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Abstract: In this pilot study, low-cost air pollution sensor nodes were fitted in waste removal
trucks, hospital vans and taxis to record drivers’ exposure to air pollution in Central London.
Particulate matter (PM2.5 and PM10), CO2, NO2, temperature and humidity were recorded in real-time
with nodes containing low-cost sensors, an electrochemical gas sensor for NO2, an optical particle
counter for PM2.5 and PM10 and a non-dispersive infrared (NDIR) sensor for CO2, temperature and
relative humidity. An intervention using a pollution filter to trap PM and NO2 was also evaluated.
The measurements were compared with urban background and roadside monitoring stations at Honor
Oak Park and Marylebone Road, respectively. The vehicle records show PM and NO2 concentrations
similar to Marylebone Road and a higher NO2-to-PM ratio than at Honor Oak Park. Drivers are
exposed to elevated pollution levels relative to Honor Oak Park: 1.72 µg m−3, 1.92 µg m−3 and
58.38 ppb for PM2.5, PM10, and NO2, respectively. The CO2 levels ranged from 410 to over 4000 ppm.
There is a significant difference in average concentrations of PM2.5 and PM10 between the vehicle
types and a non-significant difference in the average concentrations measured with and without the
pollution filter within the sectors. In conclusion, drivers face elevated air pollution exposure as part
of their jobs.

Keywords: in-cabin air pollution; mobile sensing; low-cost sensors; personal exposure; workplace
exposure

1. Introduction

Traffic-related air pollution has a disproportionate local effect on passengers and drivers,
cyclists and pedestrians and residents in areas with a high traffic density [1]. Professional drivers
are particularly at risk due to the amount of time spent inside vehicles in traffic [2]. Exposure to
air pollution is associated with a wide range of adverse health effects such as asthma,
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cardiovascular problems, inflammatory blood markers, adverse respiratory events and lung cancer,
resulting in increased mortality rates [3–5]. Drivers and passengers are exposed to high levels of various
air pollutants such as particulate matter (PM), volatile organic compounds (VOCs), semi-volatile
organic compounds (SVOCs), carbon monoxide (CO) and oxides of nitrogen (NOx), originating from
vehicle emissions and regional sources [6]. There are several factors affecting in-cabin air pollutants
concentrations, such as driving conditions, traffic volume, the type, age and conditions of vehicles,
cabin ventilation settings, commuting distance, vehicle speed, air exchange rate and driving route
types [7].

Several studies have shown that air pollution exposure is higher for people inside a vehicle
cabin than for cyclists or pedestrians outside, within or near high traffic locations [8–12]. Personal
exposure studies have shown that pollution exposure is highest when people are commuting. While
most people only commute one to two hours per day, it is likely that those that are required to
work in this environment are disproportionately affected by high air pollution exposure [13,14].
The interior of a vehicle is a challenging environment for air pollution field studies due to spatial
requirements, vibration, noise and variable temperature [13–15]. However, due to recent improvements
in sensor technologies and testing designs, more in-cabin air quality measurement studies are being
published [7,16–18].

There is significant interest in using low-cost sensors to characterize personal exposure by
measuring pollution concentrations in micro-environments in which people spend time, such as
the workplace, at home and in various means of transport used during commuting [19]. Combining
the different pollution sensors into a node (with signal processing and communication, as well
as data storage and analysis) forms a useful tool to assess air quality. These sensor nodes are
typically characterized by their small size and weight, relatively short response time and low
power requirements [20–22]. Low-cost sensors have developed rapidly in recent years and are
changing the paradigm of air pollution monitoring beyond the geographically restricted roadside
and background monitoring accomplished by dedicated stations. The high time resolution of the
components, combined with the large data throughput and the high spatial resolution made possible
by multiple installations, allows researchers to achieve a more comprehensive understanding of an
individual’s true exposure [20,23,24]. While low-cost sensors are not yet likely to substitute accredited
routine monitoring instruments at fixed-site monitoring stations for the accurate measurements of
well-mixed gases in the atmosphere, they are particularly useful for measurements of short-lived
pollutants with sources located inside cities. Thus, they can supplement the conventional monitoring
station networks and increase the spatio-temporal resolution of measurements [15,25]. In addition,
their small size enables the monitoring of personal exposure; for example, at home, at work and during
transit [26].

Recent advances in research related to in-vehicle air pollution exposure have led to several
innovations in this field. In modern vehicles, for example, a coarse particle filter is built into the
ventilation system. However, such filters are typically not designed to remove gas-phase chemicals or
fine particulate matter, which have been associated with negative health effects [27]. Specially designed
aftermarket filters including activated carbon have become available as in-cabin air cleaners.

The main purpose of this pilot study is to characterize multiple-pollution exposures of professional
drivers in three different sectors in Central London in the UK. Measurements were made in real
time using a low-cost sensor, AirNode Generation One (AGO by AirLabs), which contains an
electrochemical, gas sensor (NO2), an optical particle counter (PM2.5, PM10) and a non-dispersive
infrared (NDIR) sensor (CO2) including sensors for temperature (T) and relative humidity (RH).
The low-cost sensors were mounted in 14 vehicles (three waste removal trucks, seven hospital transport
vans and four taxis) of varying types, ages and mileages. The number of passengers and the state of
the vehicles’ ventilation systems, windows and doors also varied. In addition, the effect of an in-cabin
Air Filtration System (AFS by AirLabs) using a fine particle filter and activated charcoal, chemically
modified to increase its affinity for NO2, was tested under these real-world conditions. The AGO was
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validated against a reference monitoring station and AFS was tested in the laboratory as well as in the
field. This study assesses the in-cabin concentrations of PM2.5, PM10, NO2, and CO2 across a range
of vehicles and operating conditions. To the author’s knowledge, this paper is the first to measure
multiple pollutant exposures in the real-world professional driving settings using low-cost sensors.
In addition, this study tests the utility of the AGO in the field as part of an intervention study and
therefore contributes information that is essential to the development of robust protocols in this area.

2. Materials and Methods

This study is approved by the ethics committee at the University of Copenhagen (Journal no.
504-0104/19-5000). The following section describes the key components of the AGO, its validation
against a reference monitoring station, the laboratory tests of the AFS and the field study design of the
exposure campaigns.

2.1. Description of the Sensor Node, AGO

The AGOs used in the vehicles are compact, low-cost, portable air quality monitoring devices with
dimensions of 88 × 88 × 90 mm. The devices are assembled by AirLabs into weatherproof enclosures
with full exposure to ambient air. Each device includes sensors for measuring PM2.5 and PM10 (SDS-011
from Nova Fitness Co., Ltd.: Jinan, China), NO2 (NO2B43F from Alphasense Ltd.: Braintree, UK),
and CO2, T and RH (SCD30 from Sensirion: Stäfa, Switzerland) at a 1 min time resolution. The AGO is
powered by the vehicle’s battery using a USB cable, has integrated telemetry and automatically reports
measurements to the AirLabs Cloud hosted by Amazon Web Services (AWS). In addition, each node is
equipped with a control board and micro-controller unit (ESP32) to program the sensors.

The SDS-011 sensor [28] is an air quality sensor used for measuring PM based on light
scattering [29], where particle density distribution is determined using the intensity distribution
patterns produced when particles scatter a laser beam [30]. The sensor module includes a fan to ensure
a continuous flow of air through the sensor chamber [31]. An algorithm converts the particle density
distribution into particle mass [32]. The sensor has a resolution of 0.3 µg m−3 and a response time of
10 s [33–36].

For NO2 measurements, the NO2B43F sensor [37] is used. This is an amperometric electrochemical
gas sensor containing four electrodes, where the working principle is based on electrochemistry [19].
The target gas enters the working electrode by diffusion, where it is chemically reduced, resulting in a
current signal. The counter electrode balances the current, and the reference electrode sets the operating
potential of the working electrode. The fourth electrode is auxiliary and compensates for baseline
changes in the sensor. An individual sensor board is used to guarantee a low-noise environment
and optimize the sensor resolution for low parts per billion (ppb) levels. The electrochemical sensor
generates a current proportional to the NO2 concentration. A trans-impedance amplifier converts the
current from the electrochemical cell into a voltage. The voltage is amplified further by a non-inverting
operational amplifier; then, a 16-bit analogue to digital (A/D) converter (ADS1115) samples the output
and produces a digital reading of the voltage level. This is used by the microprocessor to calculate the
actual gas concentration [38–40]. To minimize possible cross-interference from ozone, the NO2 sensors
were fitted with integrated catalytic ozone filters. The performance of these filters was verified in the
laboratory, and the NO2 sensors showed no significant response to ozone in the range of 0–100 ppb.
Cross-interferences from other common gas pollutants were not considered important based on prior
studies [40,41].

The SCD30 sensor [42] measures CO2 using non-dispersive infrared (NDIR) spectroscopy [43].
Temperature and relative humidity sensors are integrated into the same module [44]. The sensors
are calibrated at the factory [45]. The main characteristics of the sensing elements are summarized in
Table 1.
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Table 1. Sensor characteristics.

PM2.5, PM10 [28] NO2 [37] CO2 [42] T [42] RH [42]

Model of sensor SDS-011 Alphasense NO2B43F Sensirion SCD30 Sensirion SCD30 Sensirion SCD30
Working principle Light scattering Electrochemical NDIR By modeling By modeling
Range 0.0–999.9 µg m−3 0–500 ppb 400–10 000 ppm −40 to 70 ◦C 0–100%
Resolution 0.3 µg m−3 1 ppb 30 ppm ± 0.4 + F ◦C * ± 3%
Response time 10 s 60 s 20 s >10 s 8 s

* F = 0.023 × (T [◦C] − 25 ◦C).

2.2. Field Calibration of the Sensor Node

The performance of the AGO for PM2.5, PM10 and NO2 was established by co-locating the
nodes with a reference monitoring station. Validation was performed from December 2017 to
February 2018 by co-locating the AGO at District of Columbia Municipal Regulations’ (DCMR)
Schiedam air quality monitoring station in Rotterdam, the Netherlands. The concentration of NO2

was measured by a reference standard chemiluminescence NOx analyzer, and concentrations of PM
were measured by a Met-One BAM 1020. Measurement conditions ranged from 30% to 70% RH
and −0.2 to 17.5 ◦C. The time series and the correlation plots of the reference NO2 concentrations
and the NO2 concentrations measured by Node03 and Node04 are shown in Figure 1. The linear
regression fit (solid red line) and a 1:1 line (dashed black line) are shown for both sensor nodes in the
scatter plots. Correlation plots and time series plot for PM2.5 and PM10 concentrations are seen in
Appendix A, Figures A1 and A2. The performance metrics for PM2.5, PM10 and NO2 are presented in
Table 2. The high correlation coefficients (r2 = 0.90–0.96) for PM2.5 and NO2 and moderate correlation
coefficient (r2 = 0.71–0.75) for PM10 indicate that the AGOs are capable of capturing the variability in
pollutant concentrations despite wide variations in ambient temperature and relative humidity over
the monitoring period.

2.3. Lab Testing of the Air Filtration System

The Air Filtration System (AFS by AirLabs) was tested under controlled settings using a cuboid
chamber with a volume of 2 m3, representative of the volume of the cabin in a typical car. A mixing
fan inside the chamber allows the homogenization of pollutant levels. NO2 was introduced into the
chamber via a mass flow controller (SLA5800, 0 to 100 mL/min range, Brooks Instruments: Hatfield, PA,
USA), from a calibrated gas mixture (NO2 mole fraction 0.00982 ± 0.00002 in nitrogen, Praxair Norge
AS: Oslo, Norway). NO2 concentrations were measured using a chemiluminescence monitor (Thermo
Scientific Model 42i, Thermo Fisher Scientific Inc.: Waltham, MA, USA) operated with a particle filter at
its inlet. For PM, an internal combustion standard was used to produce size distributions comparable
to those found in traffic. Particles with an aerodynamic diameter of 0.3 µm are used to quantify the
performance. The particles were measured using a scanning mobility particle sizer (TSI Model 3080
Electrostatic Classifier (TSI Incorporated: Shoreview, MN, USA) with TSI Model 3081 Long DMA and
TSI CPC model 3772). The AFS was placed in the chamber with ambient air at 22 ◦C, and an aliquot
of NO2 or PM was introduced into the chamber with mixing fan turned on. The concentrations in
the chamber were monitored for an initial 10 min period to determine background removal due to
air exchange and adsorption onto the walls. Then, the AFS was turned on and the concentrations
monitored until the background concentration was reached.

Figure 2 shows the removal of PM with an aerodynamic diameter of 0.3 µm (left) and NO2 (right)
by the AFS (solid blue line). The black dashed line is the control, which was obtained by observing
the pollutants’ behavior in the chamber without the AFS in operation. For the easy comparison
of the control and the removal by AFS, the starting concentrations were scaled to start at the same
concentration. Even though the AFS was switched off, pollutants were still removed due to aggregation
and adsorption on the walls of the chamber, and 20% of NO2 and PM (d = 0.3 µm) was removed
within 5 min. When the AFS was turned on, a more rapid removal was seen, with a removal of 63%
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of the starting PM (d = 0.3 µm) and NO2 concentrations within 4.5 and 6 min, respectively. These
experiments only measured PM with a diameter of 0.3 µm, but the AFS removes particles of a wide
range of sizes. Particles with a diameter of 0.3 µm are close to the most penetrating particle size,
so both larger and smaller particles are removed more effectively, and so this can be considered the
lower limit for removal efficiency.

Figure 1. Correlation plots (top) for Node03 (right) and Node04 (left) versus reference measurements
for the raw sensor output of NO2. A linear regression fit line (solid red line) and a 1:1 line (dashed black
line) is shown in both panels. Time series plot (bottom) of two sensor nodes (Node03 and Node04) and
reference air quality monitoring station. All data shown are 1 h average values.

Table 2. Performance metrics for sensor output versus reference measurements for Node03 and Node04.

Sensor Species Ndata points Y Intercept Slope r2 RMSE

Node03: PM2.5 1443 −4.02 1.31 0.90 6.88
Node03: PM10 1436 −3.70 1.51 0.71 18.05
Node03: NO2 1464 −5.92 1.08 0.96 5.85
Node04: PM2.5 1327 −3.85 1.26 0.92 5.93
Node04: PM10 1323 −4.71 1.49 0.75 15.44
Node04: NO2 1332 0.85 0.99 0.94 6.14
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Figure 2. PM with a diameter of 0.3 µm (left) and NO2 (right) removal by the Air Filtration System
(AFS) over time in a 2 m3 chamber (solid blue line), and control (dashed black line).

2.4. Field Study Design

The driver exposure campaigns were conducted between August and October of 2019 (with a
total of 56 days of sampling) in Central London, the United Kingdom. The air pollution concentrations
were monitored during work hours using 14 different vehicles. The vehicles were divided into three
campaigns: waste removal trucks, hospital vans (including shuttle buses and ambulances) and taxis.
The characteristics of the different campaigns are summarized in Table 3.

Table 3. Characteristics of the campaigns.

Campaign 1 Campaign 2 Campaign 3

Vehicle type Waste removal trucks
N = 3

Hospital vans
N = 7

Taxis
N = 4

Time period 12–15 August
9–12 September

16–19 September
23–24, 29–30 September
7, 9–11, 15–17 October

Typical work start and end times 14:00–20:00 08:00–16:30 10:00–15:30

Average hours worked 5.5 h 7.5 h 4.5 h

AFS status On Off On Off On Off

Ndata points 1803 1734 4771 4962 935 2015

All in-vehicle monitoring was conducted with the heating, ventilation and air conditioning
(HVAC) set to suit the driver’s comfort. The drivers were asked to keep the windows closed if possible
when the in-cabin filter was turned on. There was no noticeable difference in vehicle size or cabin
volume between the vehicles used within a given class. However, the interior volumes spanned a
factor of four from approximately 2 to 8 m3 between the different campaigns, with waste removal
trucks at 2 m3 and shuttle buses at 8 m3. The size differences are illustrated in Figure 3. All vehicles
were equipped with an AGO to measure the driver’s exposure to air pollution in real-time. The AGO
was placed on the dashboard in front of the passenger seat. In addition, vehicles were provided an
AFS for the reduction of PM and NO2, which was positioned behind the driver’s headrest. For each
vehicle, four days of measuring were conducted; two days with the AFS turned on and two days with
the AFS turned off. The drivers were responsible for starting both devices when their shift started.
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Figure 3. Schematic representation of the vehicles used in the three campaigns, with Campaigns
1, 2 and 3 being waste removal trucks, hospital transport vans and taxis, respectively. The yellow
box represents the AirNode Generation One (AGO), and the blue circle represents the Air Filtration
System (AFS).

Statistical analysis was performed using the non-parametric Wilcoxon–Mann–Whitney Rank
test (i.e., no assumptions of data distributions such as normality) to compare the differences
among measured pollutant concentrations between driving sectors and with and without the AFS.
The statistical significance was assumed at the 5% level (p < 0.05).

3. Results and Discussion

3.1. Driver Exposure Campaigns

In total, 14 vehicles were monitored over 56 working days throughout the study period.
Data from six of the days were excluded because the time series were interrupted due to technical
problems, the disruption of communication or AGO handling errors. For each day, the pollutants
and in-cabin conditions (temperature and relative humidity) were averaged and a standard deviation
was determined; see Table A1. During monitoring, the average in-cabin temperature ranged from
11 to 49 ◦C (average = 32.1 ◦C), and the average in-cabin relative humidity ranged from 9.4% to 81%
(average = 31.1%). The high maximum and average temperatures are because direct sunlight hit the
AGO during measurements. The data show substantial variability in in-cabin concentrations of all
pollutants between sectors, drivers and times and locations, which is due to the changes in traffic
density, air exchange rate, meteorology, vehicle operational mode and the air quality of the driving area.
The large standard deviations are a result of this variation; for illustration, see Table A1 and Figure 4.
In addition, road type and time-of-day had some indirect influence on the in-vehicle pollutant levels.

3.1.1. NO2 Concentrations

Electrochemical gas sensors take time to stabilize when they are powered up after being switched
off for a while. Due to this fact, the data before the point of stabilization were removed from
measurements. Approximately 20% of the NO2 data for each test run were excluded. Furthermore,
the sensors could have technical issues, in part due to the difficulty of resolving small changes in
electrochemical current (µA), leading to the additional exclusion of 5% of the total data. There is a
certain uncertainty (15%) regarding the zero-baseline, since the off-sets were adjusted manually.

As shown in Table A1, average NO2 concentrations were relatively high and had a high variability,
ranging from 46.7 to 150.9 ppb for Campaign 1, 29.9 to 113.9 ppb for Campaign 2 and 30.9 to 107.6 ppb
for Campaign 3. The large variations in the NO2 concentrations likely reflect periods when the vehicles
were in heavy traffic in Central London. EU guidelines stipulate that ambient NO2 should not exceed
21 ppb on average annually, or 106 ppb on average over 24 h [46,47]. The results are compared with the
reference roadside Urban Atmospheric Observatory placed at Marylebone Road, London. The in-cabin
values are higher than at the reference roadside monitor on Marylebone Road, which likely reflects
NO2 gradients between the middle of the road and the roadside monitor.

On some of the days, drivers were exposed to NO2 levels above the recommended levels for
short-term exposure (1 h) of ambient air. The results show periods failing to meet the long-term
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exposure (1 year) standards; however, none of the drivers are exposed to these levels on an average
daily basis over the working year. Although these standards do not apply to occupational exposure
and indoor environments, the data still indicate that drivers face health risks. The drivers in all three
campaigns were exposed to high levels of NO2, in part due to frequent stops involving the opening
of the cabin doors. An example of this is shown in Figure 4, which presents in-cabin concentrations
of PM2.5, PM10, NO2 and CO2, as well as temperature and relative humidity for a waste removal
truck during working hours (Campaign 1). This reflects exposures to diesel exhaust emissions, so the
findings here have direct implications for urban areas throughout Europe due to the high proportion
of diesel vehicles in the fleet. It was measured on the 12 (A) and 14 (B) of August; the AFS was only
used on the second day. High peaks of NO2 were associated with local sources and are a proxy for
vehicle emissions.

Figure 4. Time series plot of the exposure of a professional driver in a waste removal truck during a
working shift. The Air Filtration System (AFS) was switched off on August 12 (A), and it was turned
on on August 14 (B). Note the different scales of the y-axes.

3.1.2. PM Concentrations

Figure 4 shows a time series of in-cabin concentrations for two days of measurements in Campaign 1.
Average in-cabin PM concentrations were relatively low with high variability. Average PM2.5

concentrations for Campaigns 1, 2 and 3 were in the range 2.5 to 8.0 µg m−3, 1.1 to 7.3 µg m−3 and
0.9 to 2.8 µg m−3, respectively. Average PM10 concentrations for Campaigns 1, 2 and 3 were 3.9 to
20.6 µg m−3, 3.3 to 11.9 µg m−3 and 2.8 to 10.5 µg m−3, respectively. For comparison, EU guidelines
stipulate that ambient PM2.5 should not exceed 10 µg m−3 annual average or 25 µg m−3 24 h average,
and that PM10 should not exceed 20 µg m−3 annual average or 50 µg m−3 24 h average [47]. These
guidelines do not apply to indoor and work environments; however, they give an indication of the air
quality in the work environment. The concentrations of PM were highest in Campaign 1, as seen for NO2,
due to the type of work and frequent stops with opening doors. While the time-averaged concentrations
were below the recommended exposure limits for ambient air, drivers were exposed to transient peaks
exceeding these thresholds; see Figure 4. Concentration changes between days in a given campaign were
generally within a standard deviation of one another. The PM results were compared with the reference
roadside Urban Atmospheric Observatory on Marylebone Road, London. The in-cabin values are lower
than those of the roadside monitor, indicating that the built-in filtration system in the vehicles prevents
some of the particles from entering the vehicle cabin.

The number of occupants in the vehicles is also an important consideration when interpreting
PM2.5 and PM10 data, since PM can be re-suspended by human activities [48] and therefore would be
expected to be higher on runs with a higher number of occupants and with more activity. For all three
campaigns, correlations between PM and CO2 and RH were investigated. Given the assumption that
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the more the occupants, the higher the concentration of CO2 and RH, PM concentrations were expected
to increase with the number of occupants due to their activities. Although no such correlation was
found for Campaign 1 (r2 < 0.05), a very poor correlation was found for Campaign 2 (r2 < 0.13) and a
poor correlation for Campaign 3 (r2 < 0.3). The poor or non-existing correlations imply that the PM
concentrations were affected by outside sources. Almost all the particles from diesel engine exhausts
are less than 0.05 µm [49] and are therefore unlikely to affect the PM concentrations due to the low mass
of very small particles. Their contribution to PM concentration cannot be detected by the used low-cost
sensors, as the values are below the limit of detection of 0.3 µm [50]. This implies that, even if several
particles emitted from the used vehicles or surrounding vehicles enter the cabin, their contributions
to the PM concentrations may be relatively low. As a result of this, PM mass concentrations are in
general not a sensitive indicator of vehicle emissions, due in part to the background of both primary
and secondary aerosols in fine particle mode.

3.1.3. CO2 Concentrations

Campaigns 2 and 3 included passengers, and the CO2 concentrations were higher than in
Campaign 1. The averages were in the range 417.2 to 555.9 ppm, 466.5 to 1240.8 ppm, and 832.7
to 1302.2 ppm, for Campaigns 1, 2, and 3, respectively. The number of passengers in the vehicle has a
noticeable influence on the in-cabin air quality [51]. During our natural breathing process we exhale
CO2, which in a confined environment, such as a vehicle cabin, can accumulate [52]. Elevated levels
of CO2 are known to impair cognitive function [53]. While there is no prescribed CO2 limit for
passenger cars, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
Standard 62-2001 suggests 1200–1300 ppm is an acceptable level in the cabin, and a maximum allowable
concentration of 5000 ppm 8-h [54]. This means that strategies to reduce in-cabin pollutant exposures
in drivers need to ensure that they do so without creating such an air tight environment that CO2

build-up itself becomes a significant health concern. CO2 is likely not the harmful agent, but is rather
an indicator of harmful concentrations of other pollutants [55].

Several studies have found that the concentration of CO2 can increase rapidly [56,57]. The rate of
increase in concentration is dependent on the vehicle volume and air ventilation rate [58]. In general,
newer vehicles are better sealed and have lower ventilation through leakage and would therefore
show higher CO2 concentrations [59]. In addition, people exhale water vapor during respiration,
raising the relative humidity. This is especially the case in which the HVAC system is operated in the
recirculation mode, as is often done to prevent outdoor-polluted air from entering. The data from
Campaign 2, shown in Figure 5, illustrate how the in-cabin air quality is influenced by additional
passengers. This time series shows the exposure levels of PM2.5, PM10 and CO2 together with the
temperature and relative humidity in a shuttle bus driving patients between St. Thomas’ Hospital
and Guy’s Hospital. The route is 10 km and is driven in 20 to 45 min, depending on traffic density.
Each trip is visible in the air pollution data since the levels of CO2 and relative humidity (RH) rise
during the route due to the exhalation of the passengers and driver.

3.1.4. Impacts of AFS

Data from all campaigns are averaged and shown in Figure 6. Each campaign is divided into two
categories, determined by the status of the AFS, and includes an assessment of in-cabin exposures
with and without the AFS in operation. In most cases, in-cabin concentrations of PM and NO2 showed
a decrease when the AFS was turned on; the magnitude of the decrease varied depending on the
vehicle and its ventilation settings and the pollutant (Table A1, Figure 6). To quantify the differences
between the groups, the Wilcoxon–Mann–Whitney test is applied. Statistical reductions in PM2.5

and PM10, but not NO2, were observed with AFS across all sectors, but were not robust to post
hoc comparisons between groups, reflecting the small number of vehicles considered (Table A1).
The in-cabin pollutant concentrations of PM likely varied between the campaigns due to occupation,
vehicle type, the location of the driver, traffic density and meteorological conditions such as wind
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direction and strength, which influence background pollutant concentrations as well as the dispersion
of pollutants. It is beyond the scope of the current study to address these determinants in detail, due to
the limited number of vehicles considered in this pilot project, but there is an urgent need to address the
factors that influence cabin pollutant exposures in future. The Wilcoxon–Mann–Whitney test is used to
see the differences among the groups and reveals a non-significant difference (p-value > 0.05) between
the averages with and without AFS turned on within the different campaigns; see Table 4. Additionally,
all campaigns were combined, and using the Wilcoxon–Mann–Whitney test, all measurements for
on vs. off were compared. However, since these were measured during different weeks, the urban
background levels from Honor Oak Park were subtracted to adjust for any background variability
between monitoring. These tests also showed a non-significant difference between the averages with
and without AFS turned on for the campaigns.

Figure 5. Time series plot of the exposure of a professional driver in a shuttle bus September 9 with the
Air Filtration System (AFS) switched on.

The results are compared with the two public reference monitoring stations: the roadside Urban
Atmospheric Observatory on Marylebone Road and the urban background monitoring station at Honor
Oak Park. Concentrations of PM2.5, PM10 and NO2, measured at Marylebone Road, are averaged within
the same period as the campaigns and illustrated with black, dashed lines in Figure 6. The Marylebone
Road records show similar values for PM and NO2 as those seen in vehicles and a higher NO2 to PM
ratio than the Honor Oak Park urban background record. This suggests that, in addition to the regional
sources, NO2 also has sources on the road itself. While PM is also produced on the roadway, this is not
clear from our data, since the applied low-cost sensors do not accurately detect on-road PM levels in
the ultrafine region. However, the focus of this study is the use of low-cost sensors, and there is not
an effective low-cost sensor for ultrafine particles. The excess pollution exposure of the professional
drivers, relative to the background exposure, as shown by the regional monitoring station at Honor
Oak Park, is 1.72 µg m−3, 1.92 µg m−3 and 58.38 ppb for PM2.5, PM10 and NO2, respectively. The excess
exposure was determined relative to the Honor Oak Park station averaged over the corresponding
time intervals.
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Table 4. p-values obtained from Wilcoxon–Mann–Whitney test among the different groups.
Campaign 1 includes waste removal trucks (N = 3), Campaign 2 includes hospital vans (N = 7)
and Campaign 3 includes taxis (N = 4). ON = with in-cabin filtration, OFF = without in-cabin filtration.

PM2.5 PM10 NO2

Campaign 1 vs. Campaign 2 <0 <0 0.012
Campaign 1 vs. Campaign 3 0.0010 0.021 0.74
Campaign 2 vs. Campaign 3 0.0070 0.064 0.13

Campaign 1 ON vs. OFF 0.48 0.48 0.88
Campaign 2 ON vs. OFF 0.065 0.56 0.22
Campaign 3 ON vs. OFF 0.0037 0.32 0.43

Figure 6. Campaign-averaged in-cabin concentrations of PM2.5 (A), PM10 (B), NO2 (C) and CO2 (D) as
well as temperature (E) and relative humidity (RH, F) for the three different campaigns with standard
deviations. All averages are based on 1 min time averages. The black, dashed line represents the
background concentration measured at the fixed road reference monitor at Marylebone Road in the
same period as the campaigns.

Another research work performed by Enviro Tech Services [60] tested the in-vehicle performance
of the AFS while driving around in Central London. The measurements were conducted under
controlled ventilation settings (non-recirculation with a fan speed of 1 (1–7) or the fan switched off).
They concluded that, under specific settings (ventilation off), the AFS can reduce NO2 and PM2.5

pollution levels by 95% within 12 min. In the current study, there were limitations to the ability of the
test to determine the effect of the AFS on PM due to several factors; the main causes of this were that
there were uncontrolled ventilation settings and only one AGO per vehicle, and therefore a differential
measurement could not be made. PM levels outside the vehicle were highly variable, both locally
and between one day and another. In addition, vehicle ventilation settings were variable as they
were changed by the drivers throughout the day, in addition to opening windows and doors. The air
exchange rate inside the cabins is an additional confounding factor. The AFS has an airflow of 34 m3

per hour, but when the cabin volume increases, the air exchange rate decreases. In particular, this effect
can be seen in Campaign 2, where the vehicles were considerably larger than in Campaigns 1 and 3.
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If the doors and windows are open or the ventilation system is set to high, the cabin is flooded with
polluted air from the roadway, interfering with the observation of the effect of the filtration system.

For these reasons, although the chamber experiments and the work performed by Enviro Tech
Services showed a rapid and effective removal of PM and NO2, the intervention tests were inconclusive.
Rather than optimizing the driving conditions to show the effectiveness of the AFS (which has already
been shown experimentally, in Section 2.3), we investigated its operation under real-world conditions,
where its benefits are balanced against the vagaries of human behavior. This highlights the need to be
aware that these units have to be used within a specific set of conditions if the driver wants to achieve
the maximal benefit.

4. Conclusions

This study assessed real-time concentrations of multiple in-cabin pollutants, including PM2.5,
PM10, NO2 and CO2 in 14 vehicles (three waste removal trucks, three shuttle buses, four ambulances
and four taxis) of varying ages, mileages and ventilation settings during typical workdays in London,
the UK, using a low-cost air pollution monitoring device. Routes and operational modes also varied.
In addition, in this real-world study, we tested an intervention using an Air Filtration System (AFS)
capable of reducing the levels of PM2.5, PM10 and NO2. The data showed substantial temporal
variability in in-cabin concentrations of all pollutants between sectors, drivers and time and space due
to the different traffic characteristics, road types and meteorology and the generally complex pollution
landscape. Across all sectors, we found preliminary evidence suggesting that the AFS can reduce
in-cabin PM concentrations, but not NO2. The data by individual sector were equivocal but reflected the
relatively small number of vehicles considered and the highly variable nature of the pollution levels and
vehicle operation; we cannot make conclusions regarding the efficacy of the intervention. The excess
pollution exposures of the professional drivers relative to the background exposure, as shown by the
regional monitoring station at Honor Oak Park, were 1.72 µg m−3, 1.92 µg m−3 and 58.38 ppb for
PM2.5, PM10 and NO2, respectively. In conclusion, professional drivers face elevated air pollution
exposures as part of their jobs.

Future work may include the further development of the testing setup, including more vehicles
and more sensor nodes inside and one additional outside the vehicle to measure the outdoor pollution
levels. In addition, more experiments could be conducted to study how the moving speed, wind speed,
cleanliness and ventilation system of the vehicles may affect the sensor measurements and the efficiency
of the AFS.
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AFS Air Filtration System
AGO AirNode Generation One
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
Avg. Average
CO Carbon monoxide
CO2 Carbon dioxide
DOAJ Directory of open access journals
HVAC Heating, ventilation, and air conditioning
Max Maximum
MDPI Multidisciplinary digital publishing institute
NDIR Non-dispersive infrared
NO2 Nitrogen dioxide
NOx Oxides of nitrogen
PM Particulate matter
ppb Parts per billion
ppm Parts per million
RH Relative humidity
SD Standard deviation
SVOC Semi-volatile organic compound
T Temperature
VOC Volatile organic compound

Appendix A

Appendix A.1. Time Series and Correlation Plots

Figure A1. Correlation plots (top) for Node03 (right) and Node04 (left) versus reference measurements
for the raw sensor output of PM2.5. A linear regression fit line (solid red line) and a 1:1 line (dashed
black line) are shown in both panels. Time series (bottom) of two sensor nodes (Node03 and Node04)
and reference air quality monitoring station. All data shown are 1 h average values.
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Figure A2. Correlation plots (top) for Node03 (right) and Node04 (left) versus reference measurements
for the raw sensor output of PM10. A linear regression fit line (solid red line) and a 1:1 line (dashed
black line) are shown in both panels. Time series (bottom) of two sensor nodes (Node03 and Node04)
and reference air quality monitoring station. All data shown are 1 h average values.

Appendix A.2. Daily Average In-Vehicle Concentrations during All Campaigns

Table A1. Daily average in-cabin concentrations of PM2.5, PM10, NO2 and CO2 and temperature
and relative humidity for the three different campaigns with standard deviations (SD), when the Air
Filtration System (AFS) was switched on and off. All parameters are based on 1 min time averages.
PM values are in µg m−3, whereas NO2 values are in ppb, CO2 is in ppm, T in ◦C and RH in%.

AGO Date Filter PM2.5 (SD) PM10 (SD) NO2 (SD) CO2 (SD) T (SD) RH (SD)

C
am

pa
ig

n
1

104

12 August OFF 5.1 (2.0) 10.5 (2.9) 71.3 (24.2) 555.9 (129.2) 31.4 (1.8) 36.6 (5.7)
13 August OFF 3.1 (1.6) 7.2 (3.5) 41.9 (24.5) 493.2 (46.2) 41.7 (3.9) 13.1 (3.6)
14 August ON 2.5 (1.5) 3.9 (2.9) 52.0 (39.4) 487.9 (49.6) 36.7 (2.5) 31.9 (3.9)
15 August ON 2.8 (1.2) 4.8 (2.0) 51.9 (29.2) 472.2 (49.3) 39.7 (3.4) 18.0 (3.9)

112

12 August OFF 8.0 (2.8) 19.2 (6.7) 62.1 (19.7) 430.4 (60.6) 29.3 (0.9) 39.1 (3.5)
13 August OFF 5.6 (3.2) 12.8 (6.7) 57.1 (40.5) 486.4 (41.0) 33.9 (1.6) 20.7 (3.7)
14 August ON 5.6 (3.5) 11.4 (7.5) 52.4 (26.0) 417.2 (63.9) 30.2 (1.0) 46.2 (2.0)
15 August ON 5.8 (2.6) 12.7 (5.9) 46.7 (34.9) 497.0 (49.5) 34.5 (1.8) 24.5 (2.8)

114

14 August OFF 3.2 (2.5) 7.7 (5.8) 150.9 (91.8) 459.0 (56.3) 29.5 (1.6) 49.1 (2.8)
15 August OFF 3.2 (2.1) 6.9 (4.2) 125.8 (83.2) 460.0 (41.1) 32.8 (1.9) 28.9 (2.6)
12 August ON 7.7 (5.0) 20.6 (12.0) 106.7 (89.9) 507.5 (98.5) 27.5 (0.7) 44.9 (3.3)
13 August ON 3.3 (2.6) 7.9 (6.5) 114.8 (104.7) 465.0 (49.7) 32.7 (2.0) 24.9 (5.3)
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Table A1. Cont.

AGO Date Filter PM2.5 (SD) PM10 (SD) NO2 (SD) CO2 (SD) T (SD) RH (SD)
C

am
pa

ig
n

2

101

9 September OFF 3.2 (2.5) 8.4 (7.6) 52.7 (17.8) 1014.6 (370.3) 30.9 (2.3) 34.8 (3.9)
10 September OFF 4.2 (2.0) 8.7 (3.9) 79.0 (31.2) 915.9 (279.1) 32.8 (3.1) 29.4 (5.6)
11 September ON 2.5 (0.5) 7.5 (2.5) 60.2 (26.5) 933.5 (272.6) 30.5 (3.3) 40.1 (2.9)
12 September ON 2.3 (0.9) 6.0 (3.1) 46.2 (22.5) 684.3 (126.0) 30.9 (4.1) 39.4 (7.7)

104
12 September OFF 2.1 (0.6) 5.5 (2.0) 44.9 (22.6) 563.3 (107.3) 35.7 (5.2) 30.5 (7.8)
9 September ON 2.0 (0.5) 4.9 (2.0) 47.8 (18.9) 1099.5 (645.8) 32.9 (2.3) 30.4 (3.7)
10 September ON 5.2 (2.5) 9.3 (4.3) 48.1 (25.0) 827.2 (354.0) 34.6 (4.6) 26.7 (6.7)

109

9 September ON 2.4 (1.3) 4.9 (2.5) 54.0 (21.7) 1235.9 (651.5) 36.0 (2.9) 27.2 (3.2)
10 September ON 3.9 (2.7) 6.6 (4.0) 67.4 (25.7) 1240.8 (615.7) 32.6 (4.7) 27.8 (7.6)
11 September ON 2.4 (0.8) 6.6 (4.1) 37.7 (24.9) 765.5 (225.9) 32.2 (5.2) 29.9 (6.1)
12 September ON 1.7 (0.6) 4.6 (2.3) 52.8 (22.8) 762.3 (232.7) 36.6 (4.7) 30.7 (7.6)

112
10 September OFF 5.4 (2.7) 11.0 (3.8) 85.7 (49.4) 529.6 (109.0) 30.9 (5.9) 34.2 (10.1)
11 September OFF 3.4 (1.2) 11.7 (3.2) 113.9 (34.3) 475.9 (69.8) 28.7 (4.2) 39.9 (4.2)
12 September OFF 3.0 (1.6) 9.8 (4.7) 101.0 (42.9) 466.5 (53.5) 28.8 (5.1) 43.2 (8.3)

114

9 September OFF 1.7 (0.5) 3.8 (1.4) 74.0 (25.9) 803.6 (451.1) 32.1 (3.2) 35.0 (4.1)
10 September OFF 3.6 (1.9) 7.0 (3.6) 71.8 (33.3) 704.16 (256.7) 34.0 (3.8) 30.2 (5.9)
11 September ON 1.7 (1.1) 5.1 (2.6) 65.4 (27.1) 741.0 (253.1) 32.4 (3.9) 39.3 (5.2)
12 September ON 1.1 (0.4) 3.3 (1.5) 55.4 (29.9) 594.9 (135.0) 37.1 (5.6) 33.0 (8.5)

109

16 September OFF 6.4 (3.6) 8.0 (3.9) 55.2 (34.8) 724.4 (163.6) 31.6 (3.1) 35.5 (8.4)
17 September OFF 2.9 (1.4) 6.4 (3.4) 60.0 (31.6) 793.8 (370.8) 30.2 (3.6) 27.0 (8.1)
18 September ON 3.2 (2.1) 7.4 (4.1) 67.9 (37.3) 663.0 (234.1) 32.0 (4.6) 21.3 (4.9)
19 September ON 3.2 (1.3) 8.0 (2.6) 57.5 (35.6) 775.8 (455.2) 35.0 (4.9) 22.9 (8.0)

114

18 September OFF 2.5 (1.6) 9.3 (5.3) 36.0 (23.3) 799.8 (349.5) 30.1 (2.7) 28.1 (3.6)
19 September OFF 3.4 (1.6) 11.9 (5.0) 50.2 (30.3) 876.7 (438.1) 26.7 (7.9) 30.7 (5.5)
16 September ON 7.3 (3.8) 10.3 (5.9) 30.9 (21.8) 686.2 (228.5) 30.3 (1.6) 44.0 (3.9)
17 September ON 3.0 (2.0) 9.4 (3.3) 29.9 (21.7) 795.1 (178.3) 27.7 (3.9) 32.9 (10.2)

C
am

pa
ig

n
3

104 23 September ON 1.2 (0.6) 2.4 (1.3) 41.1 (22.5) 833.7 (335.1) 35.1 (2.7) 29.1 (5.5)

104
16 October OFF 2.6 (0.6) 7.0 (2.0) 86.0 (31.7) 981.3 (414.4) 31.5 (3.0) 34.0 (10.6)
17 October OFF 2.0 (0.6) 4.5 (2.0) 54.0 (42.9) 1049.4 (370.7) 31.8 (2.1) 29.6 (3.8)
15 October ON 2.3 (1.1) 4.6 (2.6) 40.1 (21.5) 872.6 (351.0) 32.8 (1.0) 27.8 (3.7)

114

29 September OFF 1.0 (0.4) 3.4 (2.1) 107.6 (69.6) 899.9 (304.6) 28.1 (3.8) 54.9 (9.7)
30 September OFF 1.2 (0.5) 3.7 (2.7) 96.0 (61.7) 1271.2 (294.4) 28.8 (2.6) 44.6 (4.8)
23 September ON 2.4 (0.4) 10.5 (2.0) 74.6 (38.6) 832.7 (290.7) 31.2 (1.8) 38.5 (1.9)
24 September ON 2.8 (1.1) 10.4 (5.2) 70.2 (85.5) 855.7 (353.1) 28.2 (3.4) 56.1 (9.3)

114

10 October OFF 2.1 (1.0) 5.9 (2.9) 30.9 (26.2) 1302.2 (584.5) 30.6 (1.8) 37.6 (4.3)
11 October OFF 1.7 (1.0) 4.1 (2.6) 65.4 (27.1) 931.8 (31.0) 31.1 (2.1) 41.8 (4.4)
7 October ON 1.1 (0.9) 3.1 (2.2) 44.9 (24.1) 1214.9 (578.4) 29.0 (2.0) 42.8 (4.7)
9 October ON 0.9 (0.7) 2.8 (1.6) 33.5 (25.3) 1218.6 (501.8) 30.6 (1.4) 32.6 (2.9)
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