 dramatically increased during the years
2021–2080 due to higher yields obtained and being lower in seasonal temperatures relative to the
baseline temperature. In RCP8.5, the decrease in maize yields was higher during the years 2021–2080
due to changes in the seasonal temperatures, and the ET was higher compared to the other RCP
scenarios. From these results, it is clear that future climate changes have negative effects on maize
yields and the ET.

4.4. Comparison of CO2 Effects on ET and WUE under Irrigated and Rainfed Conditions

This study examined that the evapotranspiration decreased with the CO2 fertilization and vice
versa, as discussed in a previous study [55]. The irrigated and rainfed evapotranspiration in this region
decreased by 6% and 10%, respectively, in response to elevated CO2, which is consistent with the range
value for maize crops [56]. In our study, the rainfed evapotranspiration was decreased larger than
the irrigated evapotranspiration; this reduction occurred due to less opening of the stomata during
the crop-growing season under limited amounts of water or soil moisture deficits [32,56,57]. Globally,
increased level of CO2 lead to reduced ET and increased soil moisture storage beneficial for crop yields
and the WUE [58,59]. The WUE will increase with considering the fertilization of CO2 and vice versa
under without the fertilization of CO2. This is important, because there is raise in photosynthesis,
and CO2 fertilization has an effect on the water use efficiency [60–62]. This study’s findings showed
that the increase in the WUE is greater than as previous discussed for maize crops [52]. Overall,
these findings are in accordance with findings reported by [63], who stated that the water use efficiency
increased with the elevated CO2.

5. Conclusion and Future Implications

The evaluation of maize crop yields and water use efficiencies were studied by combining the
predicted climate change variables and CERES-Maize model. The CERES-Maize crop model seemed
to perform well for the crop yields, water use efficiency, and evapotranspiration of the maize at the
annual and decadal levels based on four climate change scenarios, i.e., RCP2.6, RCP4.5, RCP6.0, and
RCP8.5. This study showed that future maize yields negatively correlated with increased temperatures
in Shaanxi Province. With an average 1 ◦C increase in the temperature, the maize yields decreased by
9%. However, elevated CO2 concentrations reduced the severe effects of temperatures on the maize
yields. In response to CO2 fertilization, the average increases in the maize yield per decade were 6%,
5.5%, 5%, and 4.5%, respectively, under all scenarios compared to without CO2 fertilization. While the
elevated CO2 concentration effects on the rainfed maize had larger positive impacts on the maize yields
than the irrigated maize.

The fertilization with CO2 can bring about a positive effect on the evapotranspiration and water
use efficiency. The average evapotranspiration and water use efficiency are expected to improve by
6–9% and 5–13%, respectively, with the increased temperatures and elevated CO2 compared to without
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CO2 fertilization. With the fertilization without CO2 and the increased temperature being considered,
the water use efficiency will drop about −5.1% to −10.5% relative to the baseline WUE.

This study reported that future climate changes will affect maize yields. It is necessary to
suggest suitable adaptations in order to offset the negative effects of climate changes on maize yields.
For example, shifting the sowing date, changing the planting geometry and planting density, heat and
drought-resilient genotypes, and changes in irrigation scheduling have the potential to reduce the
negative impacts of future climates and may be adopted at farmer fields for sustainable maize yields.
Hence, an adaptation study should be conducted to determine the scope of specific adaptations and
their combinations to offset the negative effects of temperature on crop yields.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/8/843/s1,
Figure S1: Model performance during calibration for maize grain yield, Figure S2: Evaluation results of yield
between observed and simulated at experimental fields, Figure S3: Evaluation results of yield between observed
and simulated at farmer fields, Figure S4: Spatial and temporal evolution of the climate parameters during
2021–2080; Seasonal Change in: (a) Precipitation (%) (b)Temperature (◦C), (c) Solar radiation (MJ m−2/ month),
Table S1: Irrigation scheduling based on ET (mm) during 2012, 2013, 2014, and 2015 growing seasons at the
experimental fields in Yangling, Table S2: Total irrigation amount (mm) applied during 2012, 2013, 2014, and 2015
growing seasons at the experimental field in Yangling, Table S3: CERES-Maize model calibrated coefficients of
maize crop Wuke-02 (a) for experiments, and Zhong dan-02 (b) for farmer field in 2010, 2011, 2012, 2013 and
2014, Table S4: CERES-Maize model results between simulated and observed data of full irrigation Table 2010.
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