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Abstract: A model weighting scheme is important in multi-model climate ensembles for projecting
future changes. The climate model output typically needs to be bias corrected before it can be
used. When a bias-correction (BC) is applied, equal model weights are usually derived because
some BC methods cause the observations and historical simulation to match perfectly. This equal
weighting is sometimes criticized because it does not take into account the model performance.
Unequal weights reflecting model performance may be obtained from raw data before BC is applied.
However, we have observed that certain models produce excessively high weights, while the weights
generated in all other models are extremely low. This phenomenon may be partly due to the fact
that some models are more fit or calibrated to the observations for a given applications. To address
these problems, we consider, in this study, a hybrid weighting scheme including both equal and
unequal weights. The proposed approach applies an “imperfect” correction to the historical data in
computing their weights, while it applies ordinary BC to the future data in computing the ensemble
prediction. We employ a quantile mapping method for the BC and a Bayesian model averaging for
performance-based weighting. Furthermore, techniques for selecting the optimal correction rate
based on the chi-square test statistic and the continuous ranked probability score are examined.
Comparisons with ordinary ensembles are provided using a perfect model test. The usefulness of
the proposed method is illustrated using the annual maximum daily precipitation as observed in
the Korean peninsula and simulated by 21 models from the Coupled Model Intercomparison Project
Phase 6.

Keywords: α-correction; α-weights; climate change; generalized extreme value distribution;
L-moments estimation; leave-one-out cross-validation; parallel computing; statistical learning

1. Introduction

Over the last few decades, ensemble methods based on global climate models have become
an important part of climate forecasting owing to their ability to reduce uncertainty in prediction.
The multi-model ensemble (MME) methods in climatic projection have proven to improve the
systematic bias and general limitations of single simulation models. It has been argued that model
uncertainty can be reduced by giving more weight to those models that are more skillful and realistic
for a specific process or application. A number of model weighting techniques have been proposed to
produce a suitable probability density function of the changes in climatic variables of interest [1–6].

Of the many possible ensemble methods, the method we apply here is Bayesian
model averaging (BMA), which determines static weights for each model using the posterior
probability [3,7–10]. Other weighting methods such as reliability ensemble averaging [1] and combined
performance-independence weighting [6,11] are similarly applicable to the proposed method in this
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study, though they were not actually considered here. One advantage of the BMA is that the uncertainty
in the BMA ensemble prediction is separated into two variances: uncertainty due to the within-model
and due to the among-model. It is therefore relatively easy in BMA to differentiate and quantify the
main sources of uncertainty in simulating future climate.

Our interest is in predicting extreme climatic events; the generalized extreme value distribution
(GEVD) is typically used as an assumed probability distribution in BMA and accordingly can be used
for our propose. The GEVD encompasses all three possible asymptotic extreme value distributions
predicted by the large sample theory [12]. In this study, we use the approach by Zhu et al. [13], which is
a BMA method embedded with GEVD in projecting the future extreme climate using several climate
models. The model weights in the BMA are determined by the distance between the observations
and historical data generated by each model. This distance is viewed as the performance or skill of
the model.

There is a high probability that the simulation model is biased systematically. To solve this
problem, one can apply the bias-correction (BC) technique which constructs a transfer function that
matches the observations and the historical data well. The transfer function is then applied to the
future simulation outputs [14]. While not without controversy, the BC can be useful in confidence in
climate projection and is, in practice, a common component of climate change impacts studies [15,16].

Some BC methods, such as quantile mapping or delta change [14], make a perfect matching in the
sense that the quantiles of the observations and the historical data are same.

When BC such as quantile mapping is used, all the model weights from the BMA method
become equal because of a perfect matching, and consequently, the prediction is the simple average
of bias-corrected model outputs. This equal-weighted ensemble may be accepted by researchers by
acknowledging the conceptual and practical difficulties in quantifying the absolute uncertainty of
each model [17]. Annan and Hargreaves [18] presented evidence that the models are “statistically
indistinguishable” from one another and their observations, and they determined that equal weighting
of models is a reasonable approach. Wang et al. [19] conclude that it is likely that using BC and equal
weighting is viable and sufficient for hydrological impact studies. Another perspective is that it is
futile to assign weighting factors to models in order to create probability distributions from climate
model ensembles, but rather to view the ensemble as the “non-discountable range of possibilities” [20].
Nonetheless, the simple average or “model democracy” [21] can be criticized because it does not
take into account the performance, uncertainty, and independency of each model in constructing an
ensemble, i.e., it is not an optimal strategy [5,6,22–24].

In our experience, when non-bias-corrected (non-BC) historical data are used in BMA, only a few
models exhibit extreme weights and most others have very low weights [25] (see Figure 3). Specifically,
the posterior distribution may excessively depend on a few “outlier models” close to the
observation, when all other models fail to capture observations of the historical period—a common
situation for precipitation metrics [26]. This phenomenon may be due to the fact that some
models are more “fit for purpose” (or calibrated) to the observations for a given applications
(e.g., variable, region, or lead time) than others, and thus, receive very high weights in (or dominate)
the multi-model estimate of change [27]. This occurrence is also a result of the BMA weights
being obtained based only on the performance of the model. It would be dangerous to weight
a few models too strongly based on the performance when observational uncertainty is large.
Moreover, weighting may not be robust in quantifying uncertainty in a multi-model ensemble.
Some researchers [5,6,28,29] considered a weighting method that accounts for model performance and
independency simultaneously. The weights obtained from these research turned out to the tendency
of smoothing the performance-based weights.

In this study, we do not take the model dependency into account, but investigate another method
to control both unfairly high weights and distinctionless simple averaging. The weighting scheme
proposed in this article prevents the situation where only a few models have very high weights and
the most others have very low weights, which happens frequently in the BMA approach. Our method
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strives to drive the weights far from those that are equal. Therefore, it searches for a balanced “sweet
spot” between the BMA weights and simple averaging. One can view it as a technique for smoothing
the performance-based weights. The proposed approach applies the level of BC differently to the
historical data and to the future simulation data. An “imperfect” BC of the historical data to the
observations is employed in computing the weights, while ordinary BC is used for the future data in
computing the weighted average for projection.

To illustrate the usefulness of our approach, we use the annual maximum daily precipitation
(AMP1) as simulated by the Coupled Model Intercomparison Project Phase 6 (CMIP6) models in
historical and future experiments over the Korean peninsula. The AMP1 is employed here because
the authors are interested in the variable in Korea. The proposed method in this study can be applied
similarly to other climate variables in the other regions, with some modification.

The objective of this study is to assess the impacts of weighting schemes on the skill of the future
projections, and to find the optimal distribution of weights that leads to an increase in the skill score
when the BC is applied to the future simulation data. As a measure of the skill, the continuous ranked
probability score (CRPS) is used based on a perfect model test (or model-as-truth).

2. Data and Simulation Models

Several types of data are used for this study. These comprise observations for past years at each
grid cell, the historical data obtained from each simulation model for the reference period, and the
future data generated by each model for certain scenarios of future periods. Each simulation model
generates R× P future datasets for both R scenarios and P future periods. Thus, for each grid cell,
there is one observation dataset, K historical datasets where K is the number of simulation models,
and K× R× P future datasets. The statistical BC is done for each grid cell and each simulation’s data.
The observations and historical data in the reference period are sometimes referred to as “in-sample”,
while the future data is called “out-of-sample” [30].

For clarity, the following notations are employed.

• x f : future value
• x̂ f : bias corrected value in the future
• xobs: observed value in the reference period
• xh: historical value in the reference period

Here, the subscript h stands for the historical data in the reference period, obs stands for the
observations, and f stands for the future. The reference period is 1973–2014, and future period
is 2021–2060 (p1) and 2061–2100 (p2). The scenario levels for the future climate are the shared
socioeconomic pathway (SSP) 3 and 5 [31].

For regridding to common grid points of 1.5◦× 1.5◦, the iterative Barnes interpolation scheme [32]
was employed for the observations and simulation data from 21 models. The Barnes technique
produces a rainfall field on a regular grid from irregularly distributed observed rainfall stations. It has
gained large importance in the mesoscale analysis (see, e.g., in [33–35]). Figure 1 shows a map of
the Korean peninsula, the spatial distribution of 127 rainfall observed stations, and the 15 grid cells
used in this study. The observations for the 42-year reference period were obtained from the Korea
Meteorological Administration. Table 1 is the list of 21 CMIP6 climate models used in this study.
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Table 1. The list of 21 CMIP6 (Coupled Model Intercomparison Project Phase 6) models analyzed in this study.

Model Name Institution Resolution
(Lon × Lat Level#)

MIROC6 JAMSTEC, AORI, NIES, R-CCS, Japan (MIROC) 256 × 128 L81 (T85)
BCC-CSM2-MR Beijing Climate Center, Beijing, China (BCC) 320 × 160 L46 (T106)
CanESM5 Canadian Centre for Climate Modelling & Analysis, Enviro & Climate Change Canada, Victoria, BC, Canada (CCCma) 128 × 64 L49 (T63)
MRI-ESM2.0 Meteoro Res Inst, Tsukuba, Ibaraki, Japan (MRI) 320 × 160 L80 (TL159)
CESM2-WACCM National Center for Atmos Res, Climate & Global Dynamics Lab, Boulder, CO, USA (NCAR) 288 × 192 L70
CESM2 National Center for Atmos Res, Climate & Global Dynamics Lab, Boulder, CO, USA (NCAR) 288 × 192 L32
KACE1.0-GLOMAP National Inst of Meteoro Sciences/Meteoro Admin, Climate Res Division, Seogwipo, Republic of Korea (NIMS-KMA) 192 × 144 L85
UKESM1-0-N96ORCA1 UK (MOHC & NERC), Republic of Korea (NIMS-KMA), New Zealand (NIWA) 192 × 144 L85
MPI-ESM1.2-LR Max Planck Inst for Meteoro, Hamburg, Germany (MPI-M) 192 × 96 L47 (T63)
MPI-ESM1.2-HR Max Planck Inst for Meteoro, Hamburg, Germany (MPI-M) 384 × 192 L95 (T127)
INM-CM5-0 Inst for Numerical Math, Russian Academy of Science, Moscow, Russia (INM) 180 × 120 L73
INM-CM4-8 Inst for Numerical Math, Russian Academy of Science, Moscow, Russia (INM) 180 × 120 L21
IPSL-CM6A-LR Institut Pierre Simon Laplace, Paris, France (IPSL) 144 × 143 L79
NorESM2-LM NorESM Climate modeling Consortium of CICERO, MET-Norway, NERSC, NILU, UiB, UiO and UNI, Norway 144 × 96 L32
NorESM2-MM NorESM Climate modeling Consortium of CICERO, MET-Norway, NERSC, NILU, UiB, UiO and UNI, Norway 288 × 192 L32
EC-Earth3-Veg EC-Earth consortium, Rossby Center, Swedish Meteoro & Hydro Inst/SMHI, Norrkoping, Sweden (EC-Earth-Consortium) 512 × 256 L91 (TL255)
EC Earth 3.3 EC-Earth consortium, Rossby Center, Swedish Meteoro & Hydro Inst/SMHI, Norrkoping, Sweden (EC-Earth-Consortium) 512 × 256 L91 (TL255)
ACCESS-CM2 CSIRO (Australia), ARCCSS (Australian Res Council Centre of Excellence for Climate System Science) (CSIRO-ARCCSS) 192 × 144 L85
ACCESS-ESM1-5 Commonwealth Scientific & Industrial Res Organisation, Victoria, Australia (CSIRO) 192 × 145 L38
GFDL-ESM4 National Oceanic & Atmospheric Admi, Geophy Fluid Dynamics Lab, Princeton, NJ, USA (NOAA-GFDL) 360 × 180 L49
FGOALS-g3 Chinese Academy of Sciences, Beijing, China (CAS) 180 × 80 L26



Atmosphere 2020, 11, 775 5 of 20

Sinuiju

Pyongyang

Wonsan

Seoul Gangneung

Busan

Jeju

Sonbong

Mokpo

Daegu

China

Russia

Japan
G1

G2 G3 G4

G5 G6 G7

G8 G9

G10 G11 G12

G13 G14 G15

32.5

35.0

37.5

40.0

42.5

124 126 128 130 132

lon

la
t

Figure 1. Map of the Korean peninsula, the spatial distribution of 127 rainfall observed stations, and 15
grid cells used in this study.

3. Preliminary Methods

Model weighting or model averaging is a statistical method used to improve the accuracy of a
set of models [36] and estimate the conceptual uncertainty of climate model projections. Generally,
model averaging can improve the skill of projections and forecasts from multi-model prediction
systems [6,24,37]. The model-weighting approach that we propose in this study is applied to the
bias-corrected extreme precipitation in the BMA framework [13]. The main features of the GEVD,
the BMA, and the BC method are briefly described here.

3.1. Generalized Extreme Value Distribution

The GEVD is widely used to analyze univariate extreme values. The three types of extreme value
distributions are sub-classes of GEVD. The cumulative distribution function of the GEVD is as follows,

G(x) = exp

{
−
(

1 + ξ
x− µ

σ

)−1/ξ
}

, (1)

when 1+ ξ(x− µ)/σ > 0, where µ, σ, and ξ are the location, scale, and shape parameters, respectively.
The particular case for ξ = 0 in Equation (1) is the Gumbel distribution, whereas the cases for ξ > 0
and ξ < 0 are known as the Fréchet and the negative Weibull distributions, respectively [12].

Assuming the data approximately follow a GEV distribution, the parameters can be estimated
by the maximum likelihood method [12,38] or the method of L-moments estimation. The L-moments
estimator is more efficient than the maximum likelihood estimator in small samples for typical
shape parameter values [39]. The L-moments method is employed in this study using the “lmom”
package in R [40] because a relatively small number of samples, about 40 years worth, are analyzed
for each comparison period. Moreover, the formulae used to obtain the L-moments estimator are
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simple compared to that of obtaining the maximum likelihood estimator, which needs an iterative
optimization until convergence.

It can be helpful to describe changes in extremes in terms of changes in extreme quantiles.
These are obtained by inverting (1) zp = µ− σ

ξ [1−{−log(1− p)}−ξ ], where G(zp) = 1− p. Here, zp is
known as the return level associated with the return period 1/p, as the level zp is expected to be
exceeded on average once every 1/p years [12]. For example, a 20-year return level is computed as the
95th percentile of the fitted GEVD and a 50-year return level as the 98th percentile.

3.2. Bayesian Model Averaging

Among the various ensemble methods, the BMA method is commonly used to integrate over
multi-model ensembles of climate series. It combines the forecast distributions of different models
and builds a weighted predictive distribution from them. Many empirical studies including those
in [8,9,22,41–43] have shown that various BMA approaches outperform other competitors, including a
single best model and a simple averaging in prediction performance.

Zhu et al. [13] proposed a bootstrap-based BMA in which the weight of each model was calculated
by comparing the observations with the historical data from a simulation model. For each model and
each bootstrap realization (from i = 1 to B), the GEV parameters and rainfall intensity (i.e., return level)
in return period T were estimated.Then, they used the Gaussian likelihood function as follows,

L(Mk, T) =
1√

2πσI(T)
exp

[
−

1
B ∑B

i=1[Ii(T)− Ik
i (T)]

2

2σ2
I (T)

]
, (2)

where Ii(T) is the rainfall intensity of the i-th bootstrap from the observations, Ik
i (T) is the intensity

of the i-th bootstrap from the historical data of model Mk, and σ2
I (T) =

1
B ∑B

i=1[Ii(T)− Ī(T)]2 is the
variance in intensity based on the observations, where Ī(T) = 1

B ∑B
i=1 Ii(T). The overall likelihood

for model Mk is calculated as the average Gaussian likelihood over certain return periods, L(Mk) =

L(Mk, T) = 1
4 ∑T L(Mk, T), where 5, 10, 20, and 50 years are used for T in this study. Using Bayes’

theorem, we have the following posterior probability of Mk,

p(Mk|R) =
p(R|Mk)p(Mk)

∑K
l=1 p(R|Ml)p(Ml)

, (3)

where p(Mk) is the prior probability of Mk, and p(R|Mk) can be approximated by L(Mk) [44].
Equal priors are used for all models in this study.

The BMA prediction of rainfall intensity I over K models is then given by

E(I|R) =
K

∑
k=1

E[I|R, Mk] wk, (4)

with the posterior variance

Var(I|R) =
K

∑
k=1

[E(I|R, Mk)− E(I|R)]2 wk +
K

∑
k=1

Var[I|R, Mk] wk, (5)

where wk = p(Mk|R) is the weight of each model k given in (3). For the historical data, these quantities
are calculated from the B parametric bootstrap samples used in (2): Ê[I|R, Mk] = Ī(T, Mk) =
1
B ∑B

i=1 Ik
i (T), and

V̂ar[I|R, Mk] = σ2
I (T, Mk) =

1
B

B

∑
i=1

[Ik
i (T)− Ī(T, Mk)]

2. (6)

For the future simulation data, the above equations are not used, but the intensity estimates are
obtained by fitting GEVDs to each model’s future data, i.e., Ê(I|R, Mk) = Îk

f (T).
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3.3. Bias Correction by Quantile Mapping

Although simulations from climate or meteorological models provide much information,
the simulated data are associated with potential biases that their statistical distribution differs from the
distribution of the observations. This is partly because of unpredictable internal variability that differs
from the observations, and because global climate models (GCMs) have a very low spatial resolution
to be employed directly in most of the impact models [45,46]. For example, in GCM precipitation
fields, the bias may be due to errors in convective parameterizations and unresolved subgrid-scale
orography [16]. BC methods are commonly applied to transform the simulated data into new data
with no or at least fewer statistical biases with respect to a reference, this being generally an observed
time series. Many BC methods are available including delta change, quantile mapping, transfer
function method, trend preserving BC, stochastic BC, and multivariate BC methods [14]. Among these,
quantile mapping (QM) is simple, classical, and most famous [46–49].

QM adjusts different quantiles individually using the cumulative distribution functions (cdf) of
observations and modeled historical values. From all modeled values (xh,i) and observations (xobs,i)

over the reference period, the corresponding cdfs Fh and Fo are estimated. The modeled value (x f ,i)

for the future, which are specific quantiles of the modeled distribution, are then mapped onto the
corresponding observed quantiles as

x̂ f = F−1
obs (Fh(x f )). (7)

QM is used if trust in model simulations at the daily scale is high. Then, the full advantage of the
dynamical model, including changes in dynamical properties such as the temporal dependence
structure, can be exploited [14]. Implementations differ in the model used to estimate the cdf.
Some authors consider empirical cdf with linear interpolation, while others employ parametric models
such as a normal distribution for temperature, a gamma distribution for precipitation, and a GEV
distribution for extreme events.

4. Proposed Method

4.1. α-Correction

We consider a cdf representing the data between the historical data and the observations. The new
cdf is defined as a linear combination of Fobs and F(k)

h with a parameter α for 0 ≤ α ≤ 1,

F(k)
α = αFobs + (1− α)F(k)

h , (8)

where F(k)
h is the cdf of the historical data from the k-th model with k = 1, · · · , K. If α = 1, Fα = Fobs.

If α = 0, then Fα = Fh. We refer to α as “correction rate”. The α-corrected value of xh is given by

x̂(k)h (α) = F(k)
α

−1
(F(k)

h (xh)). (9)

We refer (9) the “α-correction” of the historical data to the observations. If α = 1, then the
α-correction is an ordinary QM. If α = 0, then no BC is performed for the historical data. A sketch of
the method with α = 0.4 and 0.7 is given in Figure 2. Note that x̂(k)h (1) is not same as xobs, but the cdf

F(k)
1 from x̂(k)h (1) is equal to Fobs for all k. The idea for the α-correction was inspired from examining

various QM graphs in [48,49].



Atmosphere 2020, 11, 775 8 of 20

0.00

0.25

0.50

0.75

1.00

xh x̂h(.4) x̂h(.7) x̂h(1) x̂h(1) x̂h(.7) x̂h(.4) xh

Fobs
F0.7
F0.4
Fh

Figure 2. A sketch of quantile mapping with various α-corrections, where the historical simulated
cumulative distribution function (cdf)(Fh) is mapped onto the α-corrected cdfs. Fobs is the cdf of the
observations, and F0.4 and F0.7 are 0.4- and 0.7-corrected cdfs, respectively. x̂h(α) is the α-corrected
value of the historical data (xh).

4.2. α-Weights

As α approaches 1, the BMA weights obtained from (3) become almost equal. When α = 0,
the usual BMA weights without any BC are obtained. In the latter case, sometimes a few excessively
high weights dominate, while the remainder is very low (see Figure 3). If equal weights or a few
dominating weights are undesirable, a hybrid one between these two situations may be an alternative.
We expect that such hybrid weights can be obtained from the α-correction with a α value between 0
and 1, perhaps close to 0.5. We call it “α-weighting”, and denote the weights by wk(α). See Figure 3 for
the weights with α = 0, 0.4, and 0.7, where a few very high weights for α = 0 decrease and few very
low weights increase. The 0.4-weights follow approximately the pattern of weights obtained by the
original (α = 0) BMA, whereas the 0.7-weights go toward an even distribution. A figure depicting the
the weights of additional α values is presented in the Supplementary Material.

Next, we describe the details of computing wk(α). Here, to obtain the BMA weights or the
α-weights, the historical data and observations are included without the future data. To obtain the
α-weights in this study, we just followed the same procedure for calculating model weights as in the
BMA, but with “nonzero” α.

We denote Mk(α) as the α-corrected historical data of k-th model. The Gaussian likelihood is
now modified to be dependent on α; L(Mk(α), T) is the same as in (2) except that Ik

i (T) is replaced
by Ik

i (α, T), which is the intensity of the i-th bootstrap from the Mk(α). Then, we have the posterior
probability of Mk(α) for given the observations R:

p(Mk(α)|R) =
p(R|Mk(α))p(Mk(α))

∑K
l=1 p(R|Ml(α))p(Ml(α))

, (10)

where p(R|Mk(α)) can be approximated by L(Mk(α)) =
1
4 ∑T L(Mk(α), T) as in [44], where 5, 10, 20,

and 50 years are used for T in this study. Note that this averaged likelihood L(Mk(α)) is actually a type
of distance between GEVD(R) and GEVD(Mk(α)). When equal priors are given, the α-weights are

wk(α) = p(Mk(α)|R) =
L(Mk(α))

∑K
l=1 L(Ml(α))

. (11)
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The bias-corrected values in the future from the k-th model are obtained by the ordinary QM in
our proposed method.

x̂(k)f = F−1
obs (F(k)

h (x f )). (12)

The α-correction does not apply to the future data, but only to the past data to obtain the α-weights.
The ensemble prediction for a quantity such as a 20-year return level (r̂E

20) in the future is obtained by

r̂E
20(α) =

K

∑
k=1

wk(α) r̂(k)20 , (13)

where r̂(k)20 is the 20-year return level estimated from the bias corrected future data (x̂(k)f ) for the k-th

model. It should be noted that in (13), the quantity for r̂(k)20 does not depend on α (the result was
obtained using α = 1).
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Figure 3. Distributions of the weights obtained from various α-corrections for for some grid cells. Red,
green, and blue bars represent the α-weights with α = 0, 0.4, and 0.7, respectively.

4.3. Selection of the Correction Rate

Researchers may want to fix the α at one value. For this purpose, two methods applicable to
each grid are presented here: The first method is the chi-square statistic for testing the null hypothesis
of uniform (or equal) distribution of the weights, where H0 : wk(α) = 1/K for every k, and we let
gk(α) = wk(α)× 100. Then, for each grid, the chi-square statistic to test the above H0 given by [38]

χ2
0(α) =

K

∑
k=1

(gk(α)− 100/K)2

100/K
. (14)



Atmosphere 2020, 11, 775 10 of 20

The values of gk(α) that are less than 5 are summed up to one category such that the total
frequency is greater than 5. Let us denote K′ as the number of the categories that have the summed
frequency greater than 5. If gk(α) are far from equal values, then χ2

0(α) will not be small. The null
hypothesis is rejected at the 5% significance level when χ2

0(α) > χ2
.05(d f ), where χ2

.05(d f ) is 95
percentile of a chi-square distribution with d f = K′ − 1 degree of freedom.

There is more chance to reject H0 for smaller α, and less chance to reject for α near to 1, because the
α-weights become equal to each other as α goes up to 1. By changing the α from 0 to 1 in increments of
0.05, we can select the optimal α such that the null hypothesis is rejected, as follows,

α∗ = max0≤α≤1 {α : χ2
0(α) > χ2

0.05(d f )}. (15)

If there is no such α∗ in [0,1], we set α∗ = 0. As this selection is done for each grid cell, the α∗ value is
determined independently for each cell. Figure 4 shows the chi-square test statistics calculated from
various α-weights and the selected optimal α∗j for select j-th grid cell.
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Figure 4. Plots of the chi-square test statistics as α changes from 0 to 1, and the selected optimal
correction rate α∗ for some grid cells.

As another way of selecting an optimal α, we consider the use of the continuous ranked probability
score (CRPS), which can be employed to evaluate the impact of the weighting on the skill of the
future projections. The CRPS defined for a single forecast can be extended for multiple occasions by
averaging it, which is detailed in [50]. The averaged CRPS can be formulated as a function of α-weights,
denoted by CRPS(α). In the next section, the leave-one-model-out version is averaged to compute
CRPScv(α) as in Equation (16). Thus, an optimal α can be chosen at the minimum of the CRPScv(α).
These optimal αjs values, selected differently from each grid, can lead to an increase in skill while
minimizing the probability of overfitting [27]. In selecting an appropriate α, one can consider other
criterion such as entropy [19] or the cross-validated mean squared error.
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Figure 5 shows the selected optimal αj and the values of CRPScv(α) as α increases from 0 to
1 for each j-th grid. More figures for different future periods and scenarios are available in the
Supplementary Material.
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Figure 5. Computed values of CRPScv(α) defined as in Equation (16) and the selected optimal
correction rate α for select grid cells and for future period 1 (2021–2060) under SSP3 scenario.

Figure 6 shows the weights for 21 models obtained from various α-weighting methods. We see
that two high weights from BMA decrease significantly, while most small weights increase slightly by
the α-correction methods. It seems that the methods based on CRPS alter the weights by bringing them
closer to equal in value. The α selection method based on the chi-square statistic is relatively easier to
computate and it smooths the BMA weights well, but may lack climatological meaning. The method
based on the CRPS has a clear climatological meaning, but for this study at least, shifts the weights
towards being different in value.

Instead of using one set of weights, one can apply several sets of weights that are obtained from
various values of α. For example, α can be set to 0, 0.25, 0.5, 0.75, and 1. Several different prediction
results from such α values are available. These multiple results provide various plausible shapes of the
future climate change which may not be detected by a single ensemble.
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Figure 6. Spread of the weights for 21 models obtained from various α-weighting methods based on
the Bayesian model averaging (bma), chi-square statistic (chisq), and the continuous rank probability
score (crps) for the future periods P1 (2021–2060) and P2 (2061–2100) under the SSP3 and the SSP5
scenarios. The weights calculated at each grid cell are averaged over 15 grid cells.

5. Comparison of Weighting Schemes

Some metrics can be used to compare weighting schemes and assess the skill of “out-of-sample”
ensemble prediction. Those metrics include absolute error, ensemble spread, overconfidence bias,
and ranked probability skill score [30]. The latter is based on CRPS and is essentially a combination
of accuracy (absolute error of prediction) and precision (the width of predictive distribution) [30].
These are computed under the following models-as-truth experiments. In this study, however,
we consider only CRPScv(α) as a metric.

5.1. Leave-One-Model-Out Validation

This approach picks each model from a multi-model ensemble in turn and treats it as the true
representation of the climate system. The data from this perfect model are treated as true observations,
termed as “pseudo-observations”. Then, the α-weights are obtained by following the same process
presented in the above Section 4.2. Actually, the pseudo-observations from the perfect model and the
α-corrected historical data for the remaining models are used. This leave-one-model-out method is
called a model-as-truth experiment or a perfect model test [27,30]. This allows for an evaluation of the
impact of the weighting in the future based on each model representing the truth once.

As a measure of the method’s skill, we use the CRPS(α) as mentioned in the above section.
Here, the leave-one-model-out cross-validated version, CRPS(−k)(α), is employed. This is basically
the average of the mean squared error between the distribution of the k-th perfect model and the
distribution of all other models except for the k-th model [27]. The distribution of all other models
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is composed of α-weighted average of the distributions of the K− 1 models. Then, the CRPScv(α) is
averaged over the K models as. Thus,

CRPScv(α) =
1
K

K

∑
k=1

CRPS(−k)(α). (16)

Small values for this quantity may represent a better performance in projecting future climate. For
numerical computation, we used the “scoringRules” package in R [51].

Figure 7 shows parallel coordinated box-plots of CRPScv(α) calculated over 15 grid cells for
future periods P1 and P2 under both SSP3 and SSP5 scenarios. The details of the parallel coordinated
box-plots are described in the Supplementary Material. The optimal α-weights based on CRPScv(α)

produces the best performance among those considered in this study. Its performances in P2 of the
SSP3 scenario and P1 of the SSP5 scenario are, however, similar to those of the simple average. This is
because the selected optimal αs based on the CRPS are equal to 1 in many of the grid cells. In addition,
we see that the chi-square-based approach works better than the BMA.

The CRPS(−k)(α) can be interpreted as the difficulty in predicting the k-th model from all other
K− 1 models. When its value is small, the k-th model is more explicable by a combination of other
K− 1 models than when it is large. Considering this, it is notable that the CRPS values for P2 (SSP5)
are greater than those for P1 (SSP3) in Figure 7. This may mean that the mutual predictability or the
coherence among the models is weaker for the far future and the SSP5 scenario than those for the near
future and the SSP3.
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Figure 7. Parallel coordinated box-plots of CRPScv(α) defined as in Equation (16), over 15 grid cells
obtained from various α-weighting methods based on Bayesian model averaging (BMA), chi-square
statistic (chisq), the continuous rank probability score (crps), and the simple averaging (sa) for the
future periods P1 (2021–2060) and P2 (2061–2100) under the SSP3 and SSP5 scenarios.

In calculating the LOOCV based on CRPS on 15 grid cells for 21 models, we experienced too
much computing time, as α changes from 0 to 1 by 0.05. It took more than 120 min on an Intel i5 PC
with 16 GB memory. Therefore, a parallel computing using “foreach” package [52] in R program was
executed on a GPU server (Xeon*G 6230) with 80 cores. It took approximately 5 min. When the study
region gets wider or the number of grid cells are large for several weather variables and for more than
21 models in CMIP6, it seems the parallel computing is necessary. In the sense of computing time
only, selection of the correction rate based on the chi-square statistic may be preferred to that based on
CRPS with a perfect model test.
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5.2. Quantile Estimation

Figure 8 shows schematic box-plots of the 20- and 50-year return levels of the annual maximum
daily precipitation for 15 grid cells over the Korean peninsula obtained from various α-weights based
on the BMA, the chi-square statistic, the CRPS, and the simple averaging (SA). Compared to the
observations, the return levels for all cases increase in the future; more in P2 and the SSP5 scenario
than in P1 and the SSP3, respectively. Figure 9 depicts the similar plots as Figure 8 but for 20- and
50-year return periods (i.e., waiting time) relative to the observations from 1973 to 2014.
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200

400

600

R
e
tu

rn
 l
e
v
e
l

bma chisq crps sa obs

Figure 8. Schematic box-plots of 20- and 50-year return levels of the annual maximum daily
precipitation for 15 grid cells over the Korean peninsula obtained from various α-weighting methods
based on Bayesian model averaging (BMA), the chi-square statistic (chisq), the continuous rank
probability score (crps), and the simple averaging (sa) for the future periods P1 (2021–2060) and P2
(2061–2100) under the SSP3 and SSP5 scenarios.

The results from Figures 7–9 show the differences due to the weighting schemes, but the
differences may not be as distinctive as they appear. Because the results from the weighted and
unweighted means are similar, one may question why the simple average could not be used.
Lorenz et al. [29] argued that although the resulting numbers may be similar, the interpretation of
the spread is different between the unweighted and the weighted multi-model means. In that paper,
they wrote the following. “The spread of the simple average is just a spread and is not a measure
of uncertainty. It is an ad hoc measure of spread reflecting the ensemble design, or lack thereof,
whereas the spread in the weighted multi-model mean can be interpreted as a measure of uncertainty
given everything we know. We thus should have more confidence in the latter.”

Plots in Figure 9 indicate that the 20-year return periods for P2 are about 0.75 times shorter than
those for P1. Specially, the 20-year return period for P2 under the SSP5 is very short, about 7 years
in median. By reading the right-hand plots too, we realize that a 1-in-20 year (1-in-50 year) annual
maximum daily precipitation in the Korean peninsula will likely become a 1-in-10 (1-in-20) year and
a 1-in-7 (1-in-15) year event in median by the end of the 21st century based on the SSP3 (the SSP5)
scenarios, respectively, when compared to the observation from 1973 to 2014. These show that the
20-year and 50-year return periods will likely reduce to approximately half (40%) under the SSP3
scenario and approximately one-third (30%) under SSP5 by the end of the 21st century. This is
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approximately of equal frequency as that in the result by Lee et al. [25], which was obtained by a
multi-model ensemble with the BMA weights based on 17 CMIP5 simulation models. They showed
that both 20- and 50-year return periods across the Korean peninsula will likely reduce to approximately
half for RCP 4.5 and to approximately one-quarter for RCP 8.5 by the end of the 21st century, compared
to the observations from 1971 to 2005.
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Figure 9. Same plots as in Figure 8 but for 20- and 50-year return periods relative to the observations
from 1973 to 2014.

6. Discussion

The idea of the α-correction based on QM proposed in this paper is only based only on the at-site
BC, which may be unreasonable and, and therefore is a limitation of this approach. The α-correction
can be applied to the BC based on some variants of QM [14]. The variation of the CRPScv(α) values
among the grid cells is larger than those among various α-weights, as seen in Figure 5. This high
variation among grid cells may be reduced by using the regional BC, which takes into account the
spatial dependence between nearby grids. Some multivariate spatial BC methods [16,46] with the
α-correction may lead to reduce uncertainty, consideration of spatial pattern or correlation, and to
increased skill of ensembles more than an at-site BC.

Ensembles from various sets of α-weights can be recombined to produce another ensemble.
This ensemble of ensembles is referred to the double ensemble (DE) or stacking [36]. If there are L
number of ensembles in which each ensemble is constructed from a set of αl-weights, for l = 1, · · · , L,
the prediction is a form of ÎDE = ∑L

l=1 v(αl) Î(αl), where v(αl) is another weight for the l-th ensemble,
and Î(αl) is the predicted value from the l-th ensemble with a set of αl . One can choose αl = 0, 0.5, 1
or αl = 0, 1/4, 0.5, 3/4, 1 for simple examples. In this case, the selection of a specific α is no longer
required. As another example, in addition to αl = 0, 1, one can include the ensembles with α∗1 and α∗2 ,
which are the optimal correction rates obtained by the chi-square test statistic and by the CRPScv(α),
respectively, for each grid cell. It is known that this DE generally leads to better prediction than a
single ensemble in the sense of reducing the variance [36], but this requires more computational efforts.
Equal values can be set to v(αl) for a simple average calculation. One may assign different values for
v(αl) based on a cross-validated criterion as in statistical learning.
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The leave-one-out (LOO) cross-validation (CV) based on CRPS was employed in this study to find
an optimal correction rate and to compare weighting schemes. The LOOCV perfect model test and the
model-as-truth experiment have been used to select hyperparameters in the weights and to evaluate
the weighting scheme, respectively, in multi-model ensemble studies [6,27,29,37]. In the statistical
learning community, however, the k-fold CV is preferred over LOOCV due to the higher variance of
LOOCV, than does that of k-fold CV [36]. The k-fold CV approach involves randomly dividing the set
of models into k groups or folds of approximately same size. The first fold is treated as a validation set,
and the method calculates the CRPS(−1) based on the remaining k− 1 folds. This is repeated for all
k-folds; each time, a different fold is treated as a validation set. It finally produces the averaged value
CRPScv similarly to a formula in Equation (16). LOOCV is a special case of k-fold CV in which k is
set to equal the number (K) of models. In practice, one can perform k-fold CV using k = 5 or k = 10
(when K is large). LOOCV is not involved with randomness, whereas the k-fold CV is dependent on
random divisions of models into k groups. The latter approach requires further considerations to be
applicable to the weighting scheme in the multi-model climate ensemble study. If we employed the
k-fold CV instead of LOOCV in the above section, the results might be altered.

The weights in the BMA employed in this study are obtained based on the performance of the
model. The performance is defined by the distance between the historical data and the observations,
which measures how well the model reproduces the historical data close to the observations.
This performance, however, may not guarantee the reliability of future climate change. In some
cases, nonetheless, past trends are strongly related to future trends, e.g., for large-scale greenhouse
gas-induced warming [53] or Arctic sea ice decline [54]. The study by Smith and Chandler [55] in this
issue shows that present-day climate and variability are related to the predicted change in precipitation
in parts of Australia [21]. Therefore, a performance criterion based on the distance between the
historical data and the observations may be necessary in calculating the model weights, but is not
sufficient. In addition to the performance measure, one can include others such as uncertainties in the
model or in the observations, the model convergence criterion [1], or the model independence [5,6].
The α-weighting proposed in this study is related to uncertainties in data. Large uncertainties in the
model or in the observations weaken the confidences on the model performance and on the weights
based on the performance. We can infer that the weights in this situation are determined by more
chance than in the situation with lower uncertainties. Especially, a few models with very high weights
which dominate most other models with very low weights would be unfair and may result in an
unreliable and unrobust prediction. The method in this study was thus proposed to smooth or regulate
such weights.

If we have another set of weights, for instance, dm, such as for the independence of the m-th
model, then a new weighting scheme of combining both weights is obtained by, for m = 1, · · · , K,

um(α) =
wm(α) dm

∑K
l=1 wl(α) dl

. (17)

This approach can lead to a weighting scheme accounting for performance and independence
simultaneously [5,6,27].

One can further consider the α-weighting to the future model data too. It may introduce another
“semi”-bias correction, which adds complexity to the situation. Nevertheless, this would enrich the
methodology of ensemble prediction. We leave this undertaking future work.

7. Conclusions

Multi-model ensemble methods in climatic projection have proved to improve upon the systematic
bias and general limitations of a single simulation model. It has been argued that model uncertainty
can be reduced by attributing more weight to those models that are more skillful and realistic for
a specific process or application. As both bias-correction (BC) and model weighting are common
procedure in impact studies, we considered a weighting scheme that includes both equal and unequal
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weights for a bias-corrected simulation model output. The proposed approach applies an “imperfect”
BC or α-correction to the historical data in computing the model weights, while it applies ordinary BC
to the future data in computing the weighted average for projection.

The proposed weighting scheme prevents the situation where only a few models have very high
weights and the most majority have very low weights, which frequently occurs in the BMA approach.
Our method, conversely, seeks to shift the high weights far from those that are equal. It, therefore,
searches for a balanced “sweet spot” between BMA weights and simple averaging. A weighting
scheme in which an optimal correction rate is selected based on the chi-square test statistic smooths
unfairly high or low weights, while it continues to reject the hypothesis of the uniform distribution.

Based on this generalized or hybrid scheme, researchers can present their optimal results between
equal and BMA weights. We illustrated from model-as-truth experiments that an ensemble with a set
of weights obtained by minimizing the CRPScv(α) can improve the skill to a greater extent than the
BMA and simple averaging. One may provide multiple results from several weighted ensembles to
capture various plausible shapes and uncertainties of future changes.

The numerical results and the selected αs illustrated here using the annual maximum daily
precipitation in the Korean peninsula depend strongly on variables, regions, and simulation model
outputs. The introduction of α-correction and α-weights, however, is a step that can serve to combine
simulation models optimally and with more flexibility. A more refined α-weights method, such as the
one we developed in this study, can deserve to be included in a discourse about tactics to build a better
multi-model ensemble in predicting future climate.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/8/775/s1,
Figure S1: Distributions of the weights obtained from various α-corrections for each grid cell. Red, green, and
blue bars represent the α-weights with α = 0, 0.4, 0.7, respectively. Figure S2: Distributions of the weights
obtained from various α-corrections for each grid cell. Red, green, and blue bars represent the α-weights with
α = 0.2, 0.5, 0.8, respectively. Figure S3: Plots of the chi-square test statistics as α changes from 0 to 1, and the
selected optimal correction rate α∗ for 15 grid cells. Figure S4: Computed values of CRPScv(α) defined as in
Equation (16) and the selected optimal correction rate α for 15 grid cells and for the future period 1 (2021–2060)
under the SSP3 scenario. Figure S5: Same as Figure S4 but for the future period 2 (2061–2100) under the SSP3
scenario. Figure S6: Same as Figure S4 but for the future period 1 (2021–2060) under the SSP5 scenario. Figure S7:
Same as Figure S4 but for the future period 2 (2061–2100) under the SSP5 scenario.
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