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Abstract: Wheat plays a very important role in China’s agriculture. The wheat grain yields are affected
by the growing period that is determined by temperature, precipitation, and field management,
such as planting date and cultivar species. Here, we used the CSM-CERES-Wheat model along with
different Representative Concentration Pathways (RCPs) and two global circulation models (GCMs)
to simulate different impacts on the winter wheat that caused by changing climate for 2025 and 2050
projections for Guanzhong Plain in Northwest China. Our results showed that it is obvious that there
is a warming trend in Guanzhong Plain; the mean temperature for the different scenarios increased
up to 3.8 ◦C. Furthermore, the precipitation varied in the year; in general, the rainfall in February
and August was increased, while it decreased in April, October and November. However, the solar
radiation was found to be greatly reduced in the Guanzhong Plain. Compared to the reference year,
the results showed that the number of days to maturity was shortened 3–24 days, and the main reason
was the increased temperature during the winter wheat growing period. Moreover, five planting dates
(from October 7 to 27 with five days per step) were applied to simulate the final yield and to select an
appropriate planting date for the study area. The yield changed smallest based on Geophysical Fluid
Dynamics Laboratory (GFDL)-CM3 (−6.5, −5.3, −4.2 based on RCP 4.5, RCP 6.0, and RCP 8.5) for
2025 when planting on October 27. Farmers might have to plant the crop before 27 October.
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1. Introduction

The growing wheat (Triticum aestivum L.) in China makes up 21.9% of the whole crop area
sown in 2011, leading to China producing the highest wheat grain yield in the world [1,2].
However, wheat production is facing future changes in rainfall patterns, temperature conditions,
and other factors that restrict farmers’ ability to plant this crop. Thus, the whole world, including China,
is paying attention to the risk of wheat production [3–5]. Previous studies have shown that wheat
productivity will be vulnerable to climate change in southeastern Asia and southern China [6–8].
Thus, the appropriate strategies should be analyzed for adoption by policymakers and farmers.

In 30 or 50 years, the world will change in an unimaginable way and it is difficult to imagine how
the future climate will be changed and how the crops respond to those climate changes, which results
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in many uncertainties in these studies [9–11]. Therefore, determining the possibile future changes in
climate may affect the wheat yield, therefore finding strategies to adapt to ensure the continuation
of the wheat supply are necessary. Combining the outputs of GCMs under different RCPs with the
models is an active way to learn the effects of changed climate on crops yield [12–15]. At present,
crop models have been proved the ability to provide useful views into the design of decision making
in the agricultural management by simulating how cropping systems respond to climate change,
management, and variety selection [16–19]. One of their advantages is that they can deal with
crop responses for climate changes, i.e., drought, waterlogging, high temperatures, atmospheric
CO2 concentration changes and precipitation [20–22]. Therefore, many studies have attempted to
investigate how the future climate will affect wheat growing under different scenarios by using crop
models [23–25].

Generally, the projected changes in final production have quite a wide range, depending on
the crop simulation models, GCMs, and RCP scenarios that were selected. SimCLIM has been
used with a large number of crop simulations [26,27]. For example, SimCLIM was used in Georgia,
USA to study the response of soybean phenology, development and yield to the changing climate
coupled with the CSM-CROPGRO-Soybean model [28,29], and it also has been applied to project the
climate variability and its impact on cotton production in southern Punjab, Pakistan [29]. Moreover,
SimCLIM has provided an easier way to learn climatic factors for different fields such as agriculture [30]
and ecosystem resilience [31]. The CSM-CERES-Wheat model could analyze the influence of soil,
field management (like irrigation, fertilization, planting date, cultivar) as well as climate on crop growth
and grain yield [32–34]. The model can simulate wheat development, water balance, phosphorous,
nitrogen balance, and aboveground biomass and grain yield in relation to weather, soil, phenotype
factors and management practices [35–37].

In this research, we studied the future climate change in the two future projections of 2025 and
2050 compared with the baseline period (1961–1990), and the response of winter wheat production to it
and compared with the reference years (19834–2013). The greenhouse gas CO2 emissions of three RCPs
were considered. The CERES-Wheat model was applied to study crop yield simulation in cooperation
with the GCM climate. The main goals of this analysis were: (1) to identify the future climate change
in Guanzhong Plain, (2) to study the future climate change impacts on winter wheat phenology and
productivity in this region, and (3) to provide suggestions for potential adaptation strategies for winter
wheat growth in Guanzhong Plain.

2. Materials and Methods

2.1. Study Location and Crop Management

Yangling, an arid area of Guanhzong Plain, China (34.38◦ N, 107.15◦ E), was selected as a case
study (Figure 1) [38]. Guanzhong Plain, located in the southestern China, a winter wheat-summer
corn double cropping system was applied in this area. The cultivar “Xiaoyan 22” was selected as
the planting cultivar with the recommendation of local farmers. The data of growth and yield for
“Xiaoyan 22” were validated with different irrigation levels by the CERES-Wheat model; the details
were provided by Zheng et al. [39]. Previous results showed that the validated model could simulate
winter wheat phenology, total biomass and final yield greatly, with a lower normalized root mean
square error (RMSEn). However, the RMSEn was a bit high when simulating aboveground biomass
in the treatments that had water stress. With the RMSEn less than 2% for phenology, 15% for total
biomass, and 15% for the yield. The genetic coefficient for “Xiaoyan 22” is shown in Table 1.

Further detailed information about basic field conditions and management strategies was pursued
by Zheng et al. [40]. The soil parameters are listed in Table 2, and the initial conditions of soil used
in the simulation are shown in Table 3. The sowing density was 340 plants m−2, and 130 kg ha−1 N
was applied on the planting date and wintering time, independently. The simulation was set as a
rainfed condition.
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Table 2. Soil physical parameters for the study area, Yangling. 
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Table 1. Validated “Xiaoyan 22” wheat cultivar parameters.

Abbreviation Definition Unit Value

P1V Vernalization sensitivity coefficient degree-days 6.62

P1D Photoperiod parameter - 81.37

P5 Grain filling phase duration ◦C. d 572.10

G1 Kernel number per unit canopy weight at anthesis #/g 23.30

G2 Potential kernel growth rate mg 33.70

G3 Standard, non-stressed dry weight (total, including
grain) of a single tiller at maturity g 1.55

PHINT Thermal time between the appearance of leaf tips ◦C. d 97.20

Table 2. Soil physical parameters for the study area, Yangling.

Depth (cm) Bulk Density (g·cm−3) Field Capacity Wilting Moisture Soil Texture (%)

sand silt clay

0–23 1.3 0.28 0.12 26.7 40.8 32.1
23–35 1.4 0.28 0.13 25.0 42.8 32.1
35–74 1.4 0.27 0.15 24.1 44.8 31.0
74–95 1.4 0.28 0.19 22.7 38.8 38.5
95–163 1.4 0.27 0.14 21.3 38.6 40.1

163–196 1.3 0.26 0.13 24.3 36.9 38.9
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Table 3. Initial conditions of soil profile and physical characteristics in the field, Yangling.

Soil Depth
(cm)

Wilting Point
(cm3

·cm−3)
Field Capacity

(cm3
·cm−3)

Saturation
(cm3

·cm−3)

Initial Water
Content

(cm3
·cm−3)

NH4-N Conc.
(g·Mg−1)

NO3-N Conc.
(g·Mg−1)

0–5 0.10 0.28 0.45 0.28 1.90 12.90
5–35 0.11 0.28 0.46 0.24 0.50 11.20
35–70 0.12 0.28 0.46 0.22 0.40 12.60
70–90 0.14 0.28 0.49 0.22 0.60 11.80

90–100 0.14 0.28 0.50 0.23 0.60 10.50

2.2. Climate Models

The SimCLIM [41] as initially developed to enable integrated estimate of future climate on
different regions in New Zealand [42,43]. SimCLIM 2013 [44] mainly relies on the IPCC CMIP5 datasets.
Generally, 1986 to 2005 was used as the baseline period for the SimCLIM 2013; the previous standard
1961 to 1990 can also be used. Thus, we used 1961–1990 as the baseline period and chose 1984–2013
as the reference year in our study. The climate projections from ranged from 1991 to 2100 around
the world.

2.3. Yield Simulation with the Crop Model

Here, DSSAT Version 4.6 [35–37] was used to simulate the wheat phenology, as well as the
winter wheat grain yield for 2025 and 2050 projections. The inputs of daily weather data for
simulations from future projections were modified from SimCLIM based on the reference years weather.
The daily weather inputs included sunshine hours, rainfall, and maximum and minimum temperatures.
These data for the reference time 1984–2013 and baseline 1961–1990 at the study area were downloaded
from the China Meteorological Data Service Center (CMDC) [45]. The RCPs (RCP 2.6, RCP 4.5, RCP 6.0,
and RCP 8.5) are named after a possible range of radiative forcing values in the year 2100 (of 2.6,
4.5, 6.0, and 8.5 W/m2, respectively) [46]. Three scenarios (RCP 4.5, RCP 6.0, and RCP 8.5) were
selected in this study. RCP 6.0 represents the median value of medium climate prediction sensitivity,
while RCPs 4.5 and 8.5 with low and high climate sensitivity, respectively. Furthermore, two GCM
models (GFDL-CM3 and MRI-CGCM3) were selected from SimCLIM; both of these GCMs provided
all the climate variables including temperature, precipitation, SRAD, wind speed, relative humidity,
and sea level. These two GCMs can project future climate change accurately, so their prediction for
future temperature, SRAD and rainfall have been accepted [28,47]. The present average planting date
was around October 15 in the study area. Five planting dates, about 10 days in advance of and 10 days
after (October 7, 12, 17, 22 and 27), were set to simulate the anthesis date, maturity date, and yield in
the 2025 and 2050 projections. The simulated phenology and final yield in projections 2025 and 2050
were compared with 1984–2013.

3. Results

3.1. Climate Projections for 2025 and 2050

The predicted monthly change of solar radiation (SRAD) (Figure 2), percentage of precipitation
(Figure 3) and mean temperature (Tmean) (Figure 4) for 2025 and 2050 were modified with SimCLIM
based on two GCMs (i.e., GFDL and MRI) and three RCPs. The mean daily radiation for 1961–1990
in the study area was 15.2 MJ m−2; the results showed that the average SRAD decreased for all three
RCPs compared with the baseline. The SRAD showed difference by year and month for the GFDL
model for the future projections in 2025 and 2050. The predicted SRAD change (based on GFDL) as
2025 was the same for the given months compared to 2050 projection, with a slight decreasing trend in
January, February, and March and a slight increasing trend in the rest of the months. Among the three
RCPs, the projection for SRAD for 2025 only showed a slight difference, but the differences among the
three scenarios in 2050 were greater than in 2025. The predicted trends for the change in solar radiation



Atmosphere 2020, 11, 681 5 of 13

based on MRI were similar to GFDL, and the differences among the three scenarios were smaller than
the GFDL.
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Figure 4. Changes in mean temperature (◦C) projected for 2025 and 2050 based on three RCPs, and RCP
8.5 for two GCMs compared with 1961–1990 for Guanzhong Plain.

The average yearly rainfall for 1961–1990 at the experiment site was 623.5 mm. Projected rainfall
showed a difference between two GCMs, with one GCM simulating an increase in rainfall and another
projecting a decrease (Figure 3). Projected rainfall usually increased in February, June, August, while it
decreased in April, July, October, and November compared with the baseline. The rainfall was projected
to increase by 13–40% for February and 1.5–5% for March for the 2025 projection. The differences
among RCPs were no more than 3% for 2025. While the yearly difference, between the projections of
2025 and 2050, was larger based on MIR compared with GFDL; it was approximately 61% between
2025 and 2050.

The average daily Tmean for 1961–1990 at the study area was 13.9 ◦C. Figure 4 shows changes in
Tmean projected by two GCMs and three RCPs compared with the baseline. Overall, the Tmean had an
increasing trend in the 2025 and 2050 projections. The mean temperature increases were 1.2, 2.1, 1.0
and 1.8 ◦C for the GFDL 2025, GFDL 2050, MRI 2025, and MRI 2050 projections. A small decreasing
trend was found in the projections except for the GFDL 2050 projection.

3.2. Projected Phenology Changes

To know the impact of changing climate on winter wheat growing period, we simulated the
number of days from planting to anthesis (ADAPS) and the number of days from planting to maturity
(MDAPS) for different planting dates based on the two GCMs and three RCPs, the results of which are
illustrated in Figure 5. Obvious decreases were projected for both two future periods compared with
the reference year. The ADAPS decreased from 4.8 to 5.9 days on average and from 8.3 to 12.7 days
based on GFDL for the 2025 and 2050 projections, respectively. The largest change of ADAPs was
observed in 2050, according to GFDL model in RCP 8.5, with a decrease of 17.9 days, and with a
decrease of 18.1 days based on MIR under RCP 8.5.

Similarly, the MDAPS was shortened compared with the reference years for both GCMs;
the predictions showed a difference in planting date, GCMs, scenarios, and projected years (Figure 6).
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The MDAPS had a decreasing trend under different scenarios and different planting dates. Among the
three RCPs, the largest decrease was occurred for the RCP 8.5, followed by RCP 6.0, while RCP 4.5
showed similar changes based on both GCMs. The greatest shortening of MDAPS was projected
by MIR on October 27 during 2050 under RCP 8.5, reaching 24.3 days. The MDAPS decreased
from 6.3 to 7.1 days on average and from 9.7 to 14.5 days based on GFDL for the 2025 and 2050
projections, respectively.
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3.3. Projected Changes in Winter Wheat Yields

As mentioned before, the historical weather data based on the reference years were modified
through two GCMs and three RCP scenarios to predict the yield productions in the future projections
under changed sowing windows by using crop model. The predicted grain yields for the 2025 and
2050 projections based on two GCMs are shown in Table 4. For all the scenarios, the winter got a higher
yield when planting on October 17, and the yield decreased largely when planting date shifted to
October 27. In our study, we compared the simulations of winter wheat for the reference years with
the future projections based on two GCMs instead of analyzing the absolute wheat yield prediction
(Figure 7).

Table 4. Simulated yields for the 2025 and 2050 projections based on GFDL and MRI GCM.

Planting
Date Projections

GFDL-CM3 2025 GFDL-CM3 2050 MRI-CGCM3 2025 MRI-CGCM3 2050

RCP 4.5 RCP 6.0 RCP 8.5 RCP 4.5 RCP 6.0 RCP 8.5 RCP 4.5 RCP 6.0 RCP 8.5 RCP 4.5 RCP 6.0 RCP 8.5

10.7 4216 4282.5 4271 4552 4643 5034 4157 4272 4178.5 4247 4542 4121
10.12 4216 4282.5 4271 4552 4643 5034 4157 4272 4178.5 4247 4542 4121
10.17 4216 4282.5 4340 4552 4643 5002 4157 4272 4243 4247 4542 3982
10.22 4216 4282.5 4068.5 4552 4643 4870 4157 4272 4137.5 4247 4542 4466
10.27 3734 3778.5 3824 4010 4235 4603 3814 3942 3979 4160 4477 4582
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Among the three RCPs, the increases in grain yield between the scenarios were different and
they depended on the sowing date. The yield increased higher for RCP 6.0, followed by RCPs 8.5
and 4.5 in the 2025 projection before October 12, while in the 2050 projection, the increase in yield for
RCP 8.5 was higher, followed by RCPs 6.0 and 4.5 based on GFDL. For MRI GCM, the yield increased
higher for RCP 6.0 and followed by RCP 4.5 and RCP 8.5. Due to the large increase in rainfall for the
2050 projection, the yield rose larger than for the 2025 projection. The grain yield at maturity had
a deceasing trend when planting on October 27 based on all the RCPs and both GCMs for the 2025
projection, and except for the MRI 2050 projection, the grain yield had a declining trend based on all
three RCPs and two GCMs when the planting date was delayed to 17 October. The largest increases in
grain yield were 26.1%, 16.3%, and 14% based on the GFDL 2050 projection for the RCP 8.5, RCP 6.0,
and RCP4.5, respectively, when planting on October 7 and 12.
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4. Discussion

In our study, by using the crop simulation model, the wheat grain yield in Guanzhong Plain would
increase by 2.8% and 8.6% under RCP 4.5, 5.1% and 13.9% under RCP 6.0, and 3.9% and 14.8% under
RCP 8.5 for the 2025 and 2050 projections. The results were consistent with a previous study which
found that the warming climate in the last 30 years increased wheat yield by 0.9–12.9% in north part of
China but decreased 1.2–10.2% in south part of China, differed in location, and the reason was due to
the final impacts depends on the combined effect of changes in all climate variables. One zone was
sensitive to mean temperature and the other was most sensitive to solar radiation during the growing
period [6]. The adverse effects of changed climate can be reduced by choosing optimum sowing
dates [48,49], and increasing rainfall during this time is also beneficial [50]. Our study illustrated that
the winter wheat planted after October 17 would decrease the grain yield by 0.3–6.5%. For the 2025
projection, the average yield increased less for RCP 8.5 compared with the other RCPs based on GFDL
and MRI GCM. The reason for this may due to the larger decrease in MDPAS.

Physiologically, wheat is a C3 plant, which greatly benefits from an increase in CO2 concentration;
that is, the increase in CO2 concentration has a fertilization effect that can increase in the photosynthetic
rate and it also has a water-saving effect by decreasing transpiration [51,52]. Generally, increases in
CO2, high mean temperature, and SRAD can improve photosynthesis leading to a final yield increase.
Therefore, changes in CO2, Tmean, and SRAD would affect the crop production significantly [53].
Parry et al. [54] illustrated that, because of the “CO2-fertilization effect”, increasing in CO2 concentration
would counteract the passive influences (such as yield reduction) of climate change in the future
projections. The yield gains for RCP 8.5 were larger based on GFDL. The reason for this may due
to the CO2 fertilization offsetting the interactions, such as higher temperature [55]. Semenov and
Shewry [56] found that, although earlier flowering with increasing temperatures allowed crops to
escape increasing terminal drought, compared to RCP 4.5, the RCP 8.5 with higher CO2 concentrations
can also counteract the increased negative impacts of rainfall reduction and shorter growth period.
Thus, an appropriate decision to support the arid area could be to plant a cultivar that flowers early [52].

Obviously, there were some uncertainties and limitations in the method of combining different
scenarios and crop models in our study. The crop models are useful tools in predicting the impacts of
different weather conditions on crop development and final productivity, but they have limitations
regarding extreme weather events and soil conditions, and the soils used for simulation were also
sources of uncertainty, as different calibration results could lead to different simulation results.
Our results showed that the phenology of winter wheat totally decreased in the future and the yield
increased in Guanzhong Plain by the midcentury. Hernandez-Ochoa et al. [55] indicated that applying
the wheat-crop-climate multi-model ensemble may counteract the negative impact of climate change
on wheat yield in Mexico. Parry et al. [57] suggested about 5% to 10% wheat yield may decline around
the world by midcentury, even changing the sowing dates, choosing the different varieties, applying
the appropriate fertilizer and irrigation amount or other adaptation strategies applied. In our further
studies, we will take into account other wheat cultivars that may be more heat tolerant and drought
resistant, as well as other potential adaptation scenarios such as irrigation and fertilizer management.

5. Conclusions

The present study indicated that the solar radiation mainly reduced from 0.3 to 3.3 MJ m−2 in the
future projection and decreased most in June. Rainfall normally raised in February, June and August,
but reduced in April, October and November in the study area. The precipitation change for the RCP
8.5 scenario was the largest, followed by RCPs 6.0 and 4.5. The mean temperature in most months
rose compared with the baseline, among which the temperature in January, March, and December
increased the most. The winter wheat anthesis date was shortened 3–23 days, the maturity date was
shortened 4–24 days under different projections, and the winter wheat yield increased up to 28%
among all scenarios.
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Overall, the effect of the future climate on winter wheat production in Guanhzong Plain is positive,
and the negative impact of climate change depends on the climate projections considered, as some of
the GCMs showed an increase in grain yield and some showed a reducing trend. For the planting date,
October 7–17 is the optimum choice, and the winter wheat yield would have a declining trend when
planting after October 17. However, the simulated results were based on the rainfed scenario; the grain
yield of rainfed wheat is very sensitive to climate change. Due to the great uncertainty in the future
change of rainfed wheat yield in the Guanzhong area, irrigation management should be considered.
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