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Abstract: In this study, the performances of Mei-yu (May–June) quantitative precipitation forecasts
(QPFs) in Taiwan by three mesoscale models: the Cloud-Resolving Storm Simulator (CReSS),
the Central Weather Bureau (CWB) Weather Research and Forecasting (WRF), and the CWB
Non-hydrostatic Forecast System (NFS) are explored and compared using an newly-developed
object-oriented verification method, with particular focus on the various properties or attributes
of rainfall objects identified. Against a merged dataset from ~400 rain gauges in Taiwan and the
Tropical Rainfall Measuring Mission (TRMM) data in the 2008 season, the object-based analysis is
carried out to complement the subjective analysis in a parallel study. The Mei-yu QPF skill is seen
to vary with different aspects of rainfall objects among the three models. The CReSS model has a
total rainfall production closest to the observation but a large number of smaller objects, resulting in
more frequent and concentrated rainfall. In contrast, both WRF and NFS tend to under-forecast the
number of objects and total rainfall, but with a higher proportion of bigger objects. Location errors
inferred from object centroid locations appear in all three models, as CReSS, NFS, and WRF exhibit
a tendency to simulate objects slightly south, east, and northwest with respect to the observation.
Most rainfall objects are aligned close to an E–W direction in CReSS, in best agreement with the
observation, but many towards the NE–SW direction in both WRF and NFS. For each model, the
objects are matched with the observed ones, and the results of the matched pairs are also discussed.
Overall, though preliminarily, the CReSS model, with a finer grid size, emerges as best performing
model for Mei-yu QPFs.
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1. Introduction

With time, more accurate forecasts of rainfall occurrence, as well as estimates of expected
rainfall amount have become increasingly demandable by the society. To meet this demand, it is
necessary to assess the quality of forecast accurately with appropriate verification methods, so that
the forecasting model’s virtue can be better understood. The traditional measure-based statistical
approaches of continuous verification (like the mean error and correlation coefficient) and categorical
objective methods (like the threat score) have been used for a long time to understand the strengths
and weaknesses of the Quantitative Precipitation Forecasting (QPFs), and the direction to improve
numerical models. These methods often rely heavily on point-to-point correspondence or variations
between the observation and model forecasts, and regular and routine verifications are often done
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for longer periods and for vast areas like the United States, so as to evaluate the model’s overall
performance in weather event more in large and synoptic scales. For statistical methods, one possible
drawback is that the verification comes out with good values even if gross under prediction or over
prediction exist in the model systematically. The verification for large area and long periods also
provides little information for individual weather events. The usual solution to this source of ambiguity
is to also perform regional verification [1,2] for localized events or multiple events of similar nature, in
which model errors in various rain regimes are examined separately. However, as the rain-producing
systems become smaller in scale with large rainfall variations both in space and time, the traditional
measures based on point-to-point verification become ineffective and not efficient enough to meet
present day needs, due to issues such as the “double penalty” [2]. Thus, at the mesoscale, to which
most heavy-rain producing systems belong, how to produce proper and reliable routine verification on
a regular basis, for models with increasing resolution as well as for periods with significant or frequent
heavy rainfall, has become a more and more pressing problem.

The useful information about the quality of forecasts of highly intermittent, spatially localized
phenomena like rainfall are not easily available from measures-based statistics. The verification
approaches should probe the joint distribution of forecasts and observation to yield a more complete
picture in the nature of forecasts errors [3]. Unfortunately, traditional verification approaches are often
inadequate to understand the QPF errors or their sources. There are many forms of QPF errors like
position of the rain system, the shape and size of the rain pattern, and the magnitude or intensity
of rainfall, etc. Most model QPFs are affected by a combination of these errors. With knowledge of
the errors, it is easier to rectify and improve the models. Such as in the case of systematic errors, the
causes can be determined and the improvement of the model physics can be done accordingly, so that
statistical correction of the model output is produced to provide a better QPF [2].

Therefore, as an alternative, an object-oriented approach for evaluating model QPFs is suggested
to verify their performance for individual rain events. It is often the case that a qualitative, or
“eyeball,” verification will suggest that a QPF is of good quality except for its location error. As
mentioned, traditional verification statistics severely penalize a location error in QPF, with low or
negative correlation coefficients, high root-mean-square errors, and poor values of categorical (event/no
event) statistics. In spite of this, the QPF may still be of good use to the forecaster if it is interpreted in
the context of known model behavior. As the point-to-point correspondence is no longer required,
previous studies on object-oriented methods have shown that they can provide information on rainfall
systems and represent an overall improvement of verification method [4,5] in many aspects, as rainfall
is often localized and episodic.

One aim of this study is to apply an object-based method, i.e., the method for identification and
verification of contiguous rain areas in the context of Taiwan. The method was first developed by
Wang et al. ([6], hereafter Part II) and is broadly similar to the strategies considered by Davis et al. [4,5].
The basic approach is described, mainly based on Part II [6], and is applied here for evaluation on
forecast skill of three models (Cloud-Resolving Storm Simulator (CReSS), Central Weather Bureau
(CWB) Weather Research and Forecasting (WRF), and CBW Non-hydrostatic Forecast System (NFS))
that participated in the South-West Monsoon Experiment (SoWMEX) during the Mei-yu season in
2008. Here, we consider the forecasts with a grid spacing of either 5 or 3.5 km at convective-permitting
resolution, and thus the convection in all these forecasts is treated explicitly. A comparison on
shortcomings and advantages of the three models regarding their forecast skill and embedded
systematic biases is also given or inferred. In a parallel study of Paul et al. ([7], hereafter Part I) that
complements the present one, subjective methods are used for evaluation. Below, the present article
has been organized as follows. The next two sections describe the data and methodology. Then, the
results and discussion, and conclusion of the study are provided separately.
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2. Data

2.1. Observational Data

Due to the frequent occurrences of heavy rainfall in the Mei-yu season (May–June) in Taiwan and
easy data availability, the time period of SoWMEX experiment (15 May to 30 June 2008) was chosen
as the target period in this work. Mainly two kinds of rainfall data were employed in this work: the
rain-gauge data from the CWB of Taiwan (Figure 1 in Part I [7]) and the gridded Tropical Rainfall
Measuring Mission (TRMM) data from National Aeronautics and Space Administration (NASA), USA.
Some details of the data and the method to merge them together are given below.
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Figure 1. (a) Observed and predicted mean daily rainfall (mm, 0000–2400 UTC) distributions over
Taiwan by the three models: (b) Cloud-Resolving Storm Simulator (CReSS), (c) Central Weather Bureau
(CWB) Weather Research and Forecasting (WRF), and (d) CWB Non-hydrostatic Forecast System (NFS),
during the period of South-West Monsoon Experiment (SoWMEX), from 15 May to 30 June 2008. The
model initial time is 0000 UTC, at the range of 12–36 h. The maximum amount is given at the right side
above each panel.

The CWB has established, operated, and maintained a dense rain-gauge network (with 386
stations as of May 2009), the Automatic Rainfall and Meteorological Telemetric System (ARMTS) [8,9],
in Taiwan and provides hourly data as observation. The gauges are widely distributed throughout
Taiwan (roughly every 5–10 km), but less dense in the mountain interior (cf. Figure 1 in Part I [7], or
Figure 2 of [10]). As more details of the CWB rain-gauge data can be found in Part I [7] and [10], only
necessary information is given here.
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Figure 2. The distribution of number of objects as a function of (a) total water production (megaton),
(b) object characteristic length (km), (c) object maximum rainfall (mm), (d) object average rainfall
(mm), (e) centroid longitude (◦ E), (f) centroid latitude (◦ N), (g) long-axis length (km), (h) aspect
ratio (dimensionless), (i) long-axis orientation (degree), and (j) object curvature (radius per 100 km) in
observation and (12–36 h) forecasts by the three models: CReSS, CWB NFS, and CWB WRF initialized
at 0000 UTC during SoWMEX. At accumulation period every 6 h, a total of 863 objects are identified in
observation, and there are 1287, 371, and 401 objects in forecasts by CReSS, WRF, and NFS, respectively.
In panels (a–c,g,h,j), the logarithmic scale is used in the vertical axis.

To apply the object-oriented verification method, gridded rainfall data [4,5] for a larger area
over the oceans surrounding Taiwan were needed, and the TRMM (3B42) data from NASA were
employed for this purpose. The TRMM Multi-Satellite Precipitation Analysis (TMPA) [11] provides a
calibration-based sequential scheme for combining precipitation estimates from multiple satellites,
as well as gauge analyses at feasible locations. The dataset has a resolution of 0.25◦ × 0.25◦ and 3 h
intervals and is widely used [11] but is coarser than the gauge data in Taiwan.
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To take advantage of the dense ARMTS data over Taiwan, an objective analysis method i.e.,
Cressman method [12] was employed to combine the CWB rain-gauge and TRMM data using a
weighting function that is inversely proportional to distance. The objective scheme produced merged
rainfall analysis on the same grid as the CWB NFS (cf. Table 1) for further usage, as this domain
represents the common region shared by the observation and all three models. For more details, they
can be found in Part I [7]. To our knowledge, both the merged CWB and TRMM rainfall dataset and
the application of an object-oriented verification method using such a dataset in Taiwan have not
previously been seen in the literature.

2.2. Model Data

During the field campaign period of SoWMEX experiment, multiple models were in routine
operation to predict the heavy precipitation systems and their environments, including the three
mesoscale models of CReSS, CWB WRF, and CWB NFS [13]. These three models were used in the
present study for inter-comparison of QPF with the object-oriented method.

CReSS Model: As discussed, CReSS (vesrion 2.2) [14,15] was used for this study. This
cloud-resolving model was developed by Nagoya University, Japan. The horizontal grid size was
3.5 km. The total grid points were 330 × 280, covering an area of 19◦–28◦ N, 113.5◦–124.5◦ E with 40
vertical layers, and this was accommodated in a single domain without nesting, as given in Table 1.
For all three models, their QPFs with initial time at 0000 and 1200 UTC on each day during the data
period (15 May to 30 June 2008), at the range of 12–36 h were considered here, even though the CWB
models were run four times a day (every 6 h).

Table 1. Fine-domain configuration and the major physical packages used in the CReSS (version 2.2),
CWB WRF (version 2.2.1), and CWB NFS Model.

Model CReSS CWB WRF CWB NFS

Grid size 3.5 km 5 km (domain 3) 5 km (domain 3)
Grid dimension (x, y, z) 330 × 280 × 40 140 ×178 × 45 91 × 121 × 30

Fine domain region 113.5◦–124.5◦ N, 19◦–28◦ N 117◦–125◦ N, 20◦–28.5◦ N 118.7◦–123.3◦ N,
20.8◦–26.4◦ N

Cloud microphysics Bulk cold-rain (six species) NASA Goddard Simple ice [16]
Cumulus

parameterization None None None

PBL parameterization 1.5-order closure with TKE
prediction Yonsei University [17]

Radiation
parameterization [18] RRTM and Goddard [19]

CWB WRF Model: During SoWMEX in 2008, WRF [20] was a quasi-operational model (version
2.2.1) at the CWB, with three nested grids (domains 1–3) at a grid size of 45, 15, and 5 km, respectively.
The model had 45 vertical layers, so the vertical resolution was finer than the other two models (Table 1).
The output used here was from the inner-most fine mesh (5 km), again from the 0000- and 1200-UTC
runs. By comparison, the 5 km fine mesh was smaller than that of the CReSS model. Additionally,
as the CWB WRF model had outputs every 6 h, the least frequent among all three models, all model
results and the merged rainfall data were summed into 6 h intervals for verification.

CWB NFS Model: The Non-hydrostatic Forecast System (NFS) was a regional operational model
at the CWB [21,22] during SoWMEX. Like WRF, it also had three-level nesting grid of 45, 15, and 5 km.
At 450 × 600 km2, the 5 km grid of NFS covered the smallest area among the three models (Table 1),
and as mentioned, this was the common area for QPF verification in this study. The 30 vertical layers
of the NFS was also the fewest among the three models, and 12–36 h QPFs were used here. In the fine
domain (3.5 or 5 km), none of the three models used a cumulus parameterization scheme (CPS), rather
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they employed explicit cloud microphysics to directly simulate cloud formation and development
(Table 1). Information on the main physical packages of the models is also given in Table 1.

3. Object-Based Verification Method

3.1. Identification of Rainfall Objects and Their Attributes

The verification methodology is discussed in this section. Object-based approaches compare
the properties of forecast and observed objects, where the objects are in general a precipitation area
determined using rainfall data. These objects can be described geometrically and physically, and then
relevant attributes of forecast and observed objects can be compared. These attributes include location,
shape, size, orientation, intensity, etc. The method used in this study for selection and identification of
objects was mainly based on [4,5], but with consideration for the situation in Taiwan. In this context,
the relevant object-oriented method employed here was developed and assessed in Part II [6]. There
are four main steps to identify the rainfall objects, as described below.

In the identification process, first step was to convolve the data field (i.e., smoothing) with an
appropriate shape. In the convolution process, the rainfall value at a point was replaced by the
averaged value within a disk having centroid located at that point. Similar to Davis et al. [4], a circular
area with a radius of 14 km was selected (see Part II [6]), and the data fields were convolved here.
In essence, the convolution process produces a smoothing effect, so as to form a smooth boundary
(outline) of any rainfall object to be selected in the gridded rainfall data. It also prevents small and
isolated rainfall areas to be selected by smoothing them out.

The next step after smoothing was masking, where the mesoscale rainfall objects were masked by
the selected threshold of 10 mm in 6 h. This threshold was used to distinguish the rain areas of greater
size and intensity from the weaker and more isolated ones. This was also a binary mask: the areas
≥10 mm (per 6 h) were objects, and all remaining areas were not. Thus, the results of smoothing and
masking produce object boundaries that are similar to those a human would draw, and it also picks
out the intense precipitation systems of interest but omits the weaker and smaller systems.

In the third step, rainfall values inside all objects were restored back to their original values, so
the effect of convolution was removed. Nonetheless, the objects had simple geometric shapes, and
this allowed for better, more unambiguous interpretation of some important properties like aspect
ratio, angle of orientation, etc. Thus, the assumption of simple shapes was helpful. In the fourth and
final step, all rainfall values outside the objects were set to zero. This step can be called filtering, as all
areas not occupied by objects were discarded. For more detailed discussion, the readers are referred to
Part II [6].

In this study, model QPFs made at the initial times of 0000 and 1200 UTC on each day from
15 May to 30 June 2008, at the forecast range of 12–36 h were considered, as mentioned. At 6 h intervals,
there exists 188 (= 47 × 4) records of 2-D rainfall fields for each data (observation or model at a fixed
initial time), for the same domain as the CWB NFS. Among the 188 records, a total of 863 objects were
observed, and 1287, 371, and 401 were identified for CReSS, WRF, and NFS models, respectively, for the
initial time of 0000 UTC. In the case of 1200-UTC forecasts, a total of 863 objects were again observed,
and 1067, 408, and 448 objects were identified for CReSS, WRF, and NFS, respectively.

As an essential part of object-oriented verification, various attributes of the identified objects were
computed and compared between the observations and model forecasts. The attribute parameters
considered here included total water production, object size, maximum rainfall, mean rainfall, rainfall
at certain percentiles, centroid location (longitude/latitude), length of long axis, aspect ratio, orientation,
and curvature, etc. Most of these attributes are straight-forward. The orientation (of long axis) was
defined as the angle (◦) measured counterclockwise from the x-axis (i.e., 0◦ for E–W and positive for
NE–SW, as in [23]). Finally, the curvature was defined as the ratio of 100 km to the radius of the curved
object (and thus has no dimension).
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3.2. Matching between Observed and Modeled Objects

The matching or pairing method used in this study was for two purposes: (1) pairing of objects
between observed and forecast data at the same time, and (2) pairing of objects in one dataset (either
observed or forecast) at two adjacent times, which were 6 h apart in our case, to identify rainfall
systems. However, only the first type of matching was used here. For both types, there are at least two
steps. The first step is to match the objects from two groups with high similarity and high certainty,
starting from the largest objects. This is based on the distance between the centroids of the objects being
considered, and the overall similarity between their attributes. In the second step, the remaining objects
in the two groups were given another round of consideration, with a lowered criterion but still at an
acceptable level of similarities for matching. Successfully matched (or paired) objects were considered
corresponding to each other (or hits), i.e., an observed object was predicted as its matched object in the
model forecast. For objects not matched, they were considered misses (objects in observation) or false
alarms (objects in forecast). Again, detailed discussion on the matching process can be found in Part
II [6]. A total of 115, 77, and 81 and 92, 82, and 87 objects are resulted for CReSS, WRF, and NFS for the
two model initial times at 0000 UTC and 1200 UTC, respectively.

4. Results and Discussion

4.1. Distributions of Mean Daily Rainfall in the Season

The comparison between observed and model (CReSS, CWB WRF, CWB NFS) forecasted (0–24
h) mean daily rainfall distributions over Taiwan during the whole SoWMEX experiment period in
2008 (15 May–30 June) is presented in Figure 1. In the observation, with three major daily rainfall
maxima in northern, central, and southern Taiwan near the northern slopes of the Snow Mountain
Range (SMR) and along the western slopes of southern Central Mountain Range (CMR), the mountain
areas received more rain than the low-lying plains on either side of the mountains. The rainfall
was highest (34.77 mm) over the windward side in southern CMR in southern Taiwan (Figure 1a).
Although with location errors, the mean rainfall distribution of CReSS model agreed moderately well
with observations during 15 May–30 June (Figure 1b). Over prediction of Mei-yu seasonal rainfall
over much of Taiwan, especially over CMR and SMR by CReSS was evident. In contrast, the CWB
WRF exhibited a strong tendency of under-prediction of the mean daily rainfall, with an amount and
amplitude too small over the topography (Figure 1c). The CWB NFS exhibited three distinct rainfall
maxima over northern, central, and southern Taiwan with comparable rainfall amount, and resembled
the observed data for the season quite well over the island (Figure 1d). The predicted maximum
rainfall centers with the peak values up to about 37 mm were closer to the observation. However, the
CWB NFS under predicted the mean rainfall over southwestern plains of Taiwan, in the South China
Sea (SCS), and over much of the surrounding oceans (Figure 1d). The area shown in Figure 1 is roughly
the verification area using the object-oriented method.

4.2. Object-Based Analysis for Model Forecasts at 0000 UTC

4.2.1. Statistics of Major Attributes of Rainfall Objects

Table 2 presents the mean value and standard deviation (SD) of major parameters and attributes of
rainfall for objects in observation and the three model forecasts initialized daily at 0000 UTC. Compared
to the observed number of objects (863), the CReSS (1287) produced roughly one-half too many while
both WRF and NFS (~400) had about one-half too few. Combined with the information on object water
output (production) and size, WRF and NFS tended to predict objects considerably larger than the
observation with higher water output, although fewer in numbers. For example, at over 5500 km2, the
mean object size in WRF and NFS was almost three times that in the observation (~1700 km2) and
in CReSS (~2100 km2). In contrast, CReSS was the closest to the observation in object size, though
with over prediction. However, the total water output from all objects in all three models (at 55.5–68.2
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gigatons) exceeded significantly that in the observation (29.3 × 863 = 25.3 gigatons). This apparent
discrepancy suggests that a much smaller fraction of the observed precipitation falls within the objects
than the model rainfall. The SD values also indicate that the CReSS model is overall closer to the
observation in rain object size. The mean rainfall amount of all objects in the four datasets were all
very close (ranging from 20.7 to 22.7 mm), so the total amount for the entire season was very much
dictated by the total number of objects, and thus over-prediction by CReSS and under-prediction by
both WRF and NFS, in general agreement with Figure 1.

Table 2. Mean value and standard deviation (SD) of major parameters and attributes of rainfall objects
in observation, and CReSS, CWB WRF, and CWB NFS forecasts initialized at 0000 UTC. The model
forecast range used is 12–36 h, and SD values are given in parentheses.

Parameter Observation CReSS CWB WRF CWB NFS

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Total object number 863 1287 371 401
Water production (106 ton) 29.3 (166.9) 44.2 (120.1) 149.6 (285.6) 170.1 (379.3)

Area size (km2) 1692.8 (9432.9) 2071.1 (5529.9) 5674.9 (9584.4) 5871.4 (10,056.6)
Mean rainfall (mm) 21.9 (8.2) 22.7 (7.9) 20.7 (7.0) 21.7 (7.2)

Maximum rainfall (mm) 48.5 (36.9) 99.6 (77.2) 80.7 (63.6) 74.5 (56.3)
90-percentile rainfall (mm) 37.1 (18.1) 58.5 (24.3) 45.4 (22.1) 45.6 (21.2)
75-percentile rainfall (mm) 29.9 (11.4) 34.5 (11.6) 29.4 (10.2) 30.6 (10.5)
50-percentile rainfall (mm) 20.1 (13.5) 13.4 (15.3) 16.6 (5.3) 18.0 (4.9)

Centroid longitude (◦ E) 121.05 (0.79) 120.95 (2.47) 120.61 (3.40) 121.25 (0.98)
Centroid latitude (◦ N) 23.66 (1.06) 23.23 (1.57) 23.94 (1.54) 23.67 (1.32)

Long-axis orientation (◦) −9.4 (27.0) −6.6 (34.0) 21.8 (48.2) 12.6 (49.8)
Long-axis length (km) 42.8 (74.2) 64.8 (85.3) 104.9 (98.4) 105.6 (100.6)
Short-axis length (km) 13.7 (24.3) 21.0 (44.8) 37.4 (26.0) 38.3 (26.5)

Aspect ratio 3.6 (2.7) 3.0 (1.9) 2.6 (1.1) 2.5 (1.1)
Curvature (10−2) 1.36 (3.93) 1.07 (2.61) 0.81 (1.40) 0.69 (1.21)

On the other hand, the maximum rainfall predicted suggests an overestimation by all three models,
which is characteristic of convective-permitting models, but this might also have been influenced by
the low resolution of the TRMM data, and even the comparatively lower resolution of the rain-gauge
network than model grids. The overestimation in peak rainfall was more serious in CReSS, but not so
at the 50-percentile (Table 2) and below (not shown). In the category of rainfall intensity, WRF and NFS
also tended to have smaller SD values compared to observation, consistent with their underestimation
problem. Judged from the averaged location of object centroid (center of mass), objects tended to be
slightly south, toward the northeast, and east in CReSS, WRF, and NFS, respectively, compared to the
observation (Table 2), also in rough agreement with Figure 1 for CReSS and NFS. In terms of object
shape, the long axis orientation predicted by CReSS model (−6.6) was closer to observation (−9.4) than
WRF and NFS with positive angles. With a greater number of smaller objects, the average lengths of
long and short axes in CReSS were also closest to the observation (Table 2), but again tended to be too
long in both WRF and NFS (with bigger objects).

4.2.2. Distributions of Attribute Parameters of Rainfall Objects

In addition to the statistics (mean and SD), major attributes can be further compared between
forecast and observed objects in their distributions. In a sense, these distributions represent the
climatology of attributes that characterize several aspects (size, intensity, location, and shape, etc.) of
rainfall objects during the data period. In this way, their similarity to observed objects can be assessed,
and systematic model errors can be identified by the biases in the distributions. Furthermore, these
kind of findings can be applied for improvement of weather and climate models.

In Figure 2, a number of object attributes are compared among the observation and the three
models for their distribution, after stratification by their values. The total water production in all four
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datasets shows roughly a χ distribution (Figure 2a), with a large number of small objects and a rapid
decrease in object number with increasing amount of total precipitation. The characteristic length,
which is simply the square root of rain-object area, indicates a similar tendency (Figure 2b), while
no object exceeded a length of 330 km. Thus, both attributes linked to object size indicate a larger
number of smaller objects and a smaller number of bigger objects, even though they are stratified
independently. At the characteristics length of 110–330 km, both WRF and NFS produced too many
large objects (also those ≥1200 megatons), but too few objects in the lowest class (Figure 2a,b). On
the other hand, the overestimation by CReSS was relatively less and confined in small-object groups
below about 800 megatons in water production. The size information in Figure 2a,b was consistent
with Table 2, but additional information regarding the distribution can be revealed. Overall, the size
distribution of objects produced by CReSS was closer to observation than those by WRF and NFS.

The distribution of number of objects with respect to maximum rainfall shows that the CReSS
model had a strong tendency to produce intense rainfall, even reaching ~500 mm (per 6 h) occasionally,
but the observation did not exceed 240 mm (Figure 2c). Produced due to the high resolution of
CReSS, such objects were most likely quite small in size (Figure 2a,b). Both WRF and NFS seemed to
under-forecast objects when the maximum rainfall was lower (below 160 mm) and over-forecast when
the maximum rainfall was higher, but the latter issue was not as serious as in CReSS. This result is in
agreement with Table 2, which also reveals that the overestimation of maximum rainfall was highest
for CReSS, as it produced more concentrated rainfall. This might be linked to the fact that CReSS did
not use any CPS, which would have consumed some instability in the parent domain (15 km coarse
grid) of WRF and NFS. The average rainfall values at 90, 75, and 50 percentiles in Table 2 also suggest
that CReSS objects tended to exhibit larger variation in rainfall and less so in WRF and NFS, which
tended to produce a smaller number of bigger objects with weaker intensity. The distribution of objects
with respect to mean rainfall (Figure 2d) reveals that all three models had a normal-type distribution
similar to observation, with a peak at 16–24 mm (cf. Table 2), except that the CReSS model had more,
whereas NSF and WRF had fewer objects than the observation. Thus, the object number strongly
dictates the difference here, and the CReSS exceeded observation by ~350 objects at 16–24 mm.

The distribution of centroid location (longitude and latitude) of observed objects exhibited high
frequency at 120.2◦–121.4◦ E and 23◦–25◦ N, corresponding to the terrain of Taiwan and reflecting its
influences (Figure 2e,f). The pattern of CReSS in latitudes exhibited higher frequency at 20◦–22◦ N
than observed, showing a tendency to produce rainfall objects too far to the south. Both NFS and WRF,
on the other hand, were slightly prone to eastward and northward displacement, respectively.

Figure 2g–j show the dependence of object number on four shape- and orientation-related
attributes. The observed distribution with long-axis length (Figure 2g) exhibited twin peaks, with the
primary peak at 0–150 km (small objects) and a secondary peak at 600–750 km (big objects). Among
the three models, the distribution in CReSS was closest to the observation with a similar pattern and
two peaks at the correct length. In WRF and NFS, there was a lack of objects in the longest class of
600–750 km, where the objects were most likely associated with fronts. This tendency was also seen in
the pattern with aspect ratio (Figure 2h), where the observation has the most objects with low aspect
ratio (<2.5) and fewer ones toward higher ratio up to 15–17.5. Although all three models showed a
similar decreasing pattern with aspect ratio, CReSS was the only one to produce objects with values
between 7.5 and 17.5 (Figure 2h), and thus was also closest to the observation. For NFS and WRF, the
aspect ratios of their objects were confined within 7.5, and thus tended to be rounder, not elongated
in shape. This explains the lack of objects with longer axis for WRF and NFS in Figure 2g, also in
agreement with Table 2.

In the parameter of long-axis orientation, the distribution pattern of CReSS agrees the best with the
observation, with highest frequency at 0◦–20◦ and alignments close to E–W direction (Figure 2i). There
were also some objects with negative orientation (NW–SE) and fewer ones with orientation above 20◦

(NE–SW) in both observation and CReSS. However, in WRF and NFS, although their objects were
more evenly distributed across the spectrum, more have positive orientation with highest frequency
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at 60◦–80◦, along a NNE–SSW direction (Figure 2i). For object curvature (or radius per 100 km), the
distribution was again bi-modal and the pattern of CReSS best resembled the observation (Figure 2j),
with the major peak at small curvature and a minor one at large curvature (17.5 − 20 × 10−2). On the
contrary, both WRF and NFS had object curvatures below 10 × 10−2, i.e., with a radius >1000 km.

Overall, the objects produced by CReSS agree considerably better with the observation in their
distributions in size, shape, and orientation, compared to CWB WRF and CWB NFS. However, CReSS
also tended to produce an excessive number of small objects, often with high peak rainfall, although
the mean rainfall distribution was reasonable. For NFS and WRF, their objects were about 50% too few,
but some of them tended to be too large in size (Figure 2a,b and Table 2).

4.3. Object-Based Analysis for Model Forecasts at 1200 UTC

As for the 0000-UTC forecasts, the same object-oriented analysis was performed for the forecasts
initialized at 1200 UTC each day during SoWMEX, also at the range of 12–36 h, and the results are
presented in Table 3 and Figure 3. With 863, 1067, 408, and 448 objects in observation, CReSS, WRF,
and NFS, following the order for 1200-UTC runs, the mean value and SD of various parameters and
attributes were identical for the observation (Table 3), and also very similar to those in Table 2 for all
models. However, compared to Table 2, some improvements were seen in CReSS in the number of
objects (a reduction by 220), and the statistics produced by CReSS were also closest to the observed
statistics in most of the attribute categories, except for peak rainfall intensity (and high percentile
values) and centroid latitude (Table 3). In WRF and NFS, their object numbers also increased by
roughly 10% (by 37 and 47, respectively) and improved to some extent.

Table 3. As in Table 2 but showing the results for observation and model forecasts corresponding to
the initial time of 1200 UTC.

Parameter Observation CReSS CWB WRF CWB NFS

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Total object number 863 1067 408 448
Water production (106 ton) 29.3 (166.9) 48.9 (142.1) 158.5 (387.4) 155.6 (354.6)

Area size (km2) 1692.8 (9432.9) 2146.8 (5956.7) 5966.4 (11,945.4) 5258.6 (9711.8)
Mean rainfall (mm) 21.9 (8.2) 22.3 (7.7) 19.2 (7.0) 22.0 (7.9)

Maximum rainfall (mm) 48.5 (36.9) 105.1 (85.5) 74.9 (58.8) 75.4 (62.1)
90-percentile rainfall (mm) 37.1 (18.1) 62.8 (27.1) 41.5 (20.2) 45.9 (23.7)
75-percentile rainfall (mm) 29.9 (11.4) 35.0 (12.5) 27.0 (10.0) 30.6 (11.4)
50-percentile rainfall (mm) 20.1 (13.5) 11.1 (14.4) 15.8 (5.0) 18.1 (5.3)

Centroid longitude (◦ E) 121.05 (0.79) 120.92 (1.98) 120.76 (1.42) 121.26 (1.05)
Centroid latitude (◦ N) 23.66 (1.06) 23.28 (1.53) 23.85 (1.53) 23.63 (1.38)

Long-axis orientation (◦) −9.4 (27.0) −4.4 (33.9) 23.1 (48.4) 17.2 (48.8)
Long-axis length (km) 42.8 (74.2) 65.1 (94.4) 104.4 (105.2) 94.9 (94.0)
Short-axis length (km) 13.7 (24.3) 20.0 (16.5) 35.7 (28.0) 36.1 (26.9)

Aspect ratio 3.6 (2.7) 3.1 (2.2) 2.7 (1.1) 2.4 (1.0)
Curvature (10−2) 1.36 (3.93) 1.00 (1.99) 0.77 (1.12) 0.80 (1.44)

Figure 3 presents the distribution of objects with respect to the value of attributes, for objects
produced at the initial time of 1200 UTC, and naturally the model characteristics bear similarities
to those of 0000 UTC (cf. Figure 2). The statistical distributions in Figure 3a–e are very similar to
Figure 2a–e, suggesting the same features and differences, except that with fewer objects (1067), the
patterns in mean rainfall and centroid longitude by CReSS now agree better with the observation in
Figure 3d,e. For these attributes, except for maximum rainfall, the distributions in CReSS were in
general closest to the observation although still with some overestimation in object numbers. In NFS
and WRF, the low bias in object numbers was still evident since the improvement (by ~10%) was not
as much.
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More discernible improvements can be seen due to the change of initial time. Figure 3f shows
that for 1200-UTC runs, the location error in the centroid of objects as depicted in Figure 2f has been
improved in CReSS. The distribution was more to the south compared to the observation, with the
highest frequency at 21–22◦ N in Figure 2f. However, in Figure 3f, the highest frequency now appears
at 23–24◦ N as observed, correcting (or at least remedying) the location error.
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Figure 3. As in Figure 2 (a–j) but for (12–36 h) forecasts initialized daily at 1200 UTC. A total of 863,
1067, 408, and 448 objects are identified in observation, CReSS, WRF, and NFS, respectively.

Again, the distributions of objects in Figure 3g–j are in general similar to those produced by the
forecasts at the initial time of 0000 UTC (Figure 2g–j). Overall, the CReSS simulation was closest to
observation. Some improvements in performance of CReSS were also seen in the distribution of aspect
ratio (Figure 3h), as well as in the alignment of object, again with most objects oriented in E–W and
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NNE–SSW direction, in association with the reduction in object number. In contrast, both WRF and
NFS failed to catch the observed pattern, exhibiting more objects aligned in NW–SE direction and the
highest frequency over 60◦–80◦ N. Thus, the same distributions remained for most attributes, while
some improvements were seen in some aspects.

The above improvements observed from an initial time of 0000 to 1200 UTC were most likely
linked to the preferred timing of rainfall in the diurnal cycle in Taiwan. Many previous studies have
shown that a strong diurnal cycle in rainfall exists in the Taiwan Mei-yu season, with more rainfall
during local afternoon (roughly 0300-0900 UTC) and less rainfall at night [9,13,24–26]. Therefore,
within the range of 12–36 h, the rainfall in the 1200-UTC runs (starting from 2000 LST) mainly occurs
during 15–21 h under previously undisturbed conditions. The rainfall in 0000-UTC runs, on the other
hand, occurs mainly during 27–33 h, which is during the second day and often time the atmosphere is
already disturbed (on day 1). The shorter range and better conditions in the 1200-UTC runs were most
likely the main causes of the difference in performance by all three models.

4.4. Object-Based Analysis for Matched Pairs between Observation and Forecast

Here in this subsection, the distributions of key object attributes of matched objects between the
observation and each of the three model forecasts are compared, which is helpful in understanding the
difference before and after matching, and if there is any improvement for matched pairs. An overall
statistics of matched pairs is briefed in Table 4 for both initial times. It is revealed that the average
values of total water volume, object size, length of long axis, maximum rainfall, long-axis length all
increased significantly from those before matching (Table 4, cf. Tables 2 and 3), while the curvature is
lowered. These facts indicate that it is easier for larger objects to be paired successfully, as expected
from the design of the matching procedure.

Table 4. Mean value of major parameters and attributes of rainfall objects in observation, and CReSS,
CWB WRF, and CWB NFS forecasts initialized at 0000 UTC after matching. The values for 1200-UTC
forecasts are also shown (in parentheses). For the initial time of 0000 (1200) UTC, the number of
matched objects are 115, 77 and 81 (92, 82 and 87) for CReSS, WRF, and NFS, respectively. For the
observation, the values for matched objects with CReSS are shown.

Parameter Observation CReSS CWB WRF CWB NFS

Initial time (UTC) 0000 (1200) 0000 (1200) 0000 (1200) 0000 (1200)
Total object number 115 (92) 115 (92) 77 (82) 81 (87)

Water production (106 ton) 127.7 (152.9) 113.8 (92.7) 365.1 (393.3) 484.3 (452.5)
Area size (km2) 7447.9 (8921.9) 5279.4 (4413.7) 13,709.1 (13,664.3) 14,971.6 (13,642.8)

Mean rainfall (mm) 18.7 (18.5) 21.2 (20.9) 23.9 (23.0) 26.4 (26.9)
Maximum rainfall (mm) 68.3 (69.2) 139.1 (124.4) 111.7 (112.3) 119.2 (123.4)

90-percentile rainfall (mm) 44.8 (43.4) 63.4 (68.6) 51.9 (49.8) 57.4 (60.3)
75-percentile rainfall (mm) 31.9 (30.3) 35.0 (36.8) 32.8 (31.5) 36.2 (37.1)
50-percentile rainfall (mm) 11.0 (12.5) 5.9 (5.1) 18.4 (17.9) 20.0 (19.7)

Centroid longitude (◦ E) 120.97 (120.87) 121.04 (120.98) 120.88 (120.62) 121.39 (121.34)
Centroid latitude (◦ N) 23.70 (23.66) 23.91 (23.87) 24.21 (23.92) 23.63 (23.55)

Long-axis orientation (◦) −19.4 (−19.0) −16.0 (−3.2) 25.0 (22.1) 17.0 (22.5)
Long-axis length (km) 100.0 (106.3) 134.7 (121.4) 187.1 (172.6) 194.5 (178.4)
Short-axis length (km) 30.5 (36.8) 34.8 (27.6) 62.3 (57.3) 64.6 (60.3)

Aspect ratio 3.6 (3.1) 3.7 (3.9) 3.0 (2.9) 2.9 (2.8)
Curvature (10−2) 0.61 (0.73) 0.60 (0.74) 0.41 (0.41) 0.27 (0.33)

The distribution of number of objects with relevant parameters for matched objects between the
observation and each of the three models at the initial time of 0000 UTC are presented in Figures 4
and 5. The CReSS model agrees with the observation for objects with total water production near
0–300 megaton, where it had highest number of smaller objects (Figures 4a and 5a). On the other
hand, at the class of 0–300 megaton, both NFS and WRF had slightly fewer objects (Figure 4b,c) as
their distributions of characteristics length also showed very few small objects (Figure 4k,l). However,
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above 300 megatons, all three models had more objects than the observation (Figure 4a–c). This is
more evident in NFS and WRF and may arise from bigger objects, as models usually overestimate the
number of objects that exceed 40 km in characteristics length (Figure 4j–l). Mean total water production
was also significantly overestimated by the WRF and NFS models in Table 4. For maximum rainfall,
as before matching, all models under-forecast the lighter rainfall below 80 mm and over-forecast
the stronger rainfall above 80 mm for matched objects (Figure 4d–f). Table 4 also indicates that the
maximum rainfall in CReSS was highest as compared to the other two models, pointing to more
concentrated rainfall due to its higher resolution. However, even at 90 percentile, the rainfall decreased
to a value much closer to observation (Table 4), though still higher than the latter (as also in WRF and
NFS). The NFS agreed the best with the observation in the distribution of maximum rainfall among the
three models (Figure 4f).
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Figure 4. The distribution of number of matched objects as a function of (a–c) total water production
(megaton), (d–f) object maximum rainfall (mm), (g–i) object average rainfall (mm), and (j–l) characteristic
length (km) between the observation and each of the three model forecasts initialized at 0000 UTC at
the range of 12–36 h: CReSS (left column), WRF (central column), and NFS (right column). The number
of objects successfully paired with observation is 115, 77, and 81, respectively, for CReSS, WRF, and
NFS. In panels (a–c), the logarithmic scale is used in the vertical axis. Note that in panels (a) and (h),
the scale in vertical axis is different from others.

The distribution of mean 6 h rainfall indicates highest frequency of occurrence at 16–24 mm for
observation as well as for CReSS, WRF, NFS (Figure 4g–i); thus, in general all three model’s patterns
agreed with the observation, although their objects tended to have a higher mean rainfall (>24 mm)
than observed. This overestimation in rainfall was more significant in NFS (cf. Table 4), and the
pattern in CReSS was closest to the observed one, both with a narrow peak at 16–24 mm (Figure 4g).
Compared to Figure 2d, which shows a much greater number of objects in CReSS than observed before
matching, the overestimation by CReSS was corrected, because the numbers of objects were now the
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same after matching. By comparison, the agreement between the distribution in either WRF or NFS
and the observed one was not as good as CReSS, in the case of matched objects. In the distribution of
characteristic length after pairing, the observed objects had a χ distribution (Figure 4j–l), and again the
distribution in CReSS was the closest to it. On the other hand, NFS and WRF did not follow a pattern
like the observed data, as they lacked smaller objects but had too many bigger ones (above 80 km in
characteristic length), in agreement with Table 4. Again, with the same number of objects (115) after
matching, the over-estimation problem seen in CReSS in Figure 2b (before matching) is noticeably
improved in Figure 4j.
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Figure 5. As in Figure 4 but for (a–c) centroid longitude (◦ E), (d–f) centroid latitude (◦ N), (g–i) aspect
ratio (dimensionless), (j–l) long-axis orientation (degree), and (m–o) object curvature (radius per 100
km), respectively. In panels (m–o), the logarithmic scale is used in the vertical axis. Note that in panels
(j–l), the scales in vertical axis are different.

The distributions of number of objects with respect to the value of attributes linked to location,
orientation, and shape after matching are shown in Figure 5. The observed distribution of object
centroid location (longitude and latitude) exhibited high frequency at 120.2◦–121.4◦ E and 23◦–25◦ N
corresponding to the mountain range of Taiwan as before (Figure 5a–f). Since the matching procedure
considers the distance between the two object candidates as a major criterion, the distributions in
observed and model objects must be fairly close after matching. The pattern in CReSS seemed to be
more concentrated in longitude (than the other models) as well as in latitude, with highest frequency
at 24◦–25◦ N in northern Taiwan (Figure 5a,d). Distributions in both NFS (Figure 5c,f) and WRF
(Figure 5b,e) appeared more flat and across a wider range in centroid location, and there was a slight
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tendency in NFS to be more toward the northeast for objects in southern Taiwan (22◦–24◦ N). Some of
these results are also supported by the data in Table 4 (for 0000-UTC forecasts).

For parameters related to object shape, the distribution of aspect ratio was very close to the
observation for each of the three models (Figure 5g–i). However, very few objects had an aspect ratio
larger than 7.5, as they tended to be bigger objects, as revealed in Table 4. Again, even after matching,
the distribution of long-axis orientation for CReSS was closest to observation (Figure 5j) and most
matched objects were found to have an alignment angle less than 20◦ or negative, i.e., oriented in nearly
E–W and NW–SE direction (also Table 4). In the case of NFS and WRF, their objects paired with the
observation tended to exhibit positive orientation angle (in NE–SW direction), i.e., shifted toward the
right side (Figure 5k,l), but more objects were of negative angle in the observation. However, since the
matched objects tended to have larger size and small aspect ratios, their shape was also less elongated
(cf. Table 4), so the long-axis orientation may have been less important. Finally, for object curvature,
all three models were very successful in producing the same distribution as observed (Figure 5m–o).
However, the curvature of all paired objects tended to be small and below 7.5 × 10−2, consistent with
the characteristics of bigger objects and the results above.

The results for the paired objects between the observation and model forecasts at the initial time
of 1200 UTC are shown in Table 4 in parentheses and Figure 6 for selected attributes. For runs at
1200 UTC, the statistics in Table 4 reveal results very similar to their counterparts at 0000 UTC. The
distributions of total water production, maximum rainfall and mean rainfall (Figure 6a–i), likewise,
highly resemble those at 0000 UTC (Figure 4a–i). For the patterns of long-axis orientation, which were
quite different among the three models in Figure 5j–l, the same characteristics also remained for runs
at 1200 UTC (Figure 6j–l), except perhaps that the CReSS objects now show a distribution closer to
normal and centered at 0◦–20◦.
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Figure 6. (a–i) As in Figure 4a–i and (j–l) as in Figure 5m–o, but for (12–36 h) forecasts initialized daily
at 1200 UTC. The number of objects successfully paired with observation is 92, 82, and 87, respectively,
for CReSS, WRF, and NFS. Note that in some panels, the scales in vertical axis are different.
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5. Conclusions

Following Part II [6], in which the development of an object-based rainfall verification method
suitable for Taiwan is described, this work further applies the method to explore and understand the
relative merit of three models: CReSS, CWB WRF, and CWB NFS, in the prediction of Mei-yu rainfall
during SoWMEX experiment in 2008. Thus, the aim was different in the present study from Part II [6].
The models had a grid size of 3.5 to 5 km and the 0000 and 1200-UTC forecasts at the range of 12–36 h
were used, so the rainfall data at each initial time formed a continuous time series. Accumulated into 6
h intervals, the data were then verified against the observation formed by merging CWB rain-gauge
data with TRMM (3B42) data, for the NFS 5 km domain using the object-oriented method. In a
parallel paper (Part I [7]), the subjective method was used, so the two methods complement each other.
However, the object-oriented verification, as a different approach, is both useable and useful, and the
differences in the performance of the models can be summarized as follows:

i. A total of 863 rainfall objects are identified for the 47-day period in observation, and CReSS
produces over a thousand (about 200–400 more) while WRF and NFS have roughly 370–450
objects in the two initial times. The overall results from the mean, SD, and distributions of
attribute parameters suggest that all three models show a tendency to over-forecast heavy
rain and under-forecast light rain. The CReSS has about 25–50% too many objects and a
strong tendency to produce small objects with more concentrated rainfall, but its total water
production is the closest to the observation and the most reasonable. Both WRF and NFS, with
only about one-half the total number of objects as observed, on the other hand, have a clear
tendency to under forecast rainfall object number. Their objects tend to be larger in size but
smaller in curvature, with less intense precipitation but high total water output compared to
observation. The smaller rainfall objects in CReSS might be linked to its lack of a CPS, which
would consume some instability in the environment in the parent domain in the case of WRF
and NFS (in which a CPS is also turned off in the fine domain).

ii. In all three model simulations, their object centroids exhibit higher frequency over the terrain of
Taiwan, and this response to topography is very much understandable. Nonetheless, the CReSS
model exhibits a tendency to simulate the rainfall slightly too south, and NFS and WRF slightly
east and north to northwest, respectively, as interpreted from the distribution of the object
centroid location. The shape-related and orientation attributes suggest that CReSS simulation
is very much comparable to observation, especially for orientation aspect where most objects
are found to align along N–E to NW–SE direction in both CReSS and observation. On the other
hand, more NE–SW aligned objects appear in WRF and NFS.

iii. Consistent with the design of the matching procedure between observed and modeled objects,
larger objects with more water outputs are more easily matched. The over-estimation bias in
size for bigger objects and under-estimation bias for smaller objects in NFS and WRF remains
evident in matched pairs. A similar overestimation problem in CReSS in unmatched objects
is noticeably improved in matched pairs. The total matched pairs, however, are few such
that statistical significance of their attribute distributions is lowered. The reason for the low
matching rate remains to be investigated and clarified in the future.

iv. The number of objects and the distributions of some attributes were improved in all three
models in the forecasts initialized at 1200 UTC, as compared to those at 0000 UTC, particular in
CReSS also in terms of centroid location and alignment of objects. This is mainly attributable
to the difference in the preferred timing of rainfall in Taiwan (in local afternoon) in the 12–36
h forecast range, which is within day 1 for 1200-UTC forecasts but on the second day for
0000-UTC ones.

The findings of this paper in general agree with those in Part I [7] where the focus is on subjective
verification. Both the two analyses conclude that (i) the CReSS model performed more skillfully but with
the over-forecasting and location error problem, and (ii) both NFS and WRF have an under-forecasting
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problem. However, model errors in some attributes like areal size, alignment, shape, and even internal
structure (as inferred from rainfall at different percentiles) are difficult to assess except using an
object-oriented approach. Therefore, the analysis like the present study offers a different and useful set
of information on model performance, which can complement and support subjective or traditional
objective verification methods [7,26]. With the highest resolution, the CReSS model comes out as best
performing model in simulation the precipitation in the present study. On the other hand, NFS and
WRF are close to each other but with somewhat worse skills. This result partially differs from the
conclusion in Part I [7], where relative merits in each model are found through subjective comparison
(e.g., CReSS in seasonal and diurnal variations, WRF in its stability, and NFS in overall spatial pattern
of rainfall). Finally, it is evident that no single verification method is enough to cover all aspects
of model QPFs and reach a concrete conclusion, so they should be used in combination for a more
complete understanding.
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