
atmosphere

Article

Evaluation of Historical CMIP5 GCM Simulation
Results Based on Detected Atmospheric Teleconnections

Erzsébet Kristóf 1,2, Zoltán Barcza 1,2,3,* , Roland Hollós 1,2, Judit Bartholy 1

and Rita Pongrácz 1

1 Department of Meteorology, Eötvös Loránd University, Pázmány P. s. 1/A, H-1117 Budapest, Hungary;
ekristof86@caesar.elte.hu (E.K.); hollorol@caesar.elte.hu (R.H.); bartholy@caesar.elte.hu (J.B.);
prita@caesar.elte.hu (R.P.)

2 Excellence Centre, Faculty of Science, Eötvös Loránd University, Brunszvik u. 2,
H-2462 Martonvásár, Hungary

3 Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129,
165 21 Prague 6, Czech Republic

* Correspondence: zoltan.barcza@ttk.elte.hu

Received: 27 May 2020; Accepted: 2 July 2020; Published: 7 July 2020
����������
�������

Abstract: Atmospheric teleconnections are characteristic to the climate system and exert major
impacts on the global and regional climate. Accurate representation of teleconnections by general
circulation models (GCMs) is indispensable given their fundamental role in the large scale circulation
patterns. In this study a statistical method is introduced to evaluate historical GCM outputs of the fifth
phase of the Coupled Model Intercomparison Project (CMIP5) with respect to teleconnection patterns.
The introduced method is based on the calculation of correlations between gridded time series of the
500 hPa geopotential height fields in the Northern Hemisphere. GCMs are quantified by a simple
diversity index. Additionally, potential action centers of the teleconnection patterns are identified on
which the local polynomial regression model is fitted. Diversity fields and regression curves obtained
from the GCMs are compared against the NCEP/NCAR Reanalysis 1 and the ERA-20C reanalysis
datasets. The introduced method is objective, reproducible, and reduces the number of arbitrary
decisions during the analysis. We conclude that major teleconnection patterns are positioned in the
GCMs and in the reanalysis datasets similarly, however, spatial differences in their intensities can
be severe in some cases that could hamper the applicability of the GCM results for some regions.
Based on the evaluation method, best-performing GCMs can be clearly distinguished. Evaluation of
the GCMs based on the introduced method might help the modeling community to choose GCMs
that are the most applicable for impact studies and for regional downscaling exercises.

Keywords: teleconnection patterns; teleconnection method; diversity index; CMIP5; ERA-20C;
historical GCM outputs; local polynomial regression model; NCEP/NCAR Reanalysis 1

1. Introduction

Atmospheric teleconnections are persistent, large-scale phenomena that link the variability of
meteorological parameters across large geographical distances. Teleconnections are studied by the
identification of distant geographical areas with co-varying meteorological state variables and are
visualized by teleconnection patterns. The most intense regions of the teleconnections are called
action centers [1–3]. Patterns of the large-scale atmospheric circulation in the Northern Hemisphere
(hereinafter referred to as NH) were identified by Wallace and Gutzler [1] by examining teleconnectivity
maps. These maps were obtained from the calculation of empirical correlations of gridded geopotential
height datasets at the isobaric surface of the 500 hPa field (Z500). Horel [2] applied rotated principal
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component analysis (RPCA) on the Z500 to detect teleconnections. Barnston and Livezey [3] also
conducted RPCA but on the geopotential height field at the 700 hPa isobaric surface for the detection
of the teleconnections.

General circulation models (GCMs) are widely used to quantify climate change signal for
historical time periods and for the future as well [4,5]. Reanalysis datasets provide observation-based,
long term, high quality reference dataset for the climate system [6,7] that enables the comparison of GCM
simulations with the real world circulation patterns. The number of studies dealing with the comparison
of GCM outputs to reanalysis datasets has growing since the Coupled Model Intercomparison Project
(CMIP) was launched within the framework of the World Climate Research Program (WCRP) in 1995.
To get reliable results from GCM projections, identification of their associated large-scale circulation
systems is required to benchmark their ability to simulate the major circulation features including the
location of the polar front, the jet stream, and the synoptic systems. As teleconnection patterns are
supposed to be represented by state-of-the-art GCMs, their analysis provides a mechanism to evaluate
the quality of GCMs [8].

In the last decade, numerous studies focused on the datasets of the fifth phase of the CMIP
(CMIP5), which were disseminated within the framework of the Fifth Assessment Report (AR5) of the
Intergovernmental Panel on Climate Change (IPCC) [5]. A growing number of studies focus on winter
circulation patterns in the NH in the Euro-Atlantic region [9–12]. Teleconnections and their effects on
atmospheric variables were also studied in the region of the Mediterranean Sea both by using regional
climate models (RCMs) [13,14] and GCMs [15]. Recently, the connection between teleconnections
detected in the Eurasian region (e.g., the East Atlantic/West Russia and the Scandinavian patterns)
and distant areas in Asia were examined [16] while in the region of the Pacific Ocean, among others,
the North Pacific Oscillation (NPO) was analyzed [17].

To assess the possible socio-economic effects of the changing climate in the 21st century is a highly
relevant task. For that purpose, GCM results are used in downscaling exercises to provide regional
scale, relatively fine resolution projections, i.e., RCM outputs, for impact studies [8,18–20]. Since RCMs
are driven by GCM outputs [21,22], GCM biases may affect the results obtained from RCMs [23].
Consequently, incorrect representation of the teleconnections directly affects RCM results and has the
potential to provide a false climate change signal. Exploitation of GCMs that are characterized by
biased circulation patterns could seriously jeopardize policy relevant decisions.

Various studies attempted to rank GCMs of the CMIP5 by using different model metrics [11,12,24–27].
In this study we introduce a method with the aim to rank the GCMs with respect to the location
and intensity of the teleconnections. For that purpose, first an information entropy-computing
technique (a simple diversity index-calculation method) is applied on the correlation fields of the Z500.
Those diversity fields are adequate to decide whether or not a teleconnection pattern is stable in time
in a specific region. Second, the position of pairs of grid cells with a strongly co-varying geopotential
height time series (i.e., potential action centers) is examined by fitting a local polynomial regression
model on them. GCM evaluation is done by quantitative comparison of diversity fields and regression
models to those obtained from the reanalysis datasets. Results of the comparisons are used to select
the best-performing GCMs taking into account both quality metrics.

The study contributes to the practical applicability of GCM outputs in regional downscaling
exercises and impact studies. Though the study focuses on the CMIP5 dataset, the introduced method
can be applied on any other GCM.
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2. Data and Methods

2.1. Data

Signals of atmospheric teleconnections are detected in the Z500, as it was demonstrated that
teleconnections, e.g., the signals of the North Atlantic Oscillation (NAO), become stronger with
increasing altitude in the troposphere [28].

Two atmospheric reanalysis datasets were used in the study to provide observation based reference
for the geographical location and magnitude of the teleconnections. Those are the twentieth century
reanalysis (hereinafter referred to as ERA-20C) of the European Centre for Medium-Range Weather
Forecasts (ECMWF; [6]), which is available for the period of 1900–2010, and the NCEP/NCAR Reanalysis
1 (hereinafter referred to as NCEP-NCAR R1; [7]) of the National Centers for Environmental Prediction
(NCEP) and the National Center for Atmospheric Research (NCAR), which provides data from 1948
to present. The spatiotemporal resolution and time coverage of these two reanalysis datasets are
adequate to validate historical GCM outputs. The usage of multiple reanalysis products is beneficial
because of their differences in the ability to reproduce low-frequency atmospheric circulation in the
troposphere [29]. Due to the expected differences between the two reanalysis datasets, different ranking
of GCMs is expected [30].

The climate signal of teleconnections can be detected on decadal or longer time scales, consequently
10-year-long and 30-year-long periods were examined. The analysis of 30-year-long periods is
beneficial because the average position of the teleconnections can be determined while the selection
of 10-year-long periods provides us with enough data to conduct analysis on the potential action
centers. The identification method was applied on the daily temporal resolution because action centers,
e.g., in case of the less-intense teleconnection in the region of the Mediterranean Sea, can fade away
if weekly or monthly time aggregation is used. In this study six 30-year-long and ten 10-year-long
overlapping periods were investigated for the period of 1951–2005. The 30-year-long periods were
1951–1980, 1956–1985, 1961–1990, 1966–1995, 1971–2000, and 1976–2005 while the 10-year-long periods
were 1951–1960, 1956–1965, 1961–1970, 1966–1975, 1971–1980, 1976–1985, 1981–1990, 1986–1995,
1991–2000, and 1996–2005.

This period selection logic was supported by the temporal availability of the historical Z500 GCM
datasets, which are available on a daily scale mainly for the interval from 1951 to 2005 [31]. Only winter
months (December, January, and February) were examined in this study when the effects of large-scale
atmospheric circulation are the most prominent. To get an equally long time series, only 30 days were
kept in December and January while 28 days were kept in February. To reduce seasonality and noise
in the data obtained from the Z500 fields, detrended and standardized daily anomaly datasets were
created. For that purpose, first, daily means from the averaging period were subtracted from each
daily data to calculate anomalies. Then, the anomalies were divided by the daily standard deviations
for the averaging period. Finally the linear trend was removed by fitting least square regression [32].

GCM datasets were selected from the CMIP5 project [31] and data were accessed via the website
of the German Climate Computing Centre (DKRZ) (https://esgf-data.dkrz.de/projects/esgf-dkrz/).
GCMs with atmospheric models that are characterized by at least 2.5◦ × 2.5◦ original horizontal
resolution were analyzed. After careful consideration and analysis of the CMIP5 database, 19 GCMs
were selected that fulfilled the requirements. The full list of GCMs that are used in this study are listed
in Table 1. The simulation outputs were interpolated to the common 2.5◦ × 2.5◦ horizontal grid by
applying bilinear interpolation, which means 37 × 144 grid cells in the NH. This model selection and
interpolation method was used to minimize the inevitable errors introduced by interpolation.

https://esgf-data.dkrz.de/projects/esgf-dkrz/
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Table 1. List of the selected general circulation models (GCMs) used in the study.

No. Name of the GCMs 1 Institution Resolution of Atmospheric
Model (lon × lat)

1 ACCESS1-0 [33] Commonwealth Scientific and Industrial Research Organization (CSIRO) and
Bureau of Meteorology (BOM), Australia

1.9◦ × 1.9◦

2 ACCESS1-3 [33] 1.9◦ × 1.3◦

3 CCSM4 [34] National Center for Atmospheric Research (NCAR), United States of America 1.3◦ × 0.9◦

4 CMCC-CM [35,36] Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) 0.8◦ × 0.8◦

5 CMCC-CMS [35,36] (Euro-Mediterranean Centre on Climate Change), Italy 1.9◦ × 1.9◦

6 CNRM-CM5 [37]
Centre National de Recherches Meteorologiques (CNRM), Meteo-France and

Centre Europeen de Recherches et de Formation Avancee en Calcul Scientifique
(CERFACS), France

1.4 ◦ × 1.4◦

7 GFDL-CM3 [38] Geophysical Fluid Dynamics Laboratory (GFDL),
2.5◦ × 2◦8 GFDL-ESM2G [39,40] United States of America

9 GFDL-ESM2M [39,40]

10 HadGEM2-AO [41] National Institute of Meteorological Research (NIMR), Korea Meteorological
Administration, South Korea 1.9◦ × 1.3◦

11 HadGEM2-CC [41] Met Office Hadley Centre (MOHC), United Kingdom 1.9◦ × 1.3◦

12 IPSL-CM5A-MR [42] Institut Pierre-Simon Laplace (IPSL), France 2.5◦ × 1.3◦

13 MIROC5 [43]
Atmosphere and Ocean Research Institute (The University of Tokyo), National

Institute for Environmental Studies (NIES), Japan Agency for Marine-Earth
Science and Technology (JAMSTEC), Japan

1.4◦ × 1.4◦

14 MPI-ESM-LR [44]
Max Planck Institute for Meteorology, Germany 1.9◦ × 1.9◦15 MPI-ESM-MR [44]

16 MPI-ESM-P [44]
17 MRI-CGCM3 [45] Meteorological Research Institute, Japan 1.1◦ × 1.1◦18 MRI-ESM1 [45]
19 NorESM1-M [46,47] Norwegian Climate Centre, Norway 2.5◦ × 1.9◦

1 Experiment r1i1p1 was used except in the case of CCSM4 (where only r6i1p1 is available). In the nomenclature
of Intergovernmental Panel on Climate Change (IPCC) the abbreviation r stands for the realization, i for the
initialization and p for the physics. The letters r, i, and p are followed by numbers that represent different simulations.

2.2. Statistical Analysis

2.2.1. Identification of the Teleconnections

Teleconnections are defined as geographical areas with associated geopotential height time series
that are negatively correlated with each other [1,3]. Identification of teleconnections is performed by the
analysis of correlations between the time series of the Z500 field using the teleconnection method [1,48].

We applied our analysis on the basis of empirical Pearson correlation coefficients (hereinafter
referred to as correlations), which are computed as follows. First, each of the Z500 time series was
correlated with all the other Z500 time series. As a result, 37 × 144 correlation values were obtained
concerning each grid cell from which the minimum value was selected and was referred as the strongest
negative correlation [1,48]. Those were concentrated in several centers (i.e., local minima) as it is
demonstrated in Figure 1 with blue-shaded dots. Then, pairs of grid cells were selected with identical
strongest negative correlations indicating a one-to-one correspondence (i.e., mutually unambiguous
correspondence between the selected grid cells). Each pair of grid cells connected two local minima.
If the associated correlation value was statistically significant the pair can be the potential action center
(hereinafter abbreviated as PotAC) of a single teleconnection. PotACs are also exemplified in Figure 1
with red circles, which are connected with red lines. In our analysis teleconnections were represented
with PotACs, therefore teleconnections were considered as dipoles. Consequently, each grid cell of the
PotAC represents a single pole of the teleconnection hereinafter referred to as pole.

To decide whether correlations were statistically significant or not, a permutation test was carried
out. According to this method, time series of the Z500 field associated with each grid point in a PotAC
were replaced with randomly generated data series. Subsequently, correlations with all the other
time series were computed again. The limit of statistically significant correlations was determined by
examining the distribution of the randomly generated correlations. This test was repeated 1000 times
in the case of each pole. Two sets of random data series were constructed. In the case of the first set,
we assumed that the original Z500 time series were the realizations of normally distributed random
variables, therefore datasets were generated, which follow normal distribution. The parameters of
the distribution were estimated by using the method of moments. In the case of the second set,
the significance test was conducted on datasets, which were the random permutation of the original
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time series. The results suggest that strongest negative correlations below −0.3 could be considered to
be statistically significant at a significance level of 0.1%.
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Strongest negative correlations associated with the grid cells are denoted with blue-shaded dots. Grid
cells of each potential action center are denoted with red circles and are connected with red lines.
Brighter (darker) colors are associated with weaker (stronger) correlations.

Note that our analysis focused only on the NH because majority of the grid cells with statistically
significant strongest negative correlations can be found here. This phenomenon is clearly visible in
Figure 1. For the sake of brevity, the term strongest negative correlation hereinafter implies statistically
significant correlations. Global correlation maps including PotACs for 30-year-long periods were
exemplified by the NCEP-NCAR R1 in Figure S1 while correlation maps concerning only the NH for
both reanalyses are shown in Figure S2 of the Supplementary Material. The similarity of Figure 1 and
Figure S2b suggest that the applied method was less dependent on the selected area.

An investigation was carried out in the case of each reanalysis and GCM for all periods listed above
in Section 2.1. It means the analysis of 21 × 6 cases for the 30-year-long periods and the examination of
21 × 10 cases for the 10-year-long periods.

2.2.2. Evaluation of the GCMs

In this study we evaluated the GCM performance by comparing historical model outputs with the
results obtained from the two reanalysis datasets. Evaluation of the GCMs consists of the following two
steps: (1) the comparison of the distribution of the strongest negative correlations using the temporal
stability method, and (2) the analysis of spatiotemporal distribution of the PotACs.

GCM Evaluation: Stability Patterns

The first step of the GCM evaluation is the comparison of the distribution of the strongest negative
correlations obtained from each GCM with those obtained from the reanalyses. An information
entropy based method was applied, therefore a simple diversity index was constructed to quantify
uncertainty. Details about the measurement of information entropy can be found in Shannon [49],
Simpson [50], and Rényi [51]. In the case of each reanalysis and GCM with respect to each grid cell,
the number of periods was determined when the strongest negative correlations were statistically
significant. We restricted the analysis to the examination of strongest negative correlations below
the 25th percentile of their distribution, which means that values below the 25th percentile were
summarized in the case of 30-year-long and 10-year-long periods, respectively. This procedure enabled
us to distinguish regions in the NH where the presence of teleconnections was considered to be stable
in time. Furthermore, it facilitated the identification of grid cells containing substantial amount of
information within the analyzed field. From this point of view, grid cells were the most common in
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which correlations below the 25th percentile never appeared while the most important grid cells were
those where correlations below 25th percentile appear six (ten) times in the case of the six 30-year-long
(ten 10-year-long) periods. The above defined diversity index was visualized in the form of maps and
were referred to as stability patterns.

We assumed that GCMs did not perform equally well in every region relative to the reanalysis
datasets. In order to take into account these GCM related differences and to avoid the arbitrary
selection of the study region, Monte Carlo simulations were carried out based on the stability patterns.
At first, the same 1% of the grid cells were selected randomly from each GCM and reanalysis dataset.
Then, root-mean-square error values (RMSE) were computed between the selected GCM and the
reanalyses to quantify their similarities/dissimilarities. To get significant results, this method was
repeated 500,000 times. As a result, 500,000 × 19 RMSE values were calculated to evaluate each GCM
with respect to each reanalysis dataset, both in the cases of 30-year-long and 10-year-long periods.
Consequences are drawn from the distribution of those RMSE values. If the performance of a GCM
(quantified by the RMSE) depends on the selection of the study region, the range between the minimum
and maximum of its RMSE values will be larger.

GCM Evaluation: Loess

The second step of the GCM evaluation is the analysis of the distribution of the PotACs with
the application of the local polynomial regression technique (locally estimated scatterplot smoothing,
abbreviated as loess; [52]). Some GCMs might reproduce the spatial dimensions of the teleconnections
accurately while some might fail to locate the PotACs accurately in comparison with the reanalyses.
Since PotAC, which are pairs of grid cells, are typically aligned north-to-south in the reanalyses,
the southerly and northerly located poles could be considered as parts of two hypothetical belts that
surround the NH. Though the poles were not considered to be the realizations of continuous random
variables, due to their large number in the case of the 10-year-long periods, regression curves fitted
on them could be compared to each other. In this approach these regression curves were used to
evaluate GCMs.

To fit regression curves, PotACs were used from all 10-year-long periods where the predictand
(predictor) was the realization of geographic latitudes (longitudes). In accordance with Tukey’s
method [53] based on the interquartile range (IQR), data were considered as outliers and were omitted
when they fall outside the range defined by the IQR of the latitudes ±1.5·IQR. After that, the values of
the predictand, which belong to the same longitude were averaged. The span parameter was estimated
by using the bias-corrected version of the Akaike information criterion [54].

Regression curves fitted on the PotACs obtained from the historical outputs of the GCMs were
compared to the regression curves obtained from the reanalyses by calculating RMSE over a common
area. To cover the largest possible area in the NH, regression curves were fitted on a map with an
Atlantic view (from 177.5◦ W eastward to 175◦ E) and on another map with a Pacific view (from 0◦

eastward to 2.5◦W). With this method a total of four regression models were fitted for each GCM
and reanalysis dataset: two on the southerly located PotAC poles and two on the northerly located
PotAC poles.

Based on the objective metrics described above, GCMs were ranked in terms of performance
relative to the reanalysis datasets. Climate Data Operators [55] were used to pre-process data
including to apply bilinear interpolation on the gridded datasets. Computation and visualization
were carried out in the R statistical computing software version 3.6.1 [56]. Functions of the ncdf4 R
package [57] were applied to handle netCDF files while the following R packages were used to plot
the data (polar stereographic maps are created by the functions matrix.poly and val2col downloaded
from the websites: http://menugget.blogspot.com/2012/04/create-polygons-from-matrix.html and http:
//menugget.blogspot.com/2011/09/converting-values-to-color-levels.html. Last accessed on 04.07.2020.):
fields [58], maps [59], maptools [60], mapproj [61], and RColorBrewer [62]. The loess method was
applied by the functions of the fANCOVA package [63].

http://menugget.blogspot.com/2012/04/create-polygons-from-matrix.html
http://menugget.blogspot.com/2011/09/converting-values-to-color-levels.html
http://menugget.blogspot.com/2011/09/converting-values-to-color-levels.html
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3. Results

3.1. Teleconnections in the Reanalyses and the GCMs

According to the reanalyses, teleconnections can be identified in the NH in each examined time
period over the North Pacific Ocean, over the North Atlantic Ocean, and in the region of the West
Siberian Plain and the Gobi Desert (referred to as Asia). Teleconnections can be detected in almost all
periods in the region of the Mediterranean Sea and the Red Sea (referred to as the Mediterranean region;
Figure 1 and Figures S1 and S2 in the Supplementary Material). The most intense correlations were
associated with grid cells over the North Pacific Ocean while the weakest correlations were detected in
the Mediterranean region. This leads to less-pronounced local minima in the Mediterranean region
if time-averaged strongest negative correlation fields were plotted (Figure S3 of the Supplementary
Material). The two reanalysis datasets provided teleconnections with similar magnitudes, which was
the consequence of the similarly distributed correlations exemplified by histograms in Figure S4 of the
Supplementary Material. However some differences in the positions of the teleconnections could be
observed especially in the Euro-Atlantic region (Supplementary Material Figure S2).

In the case of the GCMs, the strongest negative correlations (i.e., local minima) could be detected
in similar areas as in the reanalyses (Supplementary Material Figure S3; all PotACs obtained from the
GCMs are shown in Figure S5 in the Supplementary Material). However the magnitudes of those
correlations were different in the case of some GCMs. With the exception of the HadGEM2-AO,
the strongest negative correlation fields of the GCMs and the reanalyses were associated with median
values between −0.3 and −0.35 regarding the 30-year-long periods while those were between −0.3 and
−0.4 concerning the 10-year-long periods. The main difference was observable in the shape of the
distribution of the strongest negative correlations. According to Supplementary Material Figure S4,
the strongest negative correlations had left-skewed distributions in the reanalyses, which was less
pronounced in some GCMs. As a consequence, GCMs underestimate the intensity of teleconnections
relative to the reanalyses. The HadGEM2-AO was exceptional because it produced remarkably stronger
correlations. The associated medians were below −0.4 for the 30-year-long periods and −0.6 for the
10-year-long periods.

3.2. Stability Patterns

3.2.1. Comparison of the Distribution of Stability Patterns

Figure 2 shows the spatial distribution of the number of 30-year-long (10-year-long) periods in
which the strongest negative correlation was below the 25th percentile of the correlations in a given
grid cell for selected GCMs and for the two reanalyses (note that the application of the 25th percentile
means variable threshold for the reanalyses and also for the GCMs; see Section 2.2.2). Selected GCMs
that are presented in Figure 2 were representative to the whole set of GCMs. (similar maps for all
GCMs are shown in Figure S6 of the Supplementary Material) Stability of the teleconnection was
increasing with an increasing number of time periods. A small, non-zero number in a specific grid cell
indicates temporal changes in the intensity of the teleconnection in that cell, while zero means that
teleconnection did not occur in any period (according to the method used in this study).

According to the stability patterns of the reanalyses presented in Figure 2, the most stable
teleconnection was located in the region of the North Pacific Ocean. The second most stable could be
detected in the North Atlantic Ocean. However, due to the eastward shift of the most intense regions
of the teleconnection (Figures S1 and S2 in the Supplementary Material), the phenomenon shows
more stability in the north-eastern part of the Atlantic Ocean. A stable but smaller teleconnection
can be found in Asia. The least stable teleconnection was located in the Mediterranean region with
correlations often not reaching −0.4 in this area.
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Difference maps were created based on the stability maps to get further insight into the
similarity/dissimilarity of the GCMs and the reanalyses, and also of the two reanalyses. Difference
maps for selected GCMs are presented in Figure 3 while all maps can be found in Figure S7 of the
Supplementary Material. In the followings we presented cases where differences between the two
datasets were remarkably large. Concerning the 30-year-long periods (Figure 3a), over the south-eastern
part of the North Pacific Ocean the teleconnection was more stable in the NCEP-NCAR R1 relative to
the ERA-20C dataset. On the contrary, in the ERA-20C, teleconnections were more stable over a larger
area in Asia and in the Mediterranean region compared to the NCEP-NCAR R1. In the case of the
10-year-long periods (Figure 3b) similar differences could be detected over the North Pacific Ocean
as in case of the 30-year-long periods. However, over the eastern part of the North Atlantic Ocean,
in the ERA-20C the number of periods with the strongest negative correlation below the 25th percentile
was larger in comparison with the NCEP-NCAR R1 while the opposite was true for the western part
of that region. This indicates a more easterly located teleconnection in the ERA-20C relative to the
NCEP-NCAR R1.

In case of the GCMs similar consequences could be drawn from the examination of the
30-year-long and the 10-year-long periods. The GCMs typically reproduced the teleconnections
in similar geographical areas as the reanalyses, but there were significant differences concerning their
intensities and the position of the most intense regions (Figure 3). The GCMs captured the most stable
regions of the teleconnection over the North Pacific Ocean relatively well, though there was a tendency
to locate it north-eastward relative to the reanalyses. Major discrepancies were noticed over the North
Atlantic Ocean. Several GCMs, e.g., the ACCESS1-0 and the HadGEM2-CC, reproduced the most stable
part of the teleconnection over the western part of the North Atlantic Ocean while in some GCMs,
e.g., the MPI-ESM-LR, the MPI-ESM-MR and the MPI-ESM-P, the teleconnection is captured with
smaller intensity as in the reanalyses. In Asia more than half of the GCMs underestimate the stability of
the teleconnection. The representation of the teleconnection in the Mediterranean region is considered
to be poor. The GCMs tended to produce weaker correlations than the reanalyses with the exception of
the MIROC5, the NorESM1-M, and the HadGEM2-AO. The main areas with the discrepancies in the
cases of the MIROC5 and the NorESM1-M were the North Pacific region and the subtropical areas. As it
was mentioned, correlation field associated with the HadGEM2-AO was remarkably intense compared
to any other reanalyses/GCMs (Supplementary Material Figure S3). However, red-shaded areas in
Figure 3 imply an underestimation of teleconnections relative to the reanalyses. The reason behind
this finding is the following. The HadGEM2-AO did not capture the structure of teleconnections,
which were detected in the reanalyses and in other GCMs, but teleconnections covered almost the entire
NH. As a consequence, the correlations were not as intense in those regions where teleconnections
were detected in the reanalyses.

3.2.2. Comparison of Stability Patterns Based on Monte Carlo Simulations

In order to quantitatively analyze the performance of the models, the stability pattern of each
GCM was compared with the stability patterns of the two reanalyses. As a reference the two reanalyses
were also compared to each other (quantiles of the calculated RMSE values can be found in Table S1 of
the Supplementary Material). We distinguished four cases depending on the chosen reanalysis and the
length of the time periods analyzed. Results of the Monte Carlo simulations are summarized in the
form of boxplots in Figure 4.
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Figure 3. Difference maps of selected reanalyses/GCMs based on the NCEP-NCAR R1. Difference of 
the number of periods with the strongest negative correlation below the 25th percentile of all 
correlations in the given reanalysis/GCM per grid cell (a) in the case of the 30-year-long periods and 
(b) in the case of the 10-year-long periods.  

Figure 3. Difference maps of selected reanalyses/GCMs based on the NCEP-NCAR R1. Difference of the
number of periods with the strongest negative correlation below the 25th percentile of all correlations
in the given reanalysis/GCM per grid cell (a) in the case of the 30-year-long periods and (b) in the case
of the 10-year-long periods.
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Monte Carlo simulations and the RMSE value calculated for the entire NH was negligibly small 
(<0.05). Consequently, the median values could not be used to quantify area-sensitivity of the GCMs. 
For that purpose, the range between the maximum and minimum values of the distributions of the 
RMSE values—hereinafter referred to as the RMSE range—were applied. RMSE ranges associated 
with the reanalyses were remarkably smaller than those associated with the GCMs. There was no 
simulation among the half-million in which the RMSE exceeded two while the RMSE range for the 
GCMs was three on average in all four cases presented in Figure 4. With a few exceptions, the RMSE 
ranges increased with increasing RMSE median. Note that a relatively small range did not 

Figure 4. Distribution of root-mean-square error (RMSE) values with respect to (a,c) the ERA-20C and
(b,d) the NCEP-NCAR R1 obtained from Monte Carlo simulations based on the stability patterns of
(a,b) 30-year-long and (c,d) 10-year-long periods. GCMs are ranked according to their RMSE median.
The ranges of the RMSE values are displayed above the × axis. The RMSE values that were computed
by taking into account all grid cells in the Northern Hemisphere (NH) are plotted with red circles while
the RMSE median of the GCMs is represented with a red straight line with the corresponding value.

If the median values of the RMSE values—henceforth referred to as the RMSE median—are
examined then the largest similarities are observable between the two reanalyses with an RMSE
median of 1 (Figure 4; red dots). The RMSE median obtained from all GCMs was 2 and 2.5 based
on the examination of 30-year-long and 10-year-long periods, respectively (red lines in Figure 4).
Consequently, the analyzed GCMs differed from the reanalyses with 2–2.5 time periods on average,
which was higher than the RMSE median associated with the reanalyses. In all four cases, the RMSE
median of the ACCESS1-0, the CMCC-CM, the CMCC-CMS, the GFDL-ESM2M, the HadGEM2-CC,
the MPI-ESM-LR, and the MPI-ESM-P were below the RMSE median obtained from all GCMs.

For each reanalysis/GCM pairs the difference between the RMSE median obtained from the Monte
Carlo simulations and the RMSE value calculated for the entire NH was negligibly small (<0.05).
Consequently, the median values could not be used to quantify area-sensitivity of the GCMs. For that
purpose, the range between the maximum and minimum values of the distributions of the RMSE
values—hereinafter referred to as the RMSE range—were applied. RMSE ranges associated with the
reanalyses were remarkably smaller than those associated with the GCMs. There was no simulation
among the half-million in which the RMSE exceeded two while the RMSE range for the GCMs was
three on average in all four cases presented in Figure 4. With a few exceptions, the RMSE ranges
increased with increasing RMSE median. Note that a relatively small range did not necessarily imply
good overall GCM performance in all areas, which can be exemplified by the HadGEM2-AO (Figure 4).
In the worst cases the RMSE range exceeded 3.5 while the largest RMSE values even reached or
exceeded the RMSE value of 4 (e.g., in the case of the MRI-ESM1; Figure 4).

The variability of the RMSE values (therefore the RMSE range) was larger when 10-year-long
periods were examined. Therefore, we avoided the comparison of RMSE values against each other
obtained from the analysis of time periods with different lengths. To get further information regarding
the sensitivity of the GCMs with respect to the selected area/reanalysis, the GCMs were plotted on the
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two-dimensional space defined by the RMSE medians and the RMSE ranges. The results are presented
in Figure 5 for the four cases presented in Figure 4. In general, the distribution of the GCMs shows
a large similarity in all four cases. However, some discrepancies can be noticed. The CMCC-CMS
performs exceptionally well in all four cases with relatively small RMSE medians and RMSE ranges.
Two other GCMs performed similarly well as the CMCC-CMS, namely the MPI-ESM-LR on shorter
time scales and the HadGEM2-CC when the ERA-20C was used as a reference dataset. Largest
discrepancies relative to the reanalyses were associated with the HadGEM2-AO and the MRI-ESM1,
which were considered as offscale GCMs in Figure 5.
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Figure 5. Characterization of GCMs in terms of their calculated RMSE medians and RMSE ranges in
the case of (a,b) the 30-year-long periods and (c,d) the 10-year-long periods. The reference dataset is
the ERA-20C in (a,c) and the NCEP-NCAR R1 in (b,d). GCMs with associated RMSE median below the
RMSE median obtained from all GCMs in all four cases are denoted with triangles. The HadGEM2-AO
and the MRI-ESM1 are considered as offscale GCMs, therefore those are omitted from (a,b) and from
(c), respectively.

3.3. Comparison of Loess-Based Regression Applied on the PotACs

Loess regression curves fitted on the PotACs in the case of the reanalyses are shown in Figure 6
while regression curves of selected GCMs and their comparison against the reanalyses can be found in
Figure 7. Maps for all GCMs are presented in Figure S8 of the Supplementary Material. Parameters of
the loess models (span parameter, explained variance (EV), and residual sum of squares (RSS)) are
presented in Table S2 of the Supplementary Material. We would like to stress here that the PotACs were
not supposed to be present in the fitted curve in all locations (i.e., their geographical areas were localized
rather than continuous in space). We used the fitting technique to quantify the similarity/dissimilarity
between the observation based and the modeled circulation patterns.

In the case of the reanalyses the PotAC poles surround the planet in two hypothetical belts
(hereinafter referred to as southern and northern belts), which are more pronounced above oceanic
areas compared to continental areas due to the larger number of PotACs over the oceans as it can be seen
in Figure 6. Each of the loess regression curves represents one of those belts. In general, the distance



Atmosphere 2020, 11, 723 13 of 22

between the southerly and the northerly located regression curves was smaller in continental regions
than above the oceans. The reanalyses were rather similar with RMSE values between 2.9◦ and 4.4◦

(RMSE values are presented in Table S3 of the Supplementary Material). The agreement between the
two reanalyses was larger in the Euro-Atlantic region than in the region of the North Pacific Ocean and
over North America. The above-mentioned areas were regions where teleconnections were detected,
consequently the application of maps with an Atlantic and Pacific view that are centered on those
regions was highly beneficial. The RMSE value between the loess regression curves centered on the
North Pacific Ocean reached 4.4◦ in the southern belt. Smaller but remarkable differences could be
found in the Middle East region. Regarding the northern belt smaller discrepancies could be detected
with RMSE values between 2.9◦ and 3.1◦. The largest difference was found over Europe.

In the case of the GCMs, generally higher EVs can be computed for the loess models fitted in the
southern belt than in the northern belt. Relatively low EV values were associated with the distribution
of the PotAC poles, which were more scattered in some GCMs than in the reanalyses. A good example
is the MPI-ESM-P with respect to the southern belt or the HadGEM2-AO for which the NH was mostly
covered by PotACs (Figure S5 in the Supplementary Material). Due to this anomalous behavior those
GCMs were unable to reproduce the shape of the loess regression curves obtained from the reanalyses.

RMSE values associated with each GCM and medians for all GCMs are presented in Figure 8.
We chose the best-performing GCMs from those that had EVs at least around 50% for all four loess
models (i.e., models fitted on the Atlantic and Pacific view in the southern and northern belts).
The CMCC-CMS and the MPI-ESM-MR were those GCMs that met the above-mentioned criterion and
were among the best-performing 50% of the GCMs in all cases based on their RMSE values. According
to their associated RMSE values, the MPI-ESM-P and the CMCC-CM could also be considered as
best-performing GCMs, though their associated EVs were around or below 30% at least in one case,
therefore the quality of those loess models were considered as poor. It is worth mentioning that the
CNRM-CM5 was unique among the examined GCMs because its RMSE values obtained from the two
belts were relatively close to each other in most cases. This implies good performance in both belts.
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Figure 6. Loess regression curves of the ERA-20C (a,b) and the NCEP-NCAR R1 (c,d) plotted on maps
with the (a,c) Atlantic view and (b,d) Pacific view. The curves are fitted on the southerly and on the
northerly located potential action center (PotAC) poles denoted with blue and red circles, respectively.
Explained variance (EV) of loess models in cases of southerly located PotACs (abbreviated as S) and
northerly located PotACs (abbreviated with N) are indicated above the maps.
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is used as a reference dataset in (a,b), while the NCEP-NCAR R1 is used in (c,d). Blue and red dots
represent RMSE values represented by the northerly and the southerly poles, respectively, while
grey squares indicate the average RMSEs. Red, blue, and grey straight lines denote the median
GCM-performance (expressed by RMSE). GCMs with an EV at least around 50% are denoted with red,
blue, and grey asterisks with respect to the southerly poles, the northerly poles and both poles of the
PotACs, subsequently. The GCMs are ranked in decreasing order according to average RMSE values.

Regarding the CMCC-CM and the MPI-ESM-MR similar RMSE values can be obtained from
the loess models fitted on maps with Atlantic and Pacific views (the largest difference was smaller
than 0.6). Concerning the southern belt, major discrepancies can be observed not only in the North
Pacific region but also in the Euro-Atlantic region. Over North America their regression curves were
neither similar to the ERA-20C nor to the NCEP-NCAR R1. The associated RMSE values regarding the
CMCC-CMS were between 6.3◦ and 7.1◦ while RMSE values were between 5.1◦ and 6.7◦ in the case of
the MPI-ESM-MR. With respect to the northern belts a high degree of similarity can be noticed in the
North Atlantic region. The largest discrepancies were observable over the North Pacific region. It is
worth mentioning that over Europe the loess regression curve obtained from the MPI-ESM-MR was
closer to the regression curve of the NCEP-NCAR R1. RMSE values associated with the CMCC-CMS
were between 3.9◦ and 4.4◦ while the RMSE values obtained from the MPI-ESM-MR were between 3◦

and 3.8◦.
As the reanalyses show significant differences in the above-mentioned regions in the NH,

the similarity between some GCMs and the given reanalysis was higher than the similarity between the
two reanalyses, which was never observable during the analysis of the stability patterns in Section 3.2.

3.4. Synthesis

Based on the comparison of the results of the stability patterns and the loess regression curves,
the CMCC-CMS was the only GCM that performed well with respect to both aspects (i.e., the stability
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patterns and loess regression curves) for both the 30-year and 10-year periods. The MPI-ESM-LR,
the MPI-ESM-MR, and the MPI-ESM-P performed relatively well for the 10-year-long periods, however
not for both aspects. The MPI-ESM-LR and the MPI-ESM-P performed better in the case of the analysis
of the stability patterns while the MPI-ESM-MR was among the best-performing GCMs when loess
regression curves were examined. The GFDL-ESM2M and the HadGEM2-CC were only among
the best-performing GCMs when 30-year-long periods were analyzed, consequently those were not
expected to perform well in the analysis of loess curves, which was only performed on 10-year-long
periods. The MRI-CGCM3, the MRI-ESM1, and the NorESM1-M were among the least precise GCMs
concerning both aspects. Results obtained from the HadGEM2-AO shall be treated with caution due to
the anomalously low correlations produced by that model.

4. Discussion

In our study circulation patterns of GCMs were compared to those of two selected reanalyses,
which means that reanalyses were considered as the appropriate realizations of the atmospheric
processes. However, as it is suggested by Stryhal and Huth [30], the selection of the reanalysis as a
reference dataset may have important effects on the GCM validation. Stryhal and Huth [30] pointed
out on the basis of the statistical comparison of reanalyses of winter circulation patterns in different
Euro-Atlantic sectors that the agreement between the ERA-20C and the NCEP-NCAR R1 was relatively
good with the exception of the Icelandic and the Eastern Mediterranean region. Recently, studies claim
that reanalyses have limited value as they represent only one realization of the many hypothetical
atmospheric circulations. They propose to use an ensemble of climate model simulations to understand
the behavior of the climate system, thus the teleconnection systems [64,65]. Since state-of-the-art
reanalyses are considered to be the best possible reconstructions of the real atmospheric circulations,
they are indispensable to quantify existing circulation patterns, with some degree of uncertainty. In our
study the application of two different reanalyses enabled the quantification of uncertainties related to
the detection of teleconnection systems.

The analysis of the correlation fields obtained from the Z500 is used as an objective tool for
detecting teleconnections. Principal component analysis (PCA) is widely used in the literature to
analyze atmospheric circulations and to evaluate GCMs. There are studies that apply PCA [9,10]
while other studies use its rotational version (RPCA) [11,12]. There is no consensus about which
version of PCA should be used [32,66]. Here we claimed that the correlation field analysis is a suitable
alternative of the RPCA because of the simpler interpretation of the results that is more consistent with
the observations. By computing correlations, PotACs are considered to be parts of teleconnections,
and their uncertainty is quantified by associated significance levels. In PCA patterns, opposite-signed
grid cells do not necessarily imply codependency [67], therefore the detection of teleconnection.
Furthermore, the number of principal components (PCs) that are rotated should be carefully chosen to
avoid both under and over-rotation. The former may lead to loss of information on relevant signals
while the latter may lead to the over-regionalization of the signals [68].

The method of the teleconnection analysis affects the appropriate detection of the signal, thus the
result of the GCM evaluation. The application of the teleconnection identification method proposed by
Wallace and Gutzler [1] was used in this study. This technique enables the detection of teleconnections
over the North Pacific Ocean and the North Atlantic Ocean as well as in regions of the Mediterranean
Sea and the inner part of Asia simultaneously, which may indicate the presence of oscillations such
as the NPO and the NAO. In our method the NH was not divided into different areas to detect
atmospheric patterns such as the NAO or teleconnection in the region of the Mediterranean Sea. In the
case of NAO, PCA can be performed over an Atlantic sector [5] but the boundaries of the target area
are not precisely defined. Concerning the Mediterranean region, a predefined domain between 30◦

N–60◦ N and 30◦ W–40◦ E is recommended to be analyzed [69]. Clearly, subjective selection of the
target domain affects the results of PCA [66]. The presented method does not suffer from subjective
decisions on the domain selection, which is an advantage compared to the PCA method.
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By the application of the teleconnection method, based on the time series associated with the
PotACs, teleconnection indices can be constructed similarly to the mobile index introduced by Portis
et al. [70]. With those teleconnection indices shifts in the position of the most intense regions of
the teleconnections can be examined and their relationships with atmospheric variables in distant
areas can be identified. Monitoring shifts in the circulation patterns due to anthropogenic forcing is
an important task, i.e., expansion of the Hadley cell is studied in Lu et al. [71] using GCM outputs.
The NAO moved easterly in the last few decades of the 20th century [72], though this tendency cannot
be observed in the years after the millennium due to less intense westerly winds [73]. The eastward
shift can also be observed over the North Pacific Ocean where the Aleutian low relocated eastward
after 1970 [74]. Correlation maps obtained from the reanalyses and presented in Figure S1 of the
Supplementary Material are in accordance with those detected eastward shifts over the oceanic
areas. Furthermore, on correlation maps closer to the present (Figure 1) it is clearly visible that
the above-mentioned eastward shift over the North Atlantic Ocean cannot be observed anymore.
According to our comparisons, only a few GCMs (e.g., the CMCC-CMS) captured the eastward shift
of the most intense regions of the NAO (Figure S5 of the Supplementary Material). In the region
of the North Pacific Ocean the larger part of the GCMs relocated the most intense regions of the
teleconnections more easterly than the reanalyses. Exceptions were, for example, the CMCC-CMS in
the case of the 30-year-long time periods and MPI-ESM-MR in the case of the 10-year-long time periods.

Our analysis was based on the examination of Pearson correlation fields, therefore linear
components of the teleconnections were analyzed. However, nonlinear components may also have
an important role to govern atmospheric processes, thus atmospheric circulation and their shifts [75].
In the last decade studies applying nonlinear approach became popular, for example using the method
of self-organizing maps [76]. In the present approach the linear method was used for simplicity, but it
is possible to extend it to take into account both linear and nonlinear effects.

We applied an information theory-based statistical method on the correlation fields of different
time periods to evaluate the quality of CMIP5 GCMs. Usage of the diversity index and the loess-method
enabled the evaluation of GCMs with respect to the intensity of various teleconnections without
fading their signals. The application of information entropy to evaluate atmospheric models and
to examine atmospheric teleconnections is gaining popularity recently [77,78]. The usage of the
loess-method as a GCM evaluation tool with respect to atmospheric teleconnections is a novel method
to the authors’ knowledge. As it was demonstrated, comparing GCM regression curves against the
reanalysis regression curves by calculating RMSE values are not sufficient to select the best-performing
GCMs. The quality of the regression (i.e., EV) should also be taken into consideration.

The results of our analysis are in line with other studies. According to Stryhal and Huth [11] the
HadGEM2-CC is also among those GCMs that simulate the winter atmospheric circulation well in
the Euro-Atlantic region on a longer time scale (i.e., 1961–2000). In our analysis the HadGEM2-CC
performed well on longer time scales. According to our findings that the CMCC-CMS could be chosen
as the best-performing model might be connected to the fact that the CMCC-CMS is a GCM in which
the atmosphere is vertically well resolved [79]. Atmospheric processes in the upper-troposphere and
the lower-stratosphere can modulate teleconnections. Feldstein [28] pointed out that the signal of
NAO intensifies with increasing height. A recent study [80] found that the CMCC-CMS is able to
reproduce climate change in the North Pacific region in winter relative to a reanalysis dataset. However,
it relocates the geopotential height anomalies over the North Pacific Ocean southerly.

To evaluate the circulation pattern of GCMs, computing model metrics (e.g., RMSE) using the
fields of significant correlations and establishing a GCM-ranking for each period and arbitrary-selected
areas in the NH would provide little practical information because of the followings. (1) The GCMs
must perform equally well both within the regions where teleconnections are detected and outside
of them as well. If we restrict the analysis to some predefined areas where teleconnections can be
detected, then GCMs (e.g., the HadGEM2-AO and the NorESM1) that perform less reliably outside
those regions might be (incorrectly) considered to be of similar quality than GCMs that perform well
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in extensive areas (e.g., the CMCC-CMS and the HadGEM2-CC). We proposed that the Monte Carlo
method (i.e., random sampling of grid cells in the NH) that we applied on the stability patterns is
an appropriate, completely objective technique to compare the GCMs as the method considers each
grid cell. In other words, the proposed Monte Carlo method avoids subjective selection of the target
area. (2) There are GCMs that are characterized by improved/deteriorated performance closer to
the end of the historical period (i.e., 2005) while the performance of other GCMs is not changing
temporally. Consequently, if a GCM performs well in the last examined historical time period, there is
no guarantee that it remains among the best performing GCMs if the representative concentration
pathway (RCP) scenarios are examined (i.e., after 2006). The results of the study might support GCM
selection for downscaling studies and for the quantification of the climate change signal in specific
geographical regions.

5. Conclusions

In this paper an information theory-based statistical method was used to evaluate 19 GCMs from
the CMIP5 project with respect to atmospheric teleconnections. To analyze temporal stability of the
teleconnections, a simple diversity index was calculated based on the fields of strongest negative
correlations obtained from the Z500 in the Northern Hemisphere’s winter. Comparison of stability
patterns based on the Monte Carlo method enabled us to take into account area-dependency of the
GCMs and to avoid getting highly fluctuating GCM rankings regarding the selected time period/area.

The vast majority of the GCMs reproduced the signal of teleconnections in a similar position as
the reference datasets (the ERA-20C and the NCEP-NCAR R1 reanalyses). However, there are major
differences regarding the most intense regions of the teleconnections. For example, the GCMs tend to
underestimate the intensity of the negative correlations (thus teleconnections themselves) in the eastern
regions of the North Atlantic Ocean. To assess those differences, grid cells in the strongest negative
correlations fields that are in mutually unambiguous correspondence with each other, i.e., potential
action centers, were analyzed. The examined 10-year-long time periods provide enough data to enable
us fitting local polynomial regression models on them and compare them with the reanalyses. Based on
the analyses of stability patterns and loess regression models, the GCMs that perform relatively best
can be selected. Among them the CMCC-CMS performed exceptionally well on both time scales.
The best-performing GCMs can reproduce the teleconnections in a similar position and with similar
intensity as the reanalyses. Information about the specific GCMs might support model development in
the future.

It was found that teleconnections in the Euro-Atlantic region are highly variable in time and space.
Due to the role of those teleconnections in the European weather events, future studies should focus
on the analysis of the teleconnections and the expected changes, e.g., in the Carpathian Basin. GCM
selection for such an analysis will be straightforward and easy based on the presented results.

The R code and the calculated datasets are available from the first author upon request.
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Table S1: Comparison of stability patterns by RMSE values computed in the entire NH and percentiles of RMSE
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of squares of the models based on local polynomial regression (loess). Table S3: Comparison of the GCM loess
regression curves against the reanalysis loess regression curves by calculating RMSE. Figure S1: Global correlation
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correlation maps of the Z500 fields obtained from the ERA-20C and the NCEP-NCAR R1 in cases of 30-year-long
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