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Abstract: This paper is concerned with the statistical learning of the extreme smog (PM2.5) dynamics
of a vast region in China. Differently from classical extreme value modeling approaches, this paper
develops a dynamic model of conditional, exponentiated Weibull distribution modeling and analysis
of regional smog extremes, particularly for the worst scenarios observed in each day. To gain higher
modeling efficiency, weather factors will be introduced in an enhanced model. The proposed model
and the enhanced model are illustrated with temporal/spatial maxima of hourly PM2.5 observations
each day from smog monitoring stations located in the Beijing–Tianjin–Hebei geographical region
between 2014 and 2019. The proposed model performs more precisely on fittings compared with
other previous models dealing with maxima with autoregressive parameter dynamics, and provides
relatively accurate prediction as well. The findings enhance the understanding of how severe
extreme smog scenarios can be and provide useful information for the central/local government
to conduct coordinated PM2.5 control and treatment. For completeness, probabilistic properties of
the proposed model were investigated. Statistical estimation based on the conditional maximum
likelihood principle is established. To demonstrate the estimation and inference efficiency of studies,
extensive simulations were also implemented.

Keywords: nonlinear time series; conditional modeling; conditional maximum likelihood; hazard
pollutants; risk control

1. Introduction

Modeling extreme climatic conditions [1,2], extreme weather [3–8], and rather harmful air
pollutants, together with their social, economic, political, and human impacts, is a contemporary
research topic. It was concluded by [9] that extreme weather is the new normal. References [10,11]
studied the air quality in the USA, and air pollution and health effects in a pyramid figure of
effects. Smog as a more serious type of harmful air pollutant has been drawing more and more
attention recently. Studies on the masses and chemical compositions, as well as the concentrations,
formation, and source of smog have been done [12–19]. Considering the significant impact that some
meteorological conditions may have on the PM2.5 concentrations [20–22], statistical approaches, as well
as physical and chemical ones, were also conducted [23–25]. Except for the studies based on annual
averaged PM2.5 data [26–28], the cases when extreme smog happens are especially concerned [29–33].
For example, public attitudes and responses to the first two red warnings for air pollution in Beijing in
2015 were examined [34].
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China’s smog problem stands out in its extremely high frequency, long duration, and high
concentration. There are eleven long-lasting rounds of severe smog in 2015, which occurred mainly
during the last two months of that year. On 30th November 2015, the PM2.5 concentration in Beijing
and the south of Hebei exceeded 900 µg/m3 and even reached 976 µg/m3 at Liuli River station,
Beijing. The worst smog in 2016 started from 16th December and ended on 21st, covering 17 provinces;
i.e., over one seventh of the national territory area. Three fourths of the cities are located in the
Beijing–Tianjin–Hebei region and its surrounding regions. The PM2.5 concentration in the downtown
of Shijiazhuang city even broke 1000 µg/m3. These observations clearly direct us to be more concerned
with the statistical learning of extreme smog (PM2.5) dynamics of a vast region in China. For example,
classical extreme value analysis to hourly PM2.5 data from 2014 to 2016 in China have been obtained [35].
It is also worth noting that the smog problem is not a unique phenomenon in China. It occurs elsewhere
in the world, especially in developing countries; e.g., Dehli, India [36].

Understanding the extreme features of smog problems in China is very important since severe
smog levels are more dangerous than ordinary levels and will do greater harm to China’s public
health [37–42]. For example, in 2013, 83% of the whole population in China was exposed to
the air pollution with PM2.5 level exceeding 35 µg/m3, which might cause 1.3 million premature
mortalities [43]. The smog also causes a significant economic loss for China [44,45] and even for the
whole world [46,47].

Using classical extreme value theory, one could fit the generalized extreme value distribution to
extreme observations recorded from each of those hundreds of smog monitoring stations. Recently,
Dombry [48] studied properties of the maximum likelihood estimators for the extreme value index
within the block maxima framework. Studies [49,50] are the most recent ones dealing with spatial
extremes and processes. Study [51] proposed a dynamic modeling approach, the autoregressive
conditional Fréchet (AcF) model, for maxima of daily negative log returns of 100 stocks in S&P100.
These new models and modeling approaches can certainly be applied to the extreme observations in
smog extremes in this study. However, static extreme value models do not offer a dynamic view and
may be of less interest to administrators; in addition, the AcF model does not have good performance
in climate extremes either. Different from published work in the literature, a new study approach is
applied to smog extremes in our work, which intends to integrate a new type of extreme value modeling
and dynamic modeling into a dynamic conditional distribution modeling and analysis of regional
smog extremes, particularly the worst scenarios observed in each day. The results show a significant
improvement compared with using existing extreme value modeling approaches. In addition, weather
factors will be introduced in the model to gain higher modeling efficiency. The proposed model and
the enhanced model are illustrated with real data of hourly PM2.5 observations during 2014–2019
from smog monitoring stations located in the Beijing–Tianjin–Hebei geographical region. In particular,
we studied the worst smog dynamic scenarios in the vast region of Beijing–Tianjin–Hebei in China.
For joint regional extreme event monitoring and control, knowing first what can be the worst scenario
in a day clearly will be very useful for administrators to decide whether or not to make warnings
and some necessary control treatments. This paper enhances the understanding of how severe
extreme smog scenarios can be and provide useful information for the central/local government
to conduct coordinated PM2.5 control and treatment. In the literature, researchers have paid much
attention to extreme values in environmental studies; e.g., extreme temperature [2], precipitation [2,4–6],
snowfall [52], and biomedical physics in brain image analysis [53], among many others. Our new
model can certainly find applications in these areas. On the other hand, our model can also be
applicable to studying systematic risk in financial systems [54], which is a contemporary research topic.
Moreover, in terms of systematic risk study in air-quality control and treatment in regional risk and
hazard management, our model can be very useful.
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Roadmap

The rest of the paper is organized as follows. Section 2 conducts a preliminary analysis of smog in
a vast region of Beijing–Tianjin–Hebei. In Section 3, we introduce our dynamic model by specifying
a latent independent standard random process of standard Weibull random variables. Probabilistic
properties of stationarity and ergodicity of the proposed model are investigated. Statistical estimation
based on the conditional maximum likelihood principle is established. To demonstrate the estimation
and inference efficiency of studies, extensive simulations are implemented in Section 4. Section 5
contains advanced modeling of smog extremes together with weather data. Section 6 offers conclusions
of the paper regarding our applied study of smog extremes. Technical arguments are deferred to
Appendix A.

2. Preliminary Analysis of Smog in the Vast Region of Beijing–Tianjin–Hebei

2.1. Which Time Scale of PM2.5 Data Is to Be Analyzed?

When considering extreme smog as an extremely harmful air pollutant which may last a few
hours in a day or last a couple of days, it becomes rather meaningful to study the hourly characteristics
of radical smog movements, instead of daily traits. One can consider an analysis of daily data as well.
We will not consider this time scale in this applied project.

To adequately demonstrate the variation of smog in different years, data from 2014 to 2019 are
used to fit our proposed model. The first three months’ data of 2020 are used to check the predictability
of our model. All the data are from the China National Environmental Monitoring Center. Due to
technological testing, transition problems, hardware failure, possible delayed updates, etc., some of
the data are missing and taken as non-observable smaller values to the observed daily maxima in
this study.

2.2. The Geographical Region to Be Focused on

Figure 1 demonstrates 90% quantile maps for January and December of 2014 and 2019 among the
monitoring stations in mainland China.

(a)
(b)

(c) (d)
Figure 1. Contour maps of 90% quantiles (µg/m3). (a) The contour maps of January 2014, (b) the one
for December 2014, and (c,d) those of January and December 2019 respectively (the blank areas are due
to the absence of stations).
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As shown in Figure 1a, in January 2014, most of the monitored areas spanning the north, east,
and middle of China (especially those red areas) had quantiles exceeding 150.4 µg/m3, which is the
starting point of the very unhealthy level of air quality according to the US standard [55]. There are five
intervals of PM2.5 levels according to the US (EPA) standard: (1) 35 µg/m3 is the highest PM2.5 level for
the good and moderate category; (2) the range from 35 to 55.4 µg/m3 is unhealthy for sensitive groups;
(3) the range from 55.5 to 150.4 µg/m3 is unhealthy; (4) the range above 150.4 µg/m3 is widely viewed
as very unhealthy; and (5) it is hazardous when the smog level is above 250.5 µg/m3. We see then that
south Hebei, Beijing, and Tianjin showed the highest smog levels with the 90% quantile values being
close to an outstanding 500 µg/m3, which is the maximum value given in the US standard. A similar
conclusion can be drawn from Figure 1b is that in December 2014, south Hebei, Beijing, and Tianjin
were still the worst air quality areas, although the quantiles of the smog values in most areas of China
were much lower than their counterpart values in January. In January and December 2019 (as shown
in Figure 1c,d respectively), the thresholds among all of China decreased significantly; that shows
great improvement in extreme smog problems; south Hebei, Beijing, and Tianjin are still some of the
key regions with the severest smog conditions (relatively higher threshold). Monthly 90% quantiles of
2015 and 2018 confirm this conclusion as well.

This study focuses on the smog problem in the Beijing–Tianjin–Hebei region; i.e., not all of
mainland China, whose smog issues may be too diversified to draw consensus conclusions about.
The importance of focusing the study on the smog problem in the Beijing–Tianjin–Hebei region is
due to the fact that the areas are not only geographically connected but also economically significant
in their immense contribution to China’s GDP (nearly 9% in 2019 with 8% of population). With the
implementation of the collaborative development of the Beijing–Tianjin–Hebei region as a national
strategy, the coordination among these three areas has been becoming more and more intimate. It has
been taken as an indivisible whole, especially in the issues of smog prevention and control.

The smog problem in this region has been recognized on account of health concerns as early as
in January 2013, when long-lasting severe smog prevailed and caused a significant increase in the
number of patients with respiratory tract infections and allergic symptoms in hospitals and clinics in
Beijing, Tianjin, and Shijiazhuang (the capital city of Hebei province). Research also indicated that bad
air quality in northern China causes 5.5 years reductions of people’s life expectancy [56].

In the Beijing–Tianjin–Hebei region, besides two metropolitan cities, Beijing (the capital of China)
and Tianjin (a major port city in northeastern China), there are 11 cities in Hebei province.
Among these 11 cities, Zhangjiakou and Chengde are located in north Hebei; Qinghuangdao,
Tangshan, and Cangzhou are in east Hebei; Baoding and Langfang are located in the middle of
Hebei; Shijiazhuang, Hengshui, Xingtai, and Handan combine south Hebei. Their locations along
with Beijing and Tianjin are shown in Figure 2. The number of smog monitoring stations in the region
nearly remained the same during 2014–2019 (after deleting stations still under test, the numbers of
valid stations are around 80 for all years). Worth noticing is that the station type is the key parameter
to explain diurnal variability of atmospheric pollutants due to sources proximity. In this paper,
however, since only the daily maxima of PM2.5 across the whole region rather than a spatial model is
considered, the station type and geographical information which describe the spatial relations are not
used in the study.
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Figure 2. Locations of cities in Beijing–Tianjin–Hebei region. The numbers of national monitoring
stations in 2016 in each city are listed in the brackets.

2.3. Why Model the Extremes Rather than the Average Levels?

This paper focuses on the extreme smog instead of average levels for two reasons. Firstly,
the extreme smog rather than the ordinary smog affects the public health and causes more loss to the
welfare of the whole society [36,38,41]. Secondly, when investigating the severity of smog, the results
can be very different from the use of the annual averages or the extreme values of PM2.5 data. Taking
stations of Zhangjiakou and Chengde during 2014–2016 as an example, their annual average PM2.5

levels rank as the best 30% among the whole country, showing relatively good air quality on average.
However, as far as the means of extreme values (here extreme values refers to those PM2.5 levels
above the annual 90% quantile) are concerned, those stations belong to the worst third of the whole
country. This difference in ranks gives two implications. On the one hand, the poorer grades using
more extreme values than those using the annual averages show that the air quality of Zhangjiakou
and Chengde may not be as good as one has thought; i.e., a city that performs well on average does not
guarantee an absence of extreme smog. On the other hand, for Zhangjiakou and Chengde, while their
extreme PM2.5 levels were relatively lower most of the time, there were still a few occurrences of
very high PM2.5 levels to which considerable attention should be paid. The histograms of hourly
PM2.5 extreme values for those stations also confirm such arguments. One of those histograms at one
representative station in Zhangjiakou in 2014 is given in Figure 3 as example.

Figure 3. The histogram of hourly PM2.5 extremes at one representative station of Zhangjiakou in 2014.
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For studies on the average PM2.5 level rather than the extreme PM2.5 value, we refer readers
to [26–28].

2.4. The Study Approach and the Inclusion of Meteorological Variables

With the established arguments in the prior section, this applied study focuses on the extreme
values rather than the average values of PM2.5 data. Ideally, one should build a model to describe
extreme smog level dependencies among monitoring stations in the region. Then, all analyses and
inferences, even policy recommendations, are to be based on the constructed model. To achieve
this goal, a model builder has to consider many location/spatial parameters and extreme spatial
dependencies, which can be very complicated and hardly implementable in a multivariate/spatial
extreme value and time series context. We note that in the literature, workable and meaningful air
quality models, including a comprehensive air quality model with extensions (CAMx), the community
multiscale air quality modeling system (CMAQ), etc., have been developed for various applications and
for developing public policies. In this study, we adopt an alternative approach in modeling regional
extremes in a time series modeling framework. This paper tries to model the maximum PM2.5 values of
24 h a day among all stations in the Beijing–Tianjin–Hebei region. Here, the extreme value represents
the highest daily PM2.5 concentration of the area as a whole. It is particularly useful when planning
smog prevention and control measurements, since such measurements as well as the smog pre-warning
systems are integrated and unified in the Beijing–Tianjin–Hebei region. The pre-warnings should be
activated and corresponding measurements should also be taken so long as the predicted PM2.5 level
at one single station inside the region exceeds a specific breakpoint wherever the station is. In this
circumstance, only the maximum value of the whole part rather than the particular concentrations of
all individual stations is concerned.

The line graphs of the regional daily maximum (based on hourly observations) PM2.5 levels from
2014 to 2019 are plotted in Figure 4a. It can be seen that extreme smog levels were much worse in
2014 since its extreme values were mostly much higher compared to the same period of the following
five years. It is further demonstrated in Table 1 that the extreme values in 2014 have a much higher
sample mean, median, maximum and standard deviation; they improved significantly in recent years
with these statistics decreasing in general. More importantly, the maximum PM2.5 levels over the
years are persistent with an exceptional high value in 2014. Meanwhile, the skewness and kurtosis are
persistently larger than those from a Gaussian distribution. The extreme values also show significant
seasonality for all six years in that their sample means and standard deviations are much higher in the
first and fourth seasons than the other two seasons, as shown in Figure 4b. We shall consider these
dynamic characteristics in our model building.

(a)

Figure 4. Cont.
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(b)
Figure 4. (a) The line graphs of the regional daily extreme values (µg/m3) from 2014 to 2019 (Q2014
represents those extreme values in 2014 and so on; the same thereafter). (b) The boxplots of seasonal
extreme values (µg/m3) from 2014 to 2019. (2014Q1 represents the first season of 2014 and so on.)

Table 1. Descriptive statistics of extreme values (µg/m3) from 2014 to 2019.

Q2014 Q2015 Q2016 Q2017 Q2018 Q2019

Mean 351 281 267 239 195 180
Median 302 241 228 192 163 144

Maximum 1597 929 1040 1076 850 1000
Minimum 74 49 78 58 36 33
Std. Dev. 186 144 149 146 109 117
Skewness 1.8 1.1 1.8 2.3 2.0 2.4
Kurtosis 9.1 4.5 7.9 10.0 9.7 12.6

In the literature, extensive research shows that climate factors may cause a significant impact on
the PM2.5 levels [20,21] at one location. These meteorological conditions include temperature, humidity
(the humidity mentioned in this paper is relative humidity (%)), wind speed, wind direction, etc.;
see [23,24]. Taking Beijing as an example, Figure 5 is the daily maximum PM2.5 level of Beijing in 2018
that is computed using the hourly PM2.5 levels among all monitoring stations in Beijing. The selected
meteorological conditions are Beijing’s daily maximum and minimum temperature, daily maximum
and minimum humidity, daily maximum wind levels, and its related wind direction in 2018, as shown
in Figure 6. All the data are from the National Meteorological Information Center.

Figure 5. Daily maximum PM2.5 level (µg/m3) of Beijing in 2018.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. The meteorological condition of Beijing in 2018. (a) The daily maximum temperature (degree
centigrade), (b) the daily minimum temperature (degree centigrade), (c) the maximum wind level
(force 1 to force 6), (d) the wind direction in the presence of the maximum wind level. (e) The daily
minimum humidity (%); (f) the daily maximum humidity (%).

The annual maximum PM2.5 level in Beijing is around 350 µg/m3 in 2018, which is much
higher than the hazardous breakpoints (250 µg/m3) according to the US standard. Although the
annual maximum of the PM2.5 values in Beijing is lower than that of the regional extremes given in
Table 1 (850 µg/m3), around one tenth of the daily regional extremes are observed from stations in
Beijing. Actually, the locations of the highest daily regional extremes are well spread among cities in the
Beijing–Tianjin–Hebei region, which exactly demonstrates that modeling the regional extremes instead
of local PM2.5 dynamics is very important. Besides, the smog in the first and last seasons is much more
sever than that in the other two seasons; meanwhile, the daily minimum and maximum temperatures
in the first and last seasons are much lower, showing potential negative correlations between the PM2.5

level and temperature. As for wind and humidity, they affect the concentration of smog in different
ways: it is known that humidity affects the atmospheric chemistry and the formation of secondary
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pollutants such as particulate matter and ozone. However, wind influences the concentrations of the
trace gases, which react at rates determined by their concentrations. The fourth level wind coming
from the north or northeast most often occurs in the first season, which tends to decrease the PM2.5

level. However, the smog is still severe when the wind becomes weak. In this season, the differences
between the daily maximum and minimum humidity are relatively larger (mainly caused by the lower
minimum humidity), which is an adverse diffusion condition for the smog [57]. In the second and
third seasons, winds with the third level coming from the south and south-west dominate. In these
two seasons, the smog problem is much less sever and both the maximum and minimum humidity
are relatively high (resulting in lower humidity difference). In the last season, winds seem to be
weaker with the second level coming from the northeast, and both the daily maximum and minimum
humidity are barely low (with a relatively smaller minimum humidity), which could be reasons
leading to the severe smog. Generally speaking, it is observed that the lower the wind level and
the higher the humidity difference (or the lower the minimum humidity), the higher the daily PM2.5

extremes. These observations coincide with the general results from other studies [57,58]. More details
about the specification of covariates (climate factors) when modeling the regional daily maximum
PM2.5 levels will be addressed in Section 5.2. The data source is also the National Meteorological
Information Center.

3. Model Specification

Suppose Xtij is the PM2.5 level on day t at time i (hour) of the jth station in a group containing m
stations. Define Qt as

Qt = max
1≤i≤24, j=1,...,m

Xtij. (1)

An illustration of daily regional smog extremes’ time series {Qt} is given in Figure 4.
In the extreme value theory, under suitable conditions ([59]), the normalized maximum of a

sequence (a group, a block, or an array) of random variables is distributed as a generalized extreme
value (GEV) distribution in its limit when the size of the sequence tends to infinity. In view of
the definition in Qt, random variables Xtij’s are potentially showing time dependence and spatial
dependence, and the distributions can be different. As a result, Qt can be hardly distributed as a GEV
random variable, and the dependence between Qt and Qt−1 cannot be modeled using the models
(e.g., [51,60]) developed for GEV distributed random variables.

3.1. The Proposed General Model

Inspired by the AcF model (autoregressive conditional Fréchet model) proposed by [51],
we propose the following model for smog extremes modeling:

Qt = µt + σtY
1/αt
t , (2)

where µt is the lowest level of PM2.5 in the region on day t, σt > 0 is the scale parameter, αt > 0
is the shape parameter, and {Yt}t≥0 is a sequence of i.i.d. exponentiated Weibull (unit exponential)
random variables.

One notices that the standardized Qt, (Qt − µt)/σt follows an exponentiated Weibull distribution
with the shape parameter αt. By introducing the additional parameter αt, the distributions of Qt

possess great variability and flexibility. In the literature, the exponentiated Weibull distribution has
been applied to model climate extremes; e.g., in flood modeling in ([61]). Unlike the AcF model,
wherein unit Fréchet distributions are assumed to capture the heavy-tailedness of financial data,
Weilbull-distributed {Yt}s are considered here to fit the characteristics of smog data which are not
necessarily being heavy-tailed. It has been observed in [35] that the station-wise extremes in the
Beijing–Tianjin–Hebei region belong to the maximum domain of attraction of Weibull type, which leads
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to a reasonable assumption of Yt being standard Weibull distributed. To be more rigorous, we also fit
the AcF model in Section 5 for comparison.

The next stage is to build a time series model for the {Qt} series. Following the arguments
above and those in [51], to reduce the model complexity, we treat µt as constant µ and interpret µ as
the lowest level of PM2.5fpr all the time across the Beijing–Tianjin–Hebei region, and treat σt and αt

as dynamic.
Noticing that the smog levels can be affected by the past smog levels and weather conditions,

we assume the following dynamic equations for the time varying parameters:

log σt = β0 + β1 log σt−1 + ησ(Qt−1, Tpt−1, Hut−1, Wdst−1, Wddt−1), (3)

log αt = γ0 + γ1 log αt−1 + ηα(Qt−1, Tpt−1, Hut−1, Wdst−1, Wddt−1), (4)

in which Tpt, Hut, Wdst, and Wddt denote the maximum temperature, minimum humidity, mode
of wind speed, and mode of wind direction respectively. These four weather condition variables
have been commonly discussed in the smog study literature; e.g., [62,63], and the references therein.
Other weather factors can also be considered. However, adding too many variables increases the
model complexity and weakens the effects of important variables. For this reason, we only focus on
the dynamics of variables given in (3) and (4). We call model (2)–(4) the dynamic conditional Weibull
(DCW) model. In this paper, we consider functions ησ(.) and ηα(.) defined in (3) and (4) as exponential
functions which are widely adopted in the literature, e.g., [51], due to their flexibilities in functional
properties of boundedness, differentiability, and monotonicity. It is worth noting that the functions of
ησ(.) and ηα(.) given in (3) and (4) can also take other forms, as long as they meet some conditions
that guarantee the dynamic processes being stationary and ergodic. For clarity and simplicity in the
proofs of stationarity and ergodicity, we first omit terms related to weather factors and express model
(2)–(4) as:

log σt = β0 + β1 log(σt−1) + β2 exp(−β3Qt−1), (5)

log αt = γ0 + γ1 log(αt−1) + γ2 exp(−γ3Qt−1). (6)

Qt = µ + σtY
1/αt
t (7)

Moreover, we will discuss the model related to weather factors in Sections 4 and 5.
In the following Theorem 1, we prove that the process (σt, αt) generated from (5)–(7) is stationary

and ergodic.

Theorem 1. (Stationarity and ergodicity.) If we have 0 ≤ |β1| 6= |γ1| < 1, β0, γ0, β2, γ2, µ ∈ R and
β3, γ3 ≥ 0 the process {σt, αt} defined in (5)–(7) is stationary and geometrically ergodic.

In Section 3.2, we study our parameter estimation procedures and characterize asymptotic
behaviors of the estimators.

3.2. Parameter Estimation and Asymptotic Properties

We begin by introducing some notation. We denote Θs = {θ = (µ, β0, β1, β2, β3, γ0, γ1, γ2, γ3)|
β0, γ0, µ, β2, γ2 ∈ R,−1 < β1, γ1 < 1, β3, γ3 ≥ 0} as the parameter space for the estimation problem
in (5)–(7) and set the true parameter as θ0 = (µ0, β0

0, β0
1, β0

2, β0
3, γ0

0, γ0
1, γ0

2, γ0
3). After letting (σ̃1, α̃1) be

an arbitrary initial value, we then denote (σ̃t(θ), α̃t(θ)) as the t-th iterate generated from model with
initializer (σ̃1, α̃1) and an arbitrary parameter θ in Θs. In addition, (σ0

t , α0
t ) is denoted as the t-th iterate

generated from the model with true (σ1, α1) and θ0. Moreover, we also denote (σt(θ), αt(θ)) as the
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values generated from the true initializer (σ1, α1) and an arbitrary θ in Θs.
With the known {µ, σ̃t(θ), α̃t(θ)}, the conditional p.d.f. of Qt is given by

ft(θ) = ft(Qt|µ, σ̃t, α̃t) =
α̃t

σ̃t

(Qt − µ

σ̃t

)α̃t−1
exp

(
−
(Qt − µ

σ̃t

)α̃t)
(8)

for any fixed t. By leveraging the conditional independence property of {Qt}t≥0, we further write the
log-likelihood function with respect to parameter θ as

L̃n(θ) =
1
n

n

∑
t=1

˜̀t(θ) =
1
n

n

∑
t=1

[
log α̃t − α̃t log σ̃t + (α̃t − 1) log(Qt − µ)−

(Qt − µ

σ̃t

)α̃t]
, (9)

where ˜̀t(θ) = log( ft(θ)).

Next, we impose two assumptions of the model that we are investigating in.

Assumption 1. Assume the parameter space Θ is a compact set of Θs. Suppose the observations {Qt}n
t=1 are

generated from a stationary and ergodic DCW process with true parameter θ0 being an interior point of Θ.

Due to the compactness of Θ, there exists a uniform upper and lower bound of the sequence
(σt(θ), αt(θ)) and (σ̃t(θ), α̃t(θ)) with θ ∈ Θ, which are denoted as (σU , αU) and (σL, αL) respectively.
We next make an assumption on the lower bound of our sequence αt.

Assumption 2. The uniform lower bound αL is larger than 2.

It is noted that [64] studied the consistency and asymptotic normality of irregular MLEs from a
group of distributions, including the three-parameter Weibull distribution, using i.i.d. observations.
We extend the existing results to a dynamic model with dependent observations. In addition,
Assumption 2 coincides with the results given by [64] that the classical asymptotic properties holds
only if α > 2 under their static settings. We next theoretically characterize the consistency property of
the local maximizer of likelihood function L̃n(θ) in the following Theorem 2.

Theorem 2. (Consistency) Under Assumptions 1 and 2, there exists a sequence {θ̂}n≥1 that maximizes
{L̃n(θ)}n≥1 and satisfies ‖θ̂n − θ0‖ ≤ τn with τn = Op(n−r), and 1/αL < r < 1/2.

Theorem 2 shows that there exists a sequence {θ̂n}n≥1 which contains not only consistent
estimators to θ0 but local maximizers of {L̃n(θ)}n≥1 as well. Next, we derive the asymptotic
distributions of our estimators θ̂n in the following Theorem 3.

Theorem 3. (Asymptotic normality) Under the same assumptions in Theorem 2, we have
√

n(θ̂n − θ0)
d−→

N(0, M−1
0 ), where θ̂n is given in Theorem 2, and M0 is the Fisher information matrix with the value estimated

at θ0. Furthermore, the variance of the plugged-in estimated score functions { ∂
∂θ lt(θ̂n) = log α̃t − α̃t log σ̃t +

(α̃t − 1) log(Qt − µ)− (Qt−µ
σ̃t

)α̃t}n
t=1 is a consistent estimator of M0.

Although the existence of the θ̂n and their asymptotic distributions are shown in Theorem 2 and
Theorem 3 respectively, the uniqueness of MLE remains open. Proposition 1 provides a segmentary
answer to the uniqueness of MLE.

Proposition 1. (Asymptotic uniqueness) Define the set Vn = {θ ∈ Θ|µ ≤ µ0 + εn} with Θ given in Theorem
2 and εn = Op(n−α), 1/αL < α < 1/2. Under the the same assumptions in Theorem 2, there exists a sequence
of θ̂n = arg maxθ∈Vn L̃n(θ) such that we have ‖θ̂n − θ0‖ ≤ τn, and P(θ̂n is the unique global maximizer of
L̃n(θ) over Vn)→ 1, where τn = Op(n−r), 1/αL < α < r < 1/2.
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Note that, given observations {Qt}t≥1, the parameter space of θ is defined as Θn = {θ ∈ Θ|µ <

Qn,1} after ranking {Qt}t≥0. One is able to see that Vn ⊆ Θn since we have Qn,1 − µ0 ≥ Op(n−1/αL).
In addition, Proposition 1 states that with the probability tending to 1, θ̂n = arg maxθ∈ Vn L̃n(θ) is a
unique consistent estimator of θ0 over Vn. The formal proof of this Proposition 1 can be found in
Appendix A.5.

In Section 4, we use simulation examples to illustrate the numerical evidence of the established
theory, and then in Section 5, we study smog dynamics in the Beijing–Tianjin–Hebei region.

4. Numerical Studies Using Simulations

In this section, we present two simulation examples. Example 1 does not involve weather variables.
Example 2 contains weather variables. In each simulation, we generate the process using parameter
values from real applications and i.i.d. standard Weibull random variates with lengths of 2000 and
5000 respectively. Then we fit the parameters by conditional MLE, starting with the paired values
which we used to get the true MLE. The codes for simulation studies in this Section 4 and for model
estimation and prediction in Section 5, which were developed in R software, have been put in GitHub
for free assessments. (URL is https://github.com/MaxineYu/DynamicConditionalWeibullModel-
DCWcodes.)

Example 1. Simulations without weather factors: In Table 2, we list all parameter values (taken from the
estimated values for a real application based on model (10)–(12) using data from 2014–2016, and report the
estimated mean values and standard deviations from 500 repetitions of time series with lengths of 2000 (scenario
SC1) and 5000 (scenario SC2) respectively.

The following Table 2 presents our estimation results for simulations without considering
weather factors.

Table 2. Performance of MLE with the sample sizes of 2000 (SC1) and 5000 (SC2). Mean and SD are
samples’ means and standard derivations of 500 estimated corresponding parameter values respectively.
Ratio denotes the ratio between the standard errors with n = 2000 and standard errors with n = 5000.

Parameter True Value Mean (SC1) SD (SC1) Mean (SC2) SD (SC2) Ratio

µ 4.677 × 101 4.781 × 101 3.022 4.719 × 101 1.961 0.649
β0 5.387 5.394 1.837 × 10−1 5.392 1.266 × 10−1 0.689
β1 1.912 × 10−1 1.890 × 10−1 2.595 × 10−2 1.900× 10−1 1.795 × 10−2 0.692
β2 −2.219 −2.230 7.863 × 10−2 −2.224 4.951 × 10−2 0.630
β3 3.439 × 10−3 3.479 × 10−3 2.668 × 10−4 3.455× 10−3 1.687 × 10−4 0.632
γ0 2.398 2.387 6.065 × 10−2 2.394 3.825 × 10−2 0.631

One can see that the mean values of 500 estimates are very close to their corresponding true
values. The corresponding standard deviations also illustrate the significance of our estimation.

Table 2 also presents the ratios between the standard errors with n = 2000 and those corresponding
ones with n = 5000. It is noticed that the ratios are close to 0.632 =

√
2000/5000, which is consistent

with our theoretical justification in Theorem 3 with
√

n(θ̂n − θ0)→d N(0, M−1
0 ).

Next, we study simulations involving weather factors.

Example 2. Simulations with weather factors. In Table 3, we list all parameter values (taken from the estimated
values for a real application based on model (16)–(18) using data from 2014–2016), and report the estimated mean
values and standard deviations from 500 repetitions of time series with lengths of 2000 and 5000 respectively.

We note that in the simulations, we used the observed weather values of the maximum
temperature, minimum humidity, mode of wind-level, and modes of wind-direction (see Section 5
for more details) of a day (24 h).

https://github.com/MaxineYu/DynamicConditionalWeibullModel-DCWcodes
https://github.com/MaxineYu/DynamicConditionalWeibullModel-DCWcodes
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Table 3. Performance of MLE with the sample sizes of 2000 (SC1) and 5000 (SC2). Mean and SD are
samples means and standard derivations of 500 estimated corresponding parameter values respectively.

Parameter True Value Mean (SC1) SD (SC1) Mean (SC2) SD (SC2)

µ 4.624 × 101 4.695 × 101 3.499 4.642 × 101 2.237
β0 6.010 6.021 2.337 × 10−1 6.016 1.443 × 10−1

β1 1.257 × 10−1 1.235 × 10−1 3.090 × 10−2 1.250 × 10−1 2.004 × 10−2

β2 −1.437 −1.434 1.133 × 10−1 −1.440 6.263 × 10−2

β3 2.237 × 10−3 2.256 × 10−3 1.998 × 10−4 2.240 × 10−3 1.111 × 10−4

β4 9.283 × 10−3 9.442 × 10−2 1.011 × 10−3 9.291× 10−3 6.166 × 10−4

β5 2.622 × 10−3 2.649 × 10−3 5.506 × 10−4 2.627 × 10−3 3.143 × 10−4

β6 1.021 × 10−1 1.035 × 10−1 1.730 × 10−2 1.022 × 10−1 9.577 × 10−3

cσ,1 7.165 × 10−3 6.783 × 10−3 3.045 × 10−2 7.566 × 10−3 1.956 × 10−2

cσ,2 −1.488 × 10−1 −1.511 × 10−1 3.131 × 10−2 −1.490 × 10−1 1.867 × 10−1

cσ,3 −1.042 × 10−1 −1.066 × 10−1 2.770 × 10−1 −1.045 × 10−1 1.701 × 10−1

cσ,4 −8.835 × 10−2 −8.782 × 10−2 3.093 × 10−3 −8.797 × 10−2 1.713 × 10−2

cσ,5 −4.190 × 10−2 −4.270 × 10−2 2.890 × 10−2 −4.253 × 10−2 1.759 × 10−2

cσ,6 1.992 × 10−2 2.320 × 10−2 3.699 × 10−2 1.949 × 10−2 2.289 × 10−2

cσ,7 4.577 × 10−2 4.703 × 10−2 2.594 × 10−2 4.575 × 10−2 1.520 × 10−2

γ0 2.572 2.574 6.617 × 10−2 2.575 4.271 × 10−2

Comparing the results related to parameter estimation and standard errors in Tables 2 and 3,
we can see that the common parameters like θ = (µ, β0, β1, β2, β3, γ0) in Examples 1 and 2 have
comparable estimation accuracy. Moreover, the estimated parameter values associated with the
weather variables are close to their corresponding true values, while the Monte Carlo standard
deviations of the parameters associated with modes of wind-directions are relatively large with n = 2000,
which suggests low estimation accuracy, though they are improved when n = 5000. This phenomenon
is understandable, as the corresponding observations are zero inflated.

In summary, two simulation examples confirm that our estimation procedure (the conditional
MLE) works for our proposed model parameter estimation, which provides an empirical support in
our theoretical results and real data applications. The computational times of Examples 1 and 2 along
with the computing environment are listed in Appendix B.

5. Real Data Inferences

5.1. Inference without Weather Factors

With the established model and notation in Section 3, we first fit model (5)–(7) using the data
from 2014–2019. Given the fitted parameters in the above model, we generate and plot the fitted σt and
αt dynamics in Figure 7. In this process, for every t ≥ 1, we apply real values of smog data Qt−1 in
Equations (5) and (6) to generate fitted (σt, αt). In addition, initial values of (σ1, α1) can be arbitrarily
chosen (greater than zero), as their effects on the generated sequences are negligible by our theoretical
justification given in Appendix A.
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(a) (b)
Figure 7. (a) The graph of fitted σt and (b) the graph of fitted αt resulted from the DCW model.

Figure 7a depicts dynamics of σt which represents the scale of the maximum extreme smog. It is
shown that σt enjoys smaller values during the second and third season and enhances greatly during
the first and fourth seasons. This seasonality matches one of the extreme smog values, which means
that when the extreme smog goes severe, the maximum value among the whole region fluctuates more.
The observed phenomenon is similar to the volatility sequence in GARCH (generalized autoregressive
conditional heteroscedasticity) model ([65]) which reflects the local volatilities. The σt in DCW plays
the same role as the volatility in GARCH model. From Figure 7b, one can see that values of αt converge
to a constant very quickly once a fluctuation occurs. Moreover, considering the fact that the parameter
γ2 is neither significant nor stable in Monte Carlo simulations, the parameter γ2 is set as zero here. As a
result, the equation of αt, which only contains γ0 and γ1 this time, also converges to a constant. Based
on the above arguments, we constrain γ1 = γ2 = 0 in Equation (6), which simplified to the following
model (11), and our final model without the weather factor becomes (10)–(12):

log σt = β0 + β1 log(σt−1) + β2 exp(−β3Qt−1), (10)

αt = γ0, (11)

Qt = µ + σtY
1/αt
t . (12)

The estimated results are presented in Table 4.

Table 4. Estimated parameters for model (10)–(12).

Parameter Fitted Value SD

µ 3.218 × 101 3.457 × 10−1

β0 4.885 1.081 × 10−1

β1 2.461 × 10−1 1.682 × 10−2

β2 −2.195 4.443 × 10−2

β3 4.613 × 10−3 1.549 × 10−4

γ0 2.320 1.814 × 10−2

It is worth noting that the simplified model (10)–(12) and the model (5)–(7) have very closed
maximum likelihood values (−5.84223 and −5.84348 respectively). The likelihood ratio statistic
testing the two constraints (γ1 = γ2 = 0) equals 0.0025, which is much smaller than the critical value
χ2(2) = 5.991. This confirms the validity of the two constraints; i.e., the simplified model should be
used. Using the estimated parameters given in Table 4, we generate a sequence of fitted Qt (notated
as Q̃t thereafter) based on Equation (12), in which σt and αt are obtained by Equations (10) and (11)
with the same procedure we used to plot Figure 7. QQ-plot(quantile–quantile plot) of the real data Qt

against the generated one Q̃t is presented in Figure 8a and the line graphs of these two series are given
in Figure 8b.
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(a) (b)
Figure 8. (a) The quantile-quantile plot of Q̃t (µg/m3) using our DCW model (x-axis) with real values
Qt (y-axis, µg/m3), and (b) time series plot and the comparison between Q̃t (blue lines, µg/m3) and
real values Qt (red lines, µg/m3).

It is observed that points in Figure 8a distribute around the line of 45-degree, implying that the
distribution of fitted data Q̃t is close to the one of real Qt. Tendencies of Q̃t also fits well with Qt in
Figure 8b.

An alternative approach is also considered here. As discussed in Section 3, one may apply the
AcF model proposed in [51] to capture the heavy-tailedness of financial data. To illustrate the validity
of the AcF model in its application on smog data, it is also fitted here then the estimated parameters
are used to generate a fitted sequence Q̃t. The density curves of the generated values Q̃t from both the
AcF model and our DCW model combined with the histogram of real data Qt are depicted in Figure 9a.
The QQ-plot based on the AcF model are also given in Figure 9b.

(a) (b)
Figure 9. (a) The histogram of the real values Qt (µg/m3) and Q̃t (µg/m3); the red curve represents
the density curve of fitted values from the DCW model, and the blue one comes from AcF model;
and (b) is the QQ-plot of Qt (y-axis, µg/m3), and the Q̃t (µg/m3) from AcF model (x-axis)

As shown in Figure 9a, the density curve of generated values Q̃t from the DCW model
approximate that of real values better than that from the AcF model in both the tail length and
location of the peak. Taking the tail as an example, simulated values from the AcF model which exceed
1500 or even 2000 µg/m3 show much more frequency than that of real data. The same argument can
also be put forward according to QQ-plot in Figure 9b, in which the points are obviously lower than
the 45-degree line. This bias in fitting extreme high values does not happen in our DCW model in
Figure 8a.

It is also worth noting that in Figure 9a, the histogram shows a salient at value 500 µg/m3, which
is caused by the recording mechanism. Under some unknown circumstances, during the period from
the end of 2015 to the start of 2016, the PM2.5 values larger than 500 are truncated to 500; that causes an
unusually high frequency at 500 in the histogram. Even so, the overall fitting efficiency of our DCW
model looks reasonably acceptable using those truncated values 500 µg/m3 by seeing the generated
values Q̃t displayed by the red density curve in Figure 9a.
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5.2. Inference with Weather Factors

As mentioned before, the smog extremes Qt often relate to weather factors. We extend Equation (5)
to the following (13); then model (5)–(7) becomes (13)–(15):

log σt = β0 + β1 log σt−1 + β2 exp(Xt−1), (13)

log αt = γ0 + γ1 log(αt−1) + γ2 exp(−γ3Qt−1), (14)

Qt = µ + σtY
1/αt
t . (15)

where Xt−1 = −β3Qt−1 + β4Tpt−1 + β5Hut−1 + β6Wdst−1 +
7
∑

i=1
cσ,iWddi,t−1 and Tpt, Hut, Wdst,

and Wddi,t represent the maximum temperature, the minimum humidity, the mode of wind-level
(taking values: 1, 2, 3, 4, . . . ), and the mode of wind-directions of a day (24 h) of the related city
respectively. Seven dummy variables are used to represent eight different wind-directions. Considering
the lagged effects and non-negligible impacts that weather factors have on the scale parameter of smog
data, the values of weather factors from the last day are used to generate current σt. For simplicity,
the linear function of weather variables is used here. It can also be extended to non-linear functions to
gain higher modeling efficiency. Adding weather factors in model Equation (6) can also be studied,
but may lead to a much more difficult parameter estimation process due to the increase of model
complexity and dimension of the parameter space. The advanced modeling and analysis will be
deferred to our future projects. After fitting model (13)–(15), the fitted parameter values are used to
generate (σt, αt) by plugging in real values of the (t− 1)th day in model (13) and (14), where initial
values of (σ1, α1) are chosen to be greater than zero.

In Figure 10a, the estimated σt shows similar seasonality as mentioned in Section 5.1. Besides,
from the tendency of estimated σt from 2014–2019, it can be seen that both the value and fluctuation of
σt decrease after 2017 (except that the values larger than 500 during the period from the end of 2015
to the start of 2016 are truncated), showing improvements in air quality. Figure 10b shows that the
sequence of αt shrinks to a constant value quickly. Based on this observation, we set both γ1 and γ2 to
be zero in Equation (14), which is simplified to the following Equation (17) (the same to Equation (11)).
The final model with weather factors is specified as follows:

log σt = β0 + β1 log σt−1 + β2 exp(Xt−1), (16)

αt = γ0, (17)

Qt = µ + σtY
1/αt
t , (18)

(a) (b)
Figure 10. (a) The sequence of fitted σt generated from the model, including weather factors; (b) the
graph of fitted αt.
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The estimates of model (16)–(18) are listed in Table 5 (The computational times of Tables 4 and 5
along with the computing environment are listed in Appendix B). The last term in Equation (16) is
an increasing function of Qt−1 and a decreasing function of (Tpt−1, Hut−1, Wdst−1), which coincides
with the fact (see Section 2.4) that the scale of the smog tends to be higher when the prior day has
higher extreme PM2.5 values, together with lower temperature, lower minimum humidity, and lower
wind-speed than a normal day.

Table 5. Estimated parameters for model (16)–(18).

Parameter Fitted Value SD

µ 3.299 × 101 4.216 × 10−3

β0 5.420 1.174 × 10−1

β1 1.731 × 10−1 1.770 × 10−2

β2 −1.786 8.367 × 10−2

β3 3.724 × 10−3 1.467 × 10−4

β4 7.685 × 10−3 5.057 × 10−4

β5 2.761 × 10−3 7.391 × 10−4

β6 1.531 × 10−2 6.882 × 10−3

cσ,1 1.392 × 10−2 2.335 × 10−2

cσ,2 −1.230 × 10−1 1.846 × 10−2

cσ,3 −1.660 × 10−1 2.203 × 10−2

cσ,4 −1.239 × 10−1 2.478 × 10−2

cσ,5 −8.593 × 10−2 2.371 × 10−2

cσ,6 −1.864 × 10−2 3.288 × 10−2

cσ,7 1.769 × 10−2 1.957 × 10−2

γ0 2.408 1.835 × 10−2

The estimated parameter values are also used to generate a sequence of fitted values Q̃t using the
same procedure as is the case without weather factors; then Q̃t and real Qt are plotted in Figure 11
with the left panel being the QQ-plot and the right panel being the line graph.

(a) (b)

Figure 11. (a) The QQ-plot of the Q̃t (µg/m3) with weather factors (x-axis) and real Qt (y-axis, µg/m3);
(b) the line graphs of Q̃t (blue lines, µg/m3) and real Qt (red lines, µg/m3).

The QQ-plot in Figure 11a shows that the simulated sequence and its true values almost distribute
in a line of 45-degrees. Moreover, the scale of Q̃t in Figure 11b fits the real values better than it does in
Figure 8b, showing more precise description on the overall pattern of the real scenarios. The root mean
squared errors between Q̃t and real values are also computed in order to compare the two models.
They are 155 for the model without weather factors, and 153 for the model with weather factors. From
the above, it can be concluded that the model, including weather factors, performs better than the
model without weather factors. Considering the truncated extremes during the period from the end of
2015 to the start of 2016, the fitted values from the models with weather factors may be good choices for
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those missing values. It is also interesting to notice that the fitted σt in Figure 10a and Q̃t in Figure 11b
have very similar variation tendencies.

Finally, the predictability of our introduced models is explored. Two estimated models (10)–(12)
and (16)–(18) are used respectively to forecast the regional daily PM2.5 extreme values from January to
March in 2020.

Similar results are obtained from the two models. The results from the second model are used to
illustrate the prediction process. For the given t-th day, the predicted σt (see Figure 12a) is generated via
Equation (16) with the one-step-ahead prediction method (the (t− 1)-th day’s real Qt−1 and weather
factors are used). Then we predict the t-th day’s smog value Qt based on our obtained scale σt and
fitted parameters µ, γ0 according to Equation (18). The mean values of the 500 repetitions based on
the simulated standard Weibull random variables of Yt are taken as our final predicted values, shown
as the red line in Figure 12b.

Compared Figure 12a with the fitted σt from 2014–2019 (Figures 7a and 10a); both the value and
fluctuation of predicted σt in 2020 decrease to some extent, showing that the fluctuations of extreme
PM2.5 become smaller. Figure 12b shows that our results give a relatively good prediction of the
future variation of extreme smog in that the real values almost lie in the 95% prediction intervals.
Specifically, our predictions capture the characteristics of extreme smog lying in 200 µg/m3–500 µg/m3

well, although under certain circumstances, the real values exceed this bound due to irregular random
factors. These two figures show a similar tendency; i.e., the predicted σt and the regional extremes
co-move to some extent. Moreover, the values and fluctuations of both series decline more in February
and March than in January 2020.

(a) (b)
Figure 12. Prediction for the first season of 2020. (a) The predicted σt. (b) The regional smog extremes,
where the light red line denotes real values of Qt (µg/m3), the dark red line denotes predicted values,
and the topmost and lowest blue lines are 95% prediction intervals.

6. Conclusions and Discussion

The Beijing–Tianjin–Hebei region is one of the key regions suffering from the severest extreme
smog in China. However, it is difficult to model all the PM2.5 monitoring stations at the same time;
more importantly, the regional extremes are what really matters for this region in order to conduct a
joint control strategy. To describe the potential dynamic variation of the regional extremes, this paper
integrated classical extreme value modeling and dynamic modeling into a dynamic conditional Weibull
distribution modeling and analysis framework, in which the worst scenarios observed among multiple
locations in each day during 2014–2019 are described. In addition, weather factors were introduced in
the model to gain higher modeling efficiency. The proposed model performs more precisely on fittings
compared with other previous models dealing with maxima with autoregressive parameter dynamics
(taking the AcF model as an example).

Using the proposed model, the fitted scale parameter and fitted regional smog extremes are
obtained and given to show the variation tendency during 2014–2019. It indicates that the extreme
smog in the Beijing–Tianjin–Hebei region shows strong seasonality that both its extreme values and
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fluctuation are higher in the first and fourth season than the second and the third season. It can also be
seen that the extreme values and fluctuations during 2014–2017 are almost the same; i.e., the regional
extremes did not improve much during this period, although other works show that a lot cities in
the Beijing–Tianjin–Hebei region have experienced lower PM2.5 levels since 2014 [35]. However,
the extreme values and fluctuations decrease after 2017, showing some improvements in air quality.
These findings imply that if the central/local government wants to conduct coordinated joint PM2.5

control, the strict treatment strategy must be maintained as long as the regional extremes remain at a
high level. It is worth noting that although the regional extremes larger than 500 µg/m3 during the
period from the end of 2015 to the start of 2016 are truncated in the original data, they can be fitted by
our model, which might be a promising choice for estimating the missing data.

The proposed models can be used to predict the maximum PM2.5 level among all monitoring
stations in the Beijing–Tianjin–Hebei region. The results of one-step-ahead prediction show that
the real values almost lie in the 95% prediction intervals and our predictions capture the variation
tendency of extreme smog lying in 200 µg/m3–500 µg/m3 well. Considering that the widely-used
meteorologic models for forecasting often require more computation complexity, the one-step-ahead
prediction of our model is especially suitable for the short-term forecast and quick response due to its
simplicity, operability, and accuracy. More importantly, the predictions of regional extremes rather than
single stations are greatly useful to the regional joint early warning system. Under this mechanism,
once the future PM2.5 level of a single station rather than the average level of the whole region
exceeds the breakpoints of a certain grade, the early warning will be activated and the corresponding
treatment measures will be taken. In fact, in practical applications, when the current PM2.5 values rise
rapidly, it will attract public attention. We suggest that most strict measures should be taken when
our prediction is close to 500 µg/m3. In this relatively stricter way, the regional coordinate PM2.5

prevention and control can be better performed.
This paper gives some theoretical implications as well. Our DCW model can be extended to

contain log σt−q1 and log αt−q2 , which is very similar to the GARCH(q1, q2) model. In our application,
we have already fit the data very well; there is no need to increase the number of the parameters in
our model, which may increase the instability. The advanced method may be more useful in some
other situations.

There also exist some needs to investigate dynamics of the sequence of µ, and to add some smooth
penalty functions onto the equation in order to guarantee that µt is always below the value of Qt.

It is worth mentioning that existing non-parametric techniques based on GAMs (generalized
additive models) or MARS (multivariate adaptive regression splines) discussed in [66–71] are also
widely used for fitting nonlinear time series data. In addition, a discussion about joint modeling of
the scale and shape parameters of the Weibull distribution with GAMs methodology can be found
in [68,71]. Certainly, some comparisons of our model with the existing non-parametric techniques
based on GAMs or MARS can give the readers more information about the model suitability in
applications. We will implement such comparisons in future projects.

In our simplified model, we did not consider the interactions between the weather factors.
However, in reality, interaction effects can exist. Sometimes, they also play an important part. There still
remains more work to be done to study the interaction effects. We only added the weather factors
onto the equation of scale parameter because they always play a key role. It would be interesting to
add the weather factors onto the dynamic tail parameter equation. We shall explore this idea in a
different project.
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Appendix A. Technical Arguments

Appendix A.1. Proof of Theorem 1

In this subsection, we would like to give our proof for Theorem 1 and our demonstration is built
upon some conclusions in [72].

Proof. Without loss of generality, the parameter µ is set as 0, and our model (DCW) defined in (5)–(7)
(up to the sign filippings of parameters which does not affect our conclusion) becomes:

log σt = β0 + β1 log(σt−1)− β2 exp(−β3(σt−1Y1/αt−1
t−1 )), (A1)

log αt = γ0 − γ1 log(αt−1)− γ2 exp(−γ3(σt−1Y1/αt−1
t−1 )). (A2)

Under assumptions given in Theorem 1, without loss of generality, we further assume parameters
in Equations (A1) and (A2) satisfy β1, γ1, β2, γ2 > 0. We then have that

log σt = [β0 − z1 + β1 log(σt−1)] + [z1 − β2 exp(−β3(σt−1Y1/αt−1
t−1 )], (A3)

log αt = [γ0 − z2 − γ1 log(αt−1)] + [z2 − γ2 exp(−γ3(σt−1Y1/αt−1
t−1 )] (A4)

which holds for any z1, z2 that satisfies 0 < z1 < β2 and 0 < z2 < γ2. Next, after denoting Xt =

(log σt, log αt), we then define:

T(Xt−1) = [β0 − z1 + β1 log(σt−1), γ0 − z2 − γ1 log(αt−1)], (A5)

S(Xt−1, Yt−1) = [z1 − β2 exp(−β3(σt−1Y1/αt−1
t−1 ), z2 − γ2 exp(−γ3(σt−1Y1/αt−1

t−1 )]. (A6)

Hence, we obtain
Xt = T(Xt−1) + S(Xt−1, Yt−1),

where {Yt}t≥0 is a sequence of i.i.d. unit Weibull random variables. Following the terminologies
of [72], we obtain that T(·) has a compact attractor Λ=( β0−z1

1−β1
, γ0−z2

1+γ1
). In other words, for any x ∈ R2,

we have Tn(x)→ Λ as n→ ∞. Further, we set G0 as the area G0 = ( β0−β2
1−β1

, β0
1−β1

)× (
γ0−

γ2
1−γ1

1+γ1
,

γ0+
γ1γ2
1−γ1

1+γ1
),

which is an open area in R2.
Then we are able to prove that the process {Xt}meets five conditions given in Theorem 1 of [72].

Condition (a: Λ has a dense orbit) is proved, since for any x in R2, we have Tn(x) → Λ as n → ∞
by our argument above. Conditions (c: Lipschitz continuous over G0) and (e: E[S(Xn, Yn)|Xn = x] is
uniformly bounded on G0) are satisfied because the area G0 is bounded and S(Xn, Yn) is continuous in
Yn. Next, we will verify the condition (b: exponentially attracting) by leveraging our conclusion from
the following Lemma A1. 2

Lemma A1. The area G0 we have constructed above is an absorbing area for Xt.

Proof. The proof of Lemma A1 is deferred to Appendix A.1.1. 2

For the remaining part, we need to check the condition (d), which is demonstrated by our
Lemma A2 below.

Lemma A2. For all x ∈ G0, 0 is in the support set of ‖S(x, Yt−1)‖. Then for all x ∈ G0, there exists a positive
constant r, s.t. the second step transition probability of Xt, P2(x, dy) has an absolutely continuous component,
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of which the probability density function is positive over B(T2(x), r) with B(x, r) being the open ball in G0 with
center x and radius r.

Proof. The detailed proof of Lemma A2 is given in Appendix A.1.2. 2

Now we have proved those five conditions given in [72]. Therefore, the Markov chain
{Xt = (log σt, log αt)}t≥0 defined in (A1) and (A2) possesses the characteristic of geometrically ergodic.
Moreover, {Xt}t≥0 defined in G0 is irreducible; the Markov chain {Xt}t≥0 is also stationary in G0.
Thus, we claim our conclusion of Theorem 1.

Next, we prove the following Lemmas A1 and A2, which are two major ingredients in proving
our Theorem 1.

Appendix A.1.1. Proof of Lemma A1

Proof. It is easy to verify this conclusion, if we let log αt−1 <
γ0+

γ1γ2
1−γ1

1+γ1
; then we have log(αt) =

γ0 − γ1 log(αt−1)− γ2 exp(−γ3Qt−1) > γ0 − γ1
γ0+

γ1γ2
1−γ1

1+γ1
− γ2 =

γ0−
γ2

1−γ1
1+γ1

. On the other hand, if we set

log(αt−1) >
γ0−

γ2
1−γ1

1+γ1
, we can also prove log(αt) <

γ0+
γ1γ2
1−γ1

1+γ1
. 2

Appendix A.1.2. Proof of Lemma A2

Proof. We set 0 < z1 < β2, 0 < z2 = γ2 exp( γ3
β3

log( z1
β2
)) < γ2 < γ2

1−γ1
. We have for any fixed Xt, that

there always exists a 0 < Y′t < ∞ s.t. Q′t := σtY′t
1/αt = − 1

β3
log z1

β2
. Considering the value of z1 and z2

we have set above, we obtain that given Xt , Y′t is the only solution to S(Xt , Yt) = 0. Therefore, for any
x ∈ G0, 0 is always in the support of |S(x, Yt−1)|. Thus, we have completed the first part of Lemma A2.

In the following paragraph, we verify that there exists a positive constant r s.t. P2(x, dy)
has an absolutely continuous component whose probability density function is positive over
B(T2(x), r). In addition, we denote Q′ as Q′ = − 1

β3
log( z1

β2
) for convenience. Given

Xt−1, for Xt+1 = (log σt+1, log αt+1), we obtain the following equations:

log(σt+1) = T2(Xt−1)[1] + [z1 − β2 exp(−β3Qt)] + β1[z1 − β2 exp(−β3Qt−1)],

log(αt+1) = T2(Xt−1)[2] + [z2 − γ2 exp(−γ3Qt)]− γ1[z2 − γ2 exp(−γ3Qt−1)].

We notice that given Xt−1, Xt+1 is a function of (Qt−1, Qt); we then denote Xt+1 as
Xt+1 = FXt−1(Qt−1, Qt). It can be seen that we have Xt+1 = FXt−1(Q

′, Q′) = T2(Xt−1) and the
determinant of the Jacobean matrix at point (Q′, Q′) is given by (γ1 + β1)β2β3γ2γ3 exp(−(β3 + γ3)Q

′
)

which is not zero if γ1 6= −β1 and β2, β3, γ2, γ3 6= 0.
By the inverse function theorem, one knows that there exists an open neighborhood at Xt+1 =

FXt−1(Q
′, Q′) = T2(Xt−1), denoted by B(T2(Xt−1), r(Xt−1)), and another open neighborhood at

(Q′, Q′) s.t. there is a bijection between them. It is worth noting that the value of Xt−1 does not affect
the radius of that open neighborhood, since it is determined by the landscape around point (Q′, Q′).
Thus, for all Xt−1, we can write B(T2(Xt−1), r(Xt−1)) as B(T2(Xt−1), r) for some constant r.

Then given Xt−1 ∈ G0, we prove that there exist one-to-one maps between every value in
B(Xt+1, r) with values in some open neighborhood of (Q′, Q′), so that it can also form a bijection
with the neighborhood of (Y′t−1, Y′t ). According to the formulation of the density function of Weibull
distribution, we see that the function P2 has a positive density over the neighborhood of (Y′t−1, Y′t )
given Xt−1, and due to the existence of the bijection, P2(x, dy) has an absolutely continuous component
whose probability density function is positive over B(T2(x), r). Then we complete our proof of the
second part of Lemma A2. 2

Before proceeding our proof for Theorems 2 and 3 and Proposition 1, we would like to remind the
readers of some assumptions and notation given in Section 3.2. We assume the true parameter θ0 is the
interior point in Θ, a compact subset of Θs; and the observations are generated from a stationary and
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ergodic DCW with the true parameter θ0. In addition, we denote (σt(θ), αt(θ)) as the sequence which is
generated from the true initial value (σ0

1 , α0
1) and (σ̃t(θ), α̃t(θ)) as the one generated from an arbitrary

initial value (σ̃1, α̃1) and θ ∈ Θ. Moreover, due to the compactness of Θ, there exist uniform upper and
lower bounds of the sequence (σt, αt) which are denoted as (σU , αU) and (σL, αL) respectively. Next,
in the following part of our proof, we use notation Ln(θ) to denote the conditional likelihood of θ

given {(σt, αt)}t≥0

Ln(θ) =
1
n

n

∑
t=1

lt(θ) =
1
n

n

∑
t=1

[
log αt − αt log σt + (αt − 1) log(Qt − µ)−

(Qt − µ

σt

)αt]
(A7)

and notation L̃(θ) defined in Equation (9). In the next Appendix A.2, we will first prove several
technical lemmas which build blocks for proving Theorems 2 and 3 and Proposition 1.

Appendix A.2. Technical Lemmas

First, we will illustrate the identifiability of our model by the following Lemma A3.

Lemma A3. (Identifiability) If Qt(θ) = Qt(θ0) a.s. for all t, then θ = θ0. Here a.s. is for the infinite product
space generated by {. . . , Y−1, Y0, Y1, Y2, . . . }, in which Yt’s are i.i.d unit Weibull random variables.

Proof. The proof of Lemma A3 is the same as the proof of Lemma 3 in [51]. 2

In the following Lemma A4, we will discuss some characteristics of the score function as well as
the Fisher information matrix, based on the true initial value (σ0

1 , α0
1), at the true parameter θ0.

Lemma A4. Under the conditions in Theorem 2, we get Eθ0 [
∂
∂θ lt(θ0)] = 0 and M0 = Varθ0(

∂
∂θ lt(θ0)) =

−Eθ0 [
∂2

∂θ∂θT lt(θ0)], in which M0 is the Fisher information matrix at θ0. M0 is also well defined and positive
definite.

Proof. For the first part: Eθ0 [
∂
∂θ lt(θ0)] = 0, after interchanging the integration operator with differential

operator we obtain

Eθ0

[ ∂ log ft(Qt, θ0|σt, αt)

∂θ

]
=
∫

∂ log ft(qt, θ0|σt, αt)

∂θ
f (qt, θ0|σt, αt)dqt

=
∫ 1

ft(qt, θ0|σt, αt)

∂ ft(qt, θ0|σt, αt)

∂θ
f (qt, θ0|σt, αt)dqt =

∫
∂ ft(qt, θ0|σt, αt)

∂θ
dqt.

Note that for any x ∈ (0, 1) and αL > 2 (we will assume this in the next lemma) there exists a
c > 0 s.t. | log(x)| ≤ c

x ; then it is easy to find a g(qt) s.t. | ∂ ft(qt ,θ|σt ,αt)
∂θ | ≤ g(qt) and

∫
g(qt)dqt < ∞ for

all θ ∈ (θ0 − ε, θ0 + ε) and some ε > 0. Then we get
∫ ∂ ft(qt ,θ0|σt ,αt)

∂θ dqt =
∂
∂θ

∫
ft(qt, θ0|σt, αt)dqt = 0 by

dominate convergence theorem, which gives: Eθ0 [
∂
∂θ lt(θ0)] = 0.

Next, after assuming those regular conditions (we can change the integration with the second
derivative for the p.d.f) are satisfied by our model, we get:

Eθ0

[∂2 log ft(qt, θ0|σt, αt)

∂θ∂θ
′

]
=
∫

∂

∂θ

( 1
ft(qt, θ0|σt, αt)

∂ ft(qt, θ0|σt, αt)

∂θ
′

)
ft(qt, θ0|σt, αt)dqt

= −
∫ [ 1

ft(qt, θ0|σt, αt)

∂ ft(qt, θ0|σt, αt)

∂θ

][ 1
ft(qt, θ0|σt, αt)

∂ ft(qt, θ0|σt, αt)

∂θ
′

]>
ft(qt, θ0|σt, αt)dqt

+
∫

∂2 ft(qt, θ0|σt, αt)

∂θ∂θ
′ dqt,
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in which we have ∫
∂2 ft(qt, θ0|σt, αt)

∂θ∂θ
′ dqt =

∂2

∂θ∂θ
′

∫
ft(qt, θ0|σt, αt)dqt = 0.

Then, we have M0 = Varθ0(
∂
∂θ lt(θ0)) = −Eθ0 [

∂2

∂θ∂θT lt(θ0)]. As the sequence ∂2

∂θ∂θT lt(θ0) is strictly
stationary when t tends to infinity, M0 is independent with t and is also well defined (M0 < ∞).
In order to prove that M0 is positive definite, we observe that there does not exist a c ∈ R9 s.t.
cT ∂

∂θ lt(θ0) = 0 a.s. by following our Lemma A3. 2

According to our expression of the first and second order derivatives of Ln(θ0) given in
Appendix A.6, the following Lemma A5 shows that their expectations exist.

Lemma A5. Under the assumptions given in Theorem 2, we have (a) for any α > 0, 1
n ∑n

t=1(Qt − µ0)
α →p

Eθ0 [(Q1− µ0)
α] < ∞, (b) For any positive k, 1

n ∑n
t=1[log(Qt − µ0)]

k →p Eθ0 [log(Q1− µ0)]
k < ∞. Further,

if we set 1/αL < 1/2, we further obtain (c), 1
n ∑n

t=1(Qt − µ0)
−α →p Eθ0 [(Q1 − µ0)

−α] < ∞ with any
0 ≤ α ≤ 2.

Proof. Here we leverage the fact that the scale sequence {σt} and the tail sequence {αt} enjoy the
boundedness condition stated in Section 3.2. We obtain Eθ0 [(Qt − µ0)

α] < ∞ for any α since Yt follows
standard Weibull distribution and Qt − µ0 < σU max(Y1/αL

t , Y1/αU
t ). Then (a) is established by the

pointwise ergodicity Theorem [73].
As for (b), we have | log(Qt − µ0)|k = | log σt + 1/αt log Yt|k ≤ 2k−1(C + 1/αL| log Yt|k) by the

convexity of xk, k ≥ 1. We also know that − log(Yt) follows a Gumbel distribution so we have
Eθ0 [| log Yt|k] < ∞ for any positive integer k. Then (b) can also be proved by using pointwise ergodicity
Theorem [73].

Next, we will prove (c). We know that (Qt − µ0) > σL min(Y1/αL
t , Y1/αU

t ) holds and Y−1
t follows

the unit Fréchet distribution. After restricting 2 < αL ≤ αU , we obtain our conclusion by utilizing the
fact that E[Y−r

t ] exists when 0 < r < 1 . 2

The following Lemma A6 states that the convergence rate of min(Qt)− µ0 is larger than n−r, r > 1/αL.

Lemma A6. Under the conditions given in Theorem 2, we have Qn,1 − µ0 ≥ Op((n)−1/αL).

Proof. The conclusion follows directly from nYn,1 →p 1 and Qn,1 − µ0 ≥ σLY1/αL
n,1 a.s. when n→ ∞. 2

The next Lemmas A7–A10 will build blocks for proving ‖Ln(θ̂n)− Ln(θ0)‖ →p 0 in which θ̂n

denotes the local maximizer of L̃n(θ).

Lemma A7. We denote (a) Sα
n(µ) = n−1 ∑n

k=1(Qn,k − µ)α, α > 0 or (b) Sα
n(µ) = n−1 ∑n

k=1 log(Qn,k − µ)

or (c) Sα
n(µ) = n−1 ∑n

k=1(Qn,k − µ)α[log(Qn,k − µ)]m for α ≥ 0 and m = 1, 2, 3. Under the conditions in
Theorem 2, given positive sequence τn, s.t. τn ∼ n−r, r > 1/αL, the following result holds uniformly over
|µn − µ0| < τn,

|Sα
n(µn)− Sα

n(µ0)| ≤ Op(τn).

Remark A1. For X = 1
n ∑n

k=1(Qn,k − µn)α, α ≥ 0 we have X ≤ 1
n ∑n

k=1(Qn,k − µ0 + τn)α. Since we have
obtained Qn,1 − µ0 ≥ Op((n)−1/αL) in Lemma A6, for any fixed 0 < ρ < 1, τn ∼ n−r, 1/αL < r < 1/2, we
are able to verify that P(ρ(Qn,1 − µ0) > τn) →p 1 holds. Then, as we have P(ρ(Qn,k − µ0) > τn, 1 ≤ k ≤
n) →p 1, we obtain X ≤ 1

n ∑n
k=1((1 + ρ)(Qn,k − µ0))

α. When we have −2 ≤ α < 0, X ≤ 1
n ∑n

k=1(Qn,k −
µ0 − τn)α ≤ 1

n ∑n
k=1((1− ρ)(Qn,k − µ0))

α can also be proved by using similar arguments.

Proof. For the proof of (a), we obtain |Sα
n(µn) − Sα

n(µ0)| ≤ 1
n

n
∑

k=1
|(Qn,k − µn)α − (Qn,k − µ0)

α| ≤

1
n

n
∑

k=1
[α(Qn,k − µn)α−1 + α(Qn,k − µ0)

α−1]|µn − µ0| ≤ τn
n

n
∑

k=1
[α(Qn,k − µn)α−1 + α(Qn,k − µ0)

α−1] ≤
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2τn
n

n
∑

k=1
α max{(Qn,k − µn)α−1, (Qn,k − µ0)

α−1}, from the remark given above. Thus, we conclude that

(a) |Sα
n(µn)− Sα

n(µ0)| ≤ Op(τn) holds with probability going to 1.
The Proof of (b) is similar with the corresponding part in Lemma 7 given in [51].

For (c), when m = 1, first, we separate the inequality into two parts, |Sα
n(µn)− Sα

n(µ0)| ≤ 1
n ∑n

k=1(Qn,k−
µn)α| log(Qn,k − µn)− log(Qn,k − µ0)|+ 1

n ∑n
k=1 |(Qn,k − µn)α − (Qn,k − µ0)

α|| log(Qn,k − µ0)|. Then

for the first part, we get 1
n

n
∑

k=1
(Qn,k − µn)α| log(Qn,k − µn) − log(Qn,k − µ0)| ≤ 1

n

n
∑

k=1
(Qn,k −

µn)α log(1+ µn−µ0
Qn,k−µn

) ≤ τn
n

n
∑

k=1
(Qn,k− µn)α−1. As for the second part, we obtain 1

n ∑n
k=1 |(Qn,k− µn)α−

(Qn,k − µ0)
α|| log(Qn,k − µ0)| ≤ 2τn

n

n
∑

k=1
α max{(Qn,k − µn)α−1, (Qn,k − µ0)

α−1}| log(Qn,k − µ0)| ≤

2τn(
1
n

n
∑

k=1
α2 max{(Qn,k − µn)2α−2, (Qn,k − µ0)

2α−2})1/2( 1
n

n
∑

k=1
| log(Qn,k − µ0)|2)1/2 = Op(τn). This is

the case when µn ≥ µ0. For µn < µ0, the process of our proof is similar so we just omit the details here.

For m = 2, we get |Sα
n(µn)− Sα

n(µ0)| ≤ 1
n

n
∑

k=1
(Qn,k − µn)α log(Qn,k − µn)| log(Qn,k − µn)− log(Qn,k −

µ0)| + 1
n

n
∑

k=1
|(Qn,k − µn)α log(Qn,k − µn) − (Qn,k − µ0)

α log(Qn,k − µ0)| log(Qn,k − µ0). Similarly,

for the first part, we obtain 1
n

n
∑

k=1
(Qn,k − µn)α log(Qn,k − µn)| log(Qn,k − µn) − log(Qn,k − µ0)| ≤

τn
n

n
∑

k=1
(Qn,k − µn)α−1| log(Qn,k − µn)| ≤ τn(

1
n

n
∑

k=1
(Qn,k − µn)2α−2)1/2( 1

n

n
∑

k=1
| log(Qn,k − µn)|2)1/2 =

Op(τn). For the second part, we next use some conclusions that we got in the process of proving the
case of m = 1. So the second part is proved as follows:

1
n

n

∑
k=1
|(Qn,k − µn)

α log(Qn,k − µn)− (Qn,k − µ0)
α log(Qn,k − µ0)| log(Qn,k − µ0)

≤ 1
n

n

∑
k=1

[τn(Qn,k − µn)
α−1 + 2τnα max{(Qn,k − µn)

α−1, (Qn,k − µ0)
α−1}×

| log(Qn,k − µ0)|]| log(Qn,k − µ0)|

≤ τn

n

n

∑
k=1

max{(Qn,k − µn)
α−1, (Qn,k − µ0)

α−1}P2(| log(Qn,k − µ0)|)

≤ τn(
1
n

n

∑
k=1

max{(Qn,k − µn)
2α−2, (Qn,k − µ0)

2α−2})1/2(
1
n

n

∑
k=1

P2
2 (| log(Qn,k − µ0)|))1/2,

in which Pj(x) denotes a polynomial of order j.

For m = 3, we have |Sα
n(µn) − Sα

n(µ0)| ≤ 1
n

n
∑

k=1
(Qn,k − µn)α log2(Qn,k − µn)| log(Qn,k − µn) −

log(Qn,k − µ0)| + 1
n

n
∑

k=1
|(Qn,k − µn)α log2(Qn,k − µn) − (Qn,k − µ0)

α log2(Qn,k − µ0)| log(Qn,k − µ0).

It is easy to see that the first part can be regarded as Op(τn). As for the second part, we have

≤ τn
n

n
∑

k=1
max{(Qn,k − µn)α−1, (Qn,k − µ0)

α−1}P3(| log(Qn,k − µ0)|). Then the proof for Lemma A7 is

completed after applying the Holder’s inequality. 2

In the next Lemmas A8 and A9 we will prove that the supremum of the difference between
the first n values of σt and σ0

t (so as αt and α0
t ), which are generated by using arbitrary parameter

θ in the neighborhood of the true value and the true one θ0 respectively, converges at the rate of τn.
This convergence rate also holds for their partial derivatives.
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Lemma A8. Denote Φ = (γ0, γ1, γ2, γ3) and Φ0 = (γ0
0, γ0

1, γ0
2, γ0

3), if ‖Φ−Φ0‖ < τn and τn ↘ 0. under
the conditions in Theorem 2, we have:

(a) sup
1≤t≤n

|αt − α0
t | = O(τn),

(b) sup
1≤t≤n

∣∣∣ ∂αt

∂Φi
− ∂α0

t
∂Φi

∣∣∣ = O(τn),

(c) sup
1≤t≤n

∣∣∣ ∂2αt

∂Φi∂Φj
− ∂2α0

t
∂Φi∂Φj

∣∣∣ = O(τn)

uniformly over ‖Φ−Φ0‖ < τn.

Proof. Here we briefly illustrate our proof of (a), the proofs of (b), (c) are almost the same. The domain
of αt is bounded so the function exp(·) defined on a compact set is Lipschitz continuous. Then it is
equivalent to prove: sup

1≤t≤n
| log αt − log α0

t | = O(τn). As we can express log αt as

log αt = γ0

t−1

∑
k=1

(−γ1)
k−1 − γ2

t−1

∑
k=1

(−γ1)
k−1 exp(−γ3Qt−k) + (−γ1)

t−1 log α0
1,

we further obtain

| log αt − log α0
t | ≤ |γ0

t−1

∑
k=1

(−γ1)
k−1 − γ0

0

t−1

∑
k=1

(−γ0
1)

k−1|+ |(−γ1)
t−1 log α0

1 − (−γ0
1)

t−1 log α0
1|

+|γ2

t−1

∑
k=1

(−γ1)
k−1 exp(−γ3Qt−k)− γ0

2

t−1

∑
k=1

(−γ0
1)

k−1 exp(−γ0
3Qt−k)|.

The rest parts are similar with the corresponding parts in Lemma 8 [51]. 2

Lemma A9. We denote Ψ = (β0, β1, β2, β3) and Ψ0 = (β0
0, β0

1, β0
2, β0

3). Under the conditions in Theorem 2,
if we have ‖Ψ−Ψ0‖ < τn and τn ↘ 0, we obtain

(a) sup
1≤t≤n

|σt − σ0
t | = O(τn),

(b) sup
1≤t≤n

∣∣∣ ∂σt

∂Ψi
− ∂σ0

t
∂Ψi

∣∣∣ = O(τn),

(c) sup
1≤t≤n

∣∣∣ ∂2σt

∂Ψi∂Ψj
− ∂2σ0

t
∂Ψi∂Ψj

∣∣∣ = O(τn)

uniformly over ‖Ψ−Ψ0‖ < τn.

Proof. The proof of this Lemma is almost the same of the proof of Lemma A8. 2

The next Lemma A10 will build blocks for the proof of Lemma A11.

Lemma A10. Suppose we have τn ∼ n−r and sup
1≤t≤n

|αt − α0
t | = O(τn), where {αt} and {α0

t } represent two

different sequences of tail index that are generated basing on different parameters (Φ, Φ0 and ‖Φ−Φ0‖ < τn)

with the true initial value. Under the conditions in Theorem 2, we have

1
n

n

∑
t=1
|(Qt − µn)

αt − (Qt − µn)
α0

t | = Op(τn),
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uniformly over |µn − µ0| < τn. The same result also holds for

1
n

n

∑
t=1
|(Qt − µn)

αt − (Qt − µn)
α0

t |[log(Qt − µn)]
k, k = 1, 2.

Proof. We will only give our proof for the case of 1
n

n
∑

t=1
|(Qt − µn)αt − (Qt − µn)α0

t | here, the proofs of

other two cases are similar. Without loss of generality, we assume α0
t > αt, then we obtain

1
n

n

∑
t=1
|(Qt − µn)

αt − (Qt − µn)
α0

t | ≤ C
n

n

∑
t=1

(Qt − µn)
α∗ | log(Qt − µn)|τn

≤ Cτn

n

n

∑
t=1

((Qt − µn)
αL + (Qt − µn)

αU )| log(Qt − µn)| = Op(τn),

in which α∗ ∈ (αt, α0
t ). 2

Together with our conclusions from Lemma A7–A10, we prove ‖Ln(θ̂n)− Ln(θ0)‖ →p 0 when
‖θ̂n − θ0‖ = Op(τn) in the following Lemma A11.

Lemma A11. We denote mθiθj(θ0) = −Eθ0 [
∂2

∂θi∂θj
l1(θ0)]. Under the conditions in Theorem 2, for all second

order derivatives of Ln(θ̂n) we have ∂2

∂θi∂θj
Ln(θ̂n) →p −mθiθj(θ0), uniformly over ‖θ̂n − θ0‖ < τn, where

τn ∼ n−r, 1/αL < r < 1/2.

Proof. Here we just give our proof for the case of ∂
∂µ2 Ln(θ̂n); the proofs of remaining cases are similar.

Note that the first and second order of the partial derivatives of Ln(·) are measurable functions of
the stationary and ergodic series {Qt}t≥0, so they are also ergodic and strictly stationary. By the
pointwise ergodicity Theorem [73], we have ∂

∂θi∂θj
Ln(θ0)→p −mθiθj(θ0). Thus, we next need to prove

that ∂
∂µ2 Ln(θ̂n)− ∂

∂µ2 Ln(θ0)→p 0 holds. By definition, we obtain

∂

∂µ2 Ln(θ̂n)−
∂

∂µ2 Ln(θ0) =
1
n

n

∑
t=1

[−(αt − 1)(Qt − µn)
−2 + (α0

t − 1)(Qt − µ0)
−2]

− 1
n

n

∑
t=1

[−αt(αt − 1)σ−αt
t (Qt − µn)

αt−2 + α0
t (α

0
t − 1)(σ0

t )
−α0

t (Qt − µ0)
α0

t−2]

:= I + II.

If I is greater than zero, we have

[−(αt − 1)(Qt − µn)
−2 + (α0

t − 1)(Qt − µ0)
−2] = (Qt − µn)

−2
[
(α0

t − 1)
(Qt − µn

Qt − µ0

)2
− (αt − 1)

]
.

When µ0 ≤ µn, we get

= (Qt − µn)
−2
[
(α0

t − 1)
(

1 +
µ0 − µn

Qt − µ0

)2
− (αt − 1)

]
≤ (Qt − µn)

−2 sup[(α0
t − 1)− (αt − 1)].

From Lemma A6, we have (nYn,1)
1/αL →p 1 and τn ∼ n−r, 1/αL < r < 1/2, so it holds that

τn/(αLY1/αL
n,1 ) = Op(n−α)→p 0, with 0 < α < r− 1/αL. Thus, if µ0 > µn, we have

(Qt − µn)
−2
[
(α0

t − 1)
(

1+
µ0 − µn

Qt − µ0

)2
− (αt − 1)

]
≤ (Qt − µn)

−2
[
(α0

t − 1)
(

1+
τn

αLY1/αL
n,1

)2
− (αt − 1)

]

≤ (Qt − µn)
−2[sup |α0

t − αt|+ sup |α0
t − 1|Op(n−α)].
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When I is less than zero, we have:

[(αt − 1)(Qt − µn)
−2 − (α0

t − 1)(Qt − µ0)
−2] = (Qt − µn)

−2
[
(αt − 1)− (α0

t − 1)
(

1 +
µ0 − µn

Qt − µ0

)2]
.

If µ0 > µn, we get:

(Qt − µn)
−2
[
(αt − 1)− (α0

t − 1)
(

1 +
µ0 − µn

Qt − µ0

)2]
≤ (Qt − µn)

−2 sup |αt − α0
t |.

Then if µ0 ≤ µn, we have:

(Qt − µn)
−2
[
(αt − 1)− (α0

t − 1)
(

1 +
µ0 − µn

Qt − µ0

)2]
≤ (Qt − µn)

−2
[
(αt − 1)− (α0

t − 1)
(

1− τn

αLY1/αL
n,1

)2]
≤ (Qt − µn)

−2[sup |αt − α0
t |+ sup |α0

t − 1|Op(n−α)].

So it can be seen that the first part ≤ Op(τn) + Op(n−α)→p 0, 0 < α < r− 1/αL.
Further, for the second term II, we have

II = | 1
n

n

∑
t=1

[−αt(αt − 1)σ−αt
t (Qt − µn)

αt−2 + α0
t (α

0
t − 1)(σ0

t )
−α0

t (Qt − µ0)
α0

t−2]|

≤ 1
n

n

∑
t=1

α0
t (α

0
t − 1)(σ0

t )
−α0

t |(Qt − µn)
α0

t−2 − (Qt − µ0)
α0

t−2|

+
1
n

n

∑
t=1

α0
t (α

0
t − 1)(σ0

t )
−α0

t |(Qt − µn)
α0

t−2 − (Qt − µn)
αt−2|

+
1
n

n

∑
t=1
|α0

t (α
0
t − 1)(σ0

t )
−α0

t − αt(αt − 1)(σt)
−αt |(Qt − µn)

αt−2 := i + ii + iii.

The first term (i) goes to zero by Lemma A7 (a), and the second term (ii) goes to zero by
Lemma A10. Due to the boundedness of the αt, σt, by utilizing the differential mean value Theorem,
we prove that the third term (iii) converges to 0 in probability. 2

We have already proved ‖Ln(θ̂n) − Ln(θ0)‖ →p 0 when ‖θ̂n − θ0‖ = Op(τn). And note that
verifying ‖L̃n(θ̂n)− Ln(θ0)‖ →p 0 is one of our final goals. Thus, we will prove the next Lemma A12
as well as Lemma A13 in order to demonstrate ‖L̃n(θ̂n)− Ln(θ̂)‖ →p 0.

Lemma A12. Under the conditions in Theorem 2, there exists a positive constant C and 0 < Cb < 1 s.t. for all
θ ∈ Θ and t ≥ 1.

(a)|αt − α̃t| ≤ C · Ct−1
b , (b)

∣∣∣ ∂αt

∂Φi
− ∂α̃t

∂Φi

∣∣∣ ≤ C · tCt−1
b , (c)

∣∣∣ ∂2αt

∂Φi∂Φj
− ∂α̃t

∂Φi∂Φj

∣∣∣ ≤ C · t2Ct−1
b ,

(d)|σt − σ̃t| ≤ C · Ct−1
b , (e)

∣∣∣ ∂σt

∂Ψi
− ∂σ̃t

∂Ψi

∣∣∣ ≤ C · tCt−1
b , ( f )

∣∣∣ ∂2σt

∂Ψi∂Ψj
− ∂σ̃t

∂Ψi∂Ψj

∣∣∣ ≤ C · t2Ct−1
b .

Proof. The proof of this lemma follows from direct calculation, so we just omit the detailed parts here.
2
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Lemma A13. Under the conditions of Theorem 2, we have 1
n ∑n

t=1 |(Qt − µn)αt − (Qt − µn)α̃t | →p 0,
uniformly over |µn − µ0| < τn, where τn ∼ n−r, r > 0. The same result holds for

1
n

n

∑
t=1
|(Qt − µn)

αt − (Qt − µn)
α̃t |[log(Qt − µn)]

k, k = 1, 2.

Proof. By mean value theorem, we have

1
n

n

∑
t=1
|(Qt − µn)

αt − (Qt − µn)
α̃t | ≤ C

n

n

∑
t=1

(Qt − µn)
α∗t | log(Qt − µn)|Ct−1

b

≤ C
n

n

∑
t=1

[(Qt − µn)
αL + (Qt − µn)

αU ]| log(Qt − µn)|Ct−1
b →p 0.

Thus, we claim our conclusion for Lemma A13. 2

Next, we would like to discuss Lemma A14 which can be utilized to prove Theorems 2 and 3.

Lemma A14. Under the conditions in Theorem 2, we have (a) : for all second order derivatives of L̃n(θ̂n), we
have ∂2

∂θi∂θj
L̃n(θ̂n)→p −mθiθj(θ0), uniformly over ‖θ̂n − θ0‖ < τn, where τn ∼ n−r, 1/αL < r < 1/2. (b) :

for the score function of L̃n(θ), we have (τ∗n )−1( ∂
∂θ L̃n(θ0)− ∂

∂θ Ln(θ0))→p 0 if τ∗n n→ ∞.

Proof. For the proof of part (a), first, we see that ∂2

∂θi∂θj
L̃n(θ)− ∂2

∂θi∂θj
Ln(θ) →p 0 holds for any θ by

using our conclusions from Lemmas A12 and A13. In addition, we also know that ∂2

∂θi∂θj
Ln(θ̂n) −

∂2

∂θi∂θj
Ln(θ0) →p 0 holds uniformly over ‖θ̂n − θ0‖ ≤ τn by Lemma A11. Thus, we get ∂2

∂θi∂θj
L̃n(θ̂n)−

∂2

∂θi∂θj
Ln(θ0)→p 0 over ‖θ̂n − θ0‖ ≤ τn, which claims the first part of Lemma A14.

For the proof of part (b), here we just prove the case of ∂
∂µ L̃n(θ0) and the proof of remaining

parts are similar. For convenience, we set g(σt, αt) =
αt

σ
αt
t

, then we are able to verify that |g(σt, αt)−

g(σ̃t, α̃t)| ≤ C · Ct−1
b holds by utilizing Lemma A12 after assuming σL is greater than zero. Next,

we obtain

1
τ∗n

(
∂

∂µ
L̃n(θ0)−

∂

∂µ
Ln(θ0)) =

1
nτ∗n

n

∑
t=1

[ αt − α̃t

Qt − µ0
+ g(σ̃t, α̃t)(Qt − µ0)

α̃t−1 − g(σt, αt)(Qt − µ0)
αt−1

]

=
1

nτ∗n

n

∑
t=1

[ αt − α̃t

Qt − µ0
+ [g(σ̃t, α̃t)− g(σt, αt)](Qt − µ0)

αt−1 + g(σ̃t, α̃t)[(Qt − µ0)
α̃t−1 − (Qt − µ0)

αt−1]
]
.

The rest parts of our proof of Lemma A14 are similar with the corresponding proof (Lemma 14)
in [51], so we omit the details. 2

We will leverage on the martingale difference to prove the following Lemma A15 which displays
the asymptotic distribution of the score function.

Lemma A15. Under the conditions in Theorem 2,

1√
n

n

∑
t=1

∂lt(θ0)

∂θ
⇒ N(0, M0),

where M0 is the Fisher information matrix valued at θ0.

Proof. We use CLT for martingale difference [74], then we have:

Eθ0

[∂lt(θ0)

∂θ
|Ft−1

]
= 0, Varθ0

(∂lt(θ0)

∂θ

)
= M0 < ∞.



Atmosphere 2020, 11, 665 29 of 35

So for any λ ∈ R9, {λ ∂lt(θ0)
∂θ ,Ft}t is a square-integrable stationary martingale difference. Note that

the sequences σt, αt and Qt are both stationary and ergodic, so the sequences ∂αt
∂Φ , ∂σt

∂Ψ are also strictly

stationary and ergodic. We also know that ∂lt(θ0)
∂θi

(for i = 1, · · · ,9) are generated from αt, σt, Qt, ∂αt
∂Φ , ∂σt

∂Ψ
so they also follow the properties of strict stationarity and ergodicity. Then by CLT and Wold-Cramer
device in [74], we can finally get the conclusion that Lemma A15 holds. 2

Given these technical Lemmas, we next give our proof of our Theorems 2 and 3 and Proposition 1.

Appendix A.3. Proof of Theorem 2

Proof. We let {τn}n∈Z+ be any sequence with τn ∼ n−r, 1/αL < r < 1/2. Next we set t ∈ R, y ∈ R8 and
define fn(t, y) = τ−2

n L̃n(µ0 + τnt, φ0 + τny), in which φ0 is defined as φ0 = (β0
0, β0

1, β0
2, β0

3, γ0
0, γ0

1, γ0
2, γ0

3).
By Taylor Expansion, we get

∂

∂t
fn(t, y) = τ−1

n
∂L̃n(µ0 + τnt, φ0 + τny)

∂µ

= τ−1
n

∂L̃n(µ0, φ0)

∂µ
+

∂2 L̃n(µ∗, φ∗)

∂µ2 t +
8

∑
i=1

∂2 L̃n(µ∗, φ∗)

∂µ∂φi
yi

= τ−1
n

(∂L̃n(µ0, φ0)

∂µ
− ∂Ln(µ0, φ0)

∂µ

)
+ τ−1

n
∂Ln(µ0, φ0)

∂µ
+

∂2 L̃n(µ∗, φ∗)

∂µ2 t

+
8

∑
i=1

∂2 L̃n(µ∗, φ∗)

∂µ∂φi
yi.

It can be observed that |µ∗− µ0| < τnt and ‖φ∗− φ0‖ < τn‖y‖ due to mean value theorem. Hence,
the first term goes to 0 according to Lemma A14 (b) and the second term goes to 0 by Lemma A15.
Further, the last two terms converge in probability by utilizing Lemma A14 (a) i.e.,

∂2 L̃n(µ∗, φ∗)

∂µ2 t +
8

∑
i=1

∂2 L̃n(µ∗, φ∗)

∂µ∂φi
yi →p −mµµ(θ0)t−

8

∑
i=1

mµφi (θ0)yi,

in which mµφi (θ0) = −Eθ0 [
∂2

∂µ∂φi
l1(θ0)] and mµµ(θ0) = −Eθ0 [

∂2

∂µ2 l1(θ0)]. Then we obtain

∂
∂t fn(t, y) = −mµµ(θ0)t−

8
∑

i=1
mµφi (θ0)yi + op(1). Similarly, we also have ∂

∂yi
fn(t, y) = −mφiµ(θ0)t−

8
∑

j=1
mφiφj(θ0)yi + op(1) for i = 1, · · · , 8, where op(1)′s are decaying uniformly over t2 + ‖y‖2 ≤ 1.

Let t2 + ‖y‖2 = 1, as the Fisher information matrix M0 at θ0 is positive definite according to our
Lemma A4, we have

t
∂ fn

∂t
(t, y) + ∑

j
yj

∂ fn

∂yi
(t, y) =

− t2mµµ(θ0)− 2t
8

∑
j=1

yjmµφj(θ0)−
8

∑
j=1

8

∑
i=1

yjyimφjφi (θ0) + op(1) < 0.

According to the Lemma 5 given in [64], we obtain that there is a local maximum over the open
area t2 + ‖y‖2 < 1 with probability going to 1. Thus, there exists a sequence of local maximizer θ̂n of
L̃n(θ) s.t. θ̂n →p θ0 and ‖θ̂n − θ0‖ ≤ τn, where τn ∼ n−r and 1/αL < r < 1/2. 2
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Appendix A.4. Proof of Theorem 3

Proof. By Taylor expansion we have

∂L̃n(θ̂n)

∂θ
=

∂L̃n(θ0)

∂θ
+

∂2 L̃n(θ∗)

∂θ∂θ
′ (θ̂n − θ0)

where we have θ∗ = λθ̂n + (1− λ)θ0 with 0 ≤ λ ≤ 1. Therefore, we further obtain

√
n(θ̂n − θ0) = −

(∂2 L̃n(θ∗)

∂θ∂θ
′

)−1√
n

∂L̃n(θ0)

∂θ
,

in which we have −( ∂2 L̃n(θ∗)
∂θ∂θ

′ )→p I(θ0) = −Eθ0 [
∂2

∂θ∂θT lt(θ0)] by Lemma A14 (a). In addition,
√

n ∂L̃n(θ0)
∂θ

converges to N(0, I(θ0)) in distribution by our conclusions from Lemma A14 (b) and Lemma A15.
In the end, after utilizing Slutsky theorem we conclude that

√
n(θ̂n − θ0) converges to N(0, M−1

0 ) in
distribution which claims our conclusion of Theorem 3. 2

Appendix A.5. Proof of Proposition 1

Proof. We denote Vn as Vn = {θ ∈ Θ|µ ≤ µ0 + εn}, in which εn ∼ n−α, with n−1/2 < τn < εn <

n−1/αL . We obtain µ0 + εn ↘ µ0.
We further define Θδ

n = {θ ∈ Vn|‖θ − θ0‖ ≥ δ}, Θµ
n = {θ ∈ Vn|‖θ − θ0‖ ≥ δ, µ > µ0}, and Θδ =

{θ ∈ Vn|‖θ − θ0‖ ≥ δ, µ ≤ µ0}. We then have Θδ
n = Θµ

n ∪Θδ.
(I) First, we want to prove, for any δ > 0,

P(sup
Θδ

n

L̃n(θ) ≥ L̃n(θ0))→ 0, (n→ ∞).

By Lemmas A7 and A13, we have sup
Θδ

n

|L̃n(θ)− Ln(θ)| →p 0 as n→ ∞. In addition, by Lemma A7,

we further have sup
Θµ

n

|Ln(µ, φ)− Ln(µ0, φ)| →p 0 as n→ ∞.

We then obtain

sup
Θδ

n

L̃n(θ) = sup
Θδ

n

Ln(θ) + op(1)

= max{sup
Θδ

Ln(θ), sup
Θµ

n

Ln(θ)}+ op(1)

= max{sup
Θδ

Ln(θ), sup
Θµ

n

Ln(µ0, φ)}+ op(1)

≤ sup
Θδ/2

Ln(θ) + op(1).

.

The last inequality follows from the fact εn ↘ 0, then with probability going to 1, we have
{φ|φ ∈ Θµ

n} ⊆ {φ|φ ∈ Θδ/2}. Following similar proof procedures given in Lemmas A13 and A14,
we are able to see that L̃n(θ0) = Ln(θ0) + op(1) →p Eθ0 [l1(θ0)] holds. Then the rest proof of the first
part follows from the proof of Proposition 2 in [48].

For the second part, we define Θδc
n = {θ ∈ Vn|‖θ − θ0‖ < δ}, Θµc

n = {θ ∈ Vn|‖θ − θ0‖ < δ, µ >

µ0}, and Θδc = {θ ∈ Vn|‖θ − θ0‖ < δ, µ ≤ µ0}. Note that we have Θδc
n = Θµc

n ∪Θδc. Next we want to
prove that there exists a δ∗ > 0 s.t.

(II) P(All Hessian matrices ∂2

∂θ∂θT L̃n(θ) over θ ∈ Θδ∗c
n is negative)→ 1, as n tends to

infinity. According to our results given in Lemmas A7 and A13, we obtain

sup
Θδc

n

∣∣∣ ∂2

∂θi∂θj
L̃n(θ)−

∂2

∂θi∂θj
Ln(θ)

∣∣∣→p 0, (n→ ∞),
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and

sup
Θµc

n

∣∣∣ ∂2

∂θi∂θj
Ln(µ, φ)− ∂2

∂θi∂θj
Ln(µ0, φ)

∣∣∣→p 0, (n→ ∞).

Note that there exists a function g(x) s.t. lt(x, θ) ≤ g(x) for all the θ ∈ Θδc, with Eθ0(g(x)) < ∞.
Therefore, by the properties of stationarity and ergodicity and the uniform law of large numbers,
we have

sup
Θδc

∣∣∣ ∂2

∂θi∂θj
Ln(θ)− Eθ0

[ ∂2

∂θi∂θj
l1(θ)

]∣∣∣→p 0, (n→ ∞),

with Eθ0 [
∂2

∂θ1∂θj
l1(θ0)] = −M0, in which M0 is positive definite by Lemma A4. Moreover, the function

Eθ0 [
∂2

∂θ1∂θj
l1(θ)] is continuous, so there exists a δ∗ > 0 s.t. Eθ0 [

∂2

∂θ∂θT l1(θ)] is negative definite for all

θ ∈ Θδ∗c. Combining the demonstrations given above, we finish our proof of (II).
Utilizing our conclusion from (I), we obtain that the global maximizer of L̃n(θ) over Vn is located

in Θδ∗c
n . It is known from Theorem 2 that with probability going to 1, there exists a sequence of θ̂n of

local maximizer of L̃n(θ) s.t.‖θ̂n − θ0‖ ≤ τn, where τn = Op(n−r), and 1/αL < α < r < 1/2. So we
have P(θ̂n ∈ Θδ∗c

n ) → 1. Combining with our proof of (II) and using the conclusion of Theorem 2.6
in [75], we finally claim the conclusion of this proposition. 2

In the next subsection we will illustrate expressions of the first order as well as the second order
derivatives of our likelihood function.

Appendix A.6. First and the Second Order Partial Derivatives of lt(θ)

In this section we denote Φ = (γ0, γ1, γ2, γ3) and similarly, we set Ψ = (β0, β1, β2, β3) and the
likelihood function as follows:

lt(θ) = log αt − αt log σt + (αt − 1) log(Qt − µ)−
(Qt − µ

σt

)αt
.

The first order partial derivatives of lt(θ) are give by:
∂lt(θ)

∂µ = αt
σt
(Qt−µ

σt
)αt−1 − αt−1

Qt−µ ,
∂lt(θ)

∂Φ = [ 1
αt
+ log(Qt−µ

σt
)− (Qt−µ

σt
)αt log(Qt−µ

σt
)] ∂αt

∂Φ ,
∂lt(θ)

∂Ψ = [− αt
σt
+ αt

σt
(Qt−µ

σt
)αt ] ∂σt

∂Ψ .

The second order partial derivatives of lt(θ) are given by:
∂2lt(θ)

∂µ2 = − αt(αt−1)
σ2

t
(Qt−µ

σt
)αt−2 − αt−1

(Qt−µ)2 ,
∂2lt(θ)
∂µ∂Φ = [− 1

Qt−µ + 1
σt
(Qt−µ

σt
)αt−1 + αt

σt
(Qt−µ

σt
)αt−1 log(Qt−µ

σt
)] ∂αt

∂Φ ,
∂2lt(θ)
∂µ∂Ψ = [− α2

t
σ2

t
(Qt−µ

σt
)αt−1] ∂σt

∂Ψ ,
∂2lt(θ)
∂Φ∂Ψ = [− 1

σt
+ αt

σt
(Qt−µ

σt
)αt log(Qt−µ

σt
) + 1

σt
(Qt−µ

σt
)αt ] ∂σt

∂Ψ
∂αt
∂Φ ,

∂2lt(θ)
∂Φi∂Φj

= [ αt
σ2

t
− αt(αt+1)

σ2
t

(Qt−µ
σt

)αt ] ∂αt
∂Φi

∂αt
∂Φj

+ [− αt
σt
+ αt

σt
(Qt−µ

σt
)αt ] ∂2αt

∂Φi∂Φj
,

∂2lt(θ)
∂Ψi∂Ψj

= [− 1
α2

t
− (Qt−µ

σt
)αt(log(Qt−µ

σt
))2] ∂σt

∂Ψi

∂σt
∂Ψj

+[ 1
αt
+ log(Qt−µ

σt
)− (Qt−µ

σt
)αt log(Qt−µ

σt
)] ∂2σt

∂Ψi∂Ψj
.

Appendix B. Algorithms Computation Details

The computational time for representative algorithms are listed in Table A1.
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Table A1. Computational time.

Algorithms Algorithms for
Example 1/SC1

Algorithms for
Example 1/SC2

Algorithms for
Example 2/SC1

Algorithms for
Example 2/SC2

Algorithms for
Table 4

Algorithms for
Table 5

Computational
time (hour) 97.48 269.45 759.66 3030.24 0.29 5.30

All the algorithms are running on a server with Xeon 2.4GHz and 16GB of memory. Especially,
algorithms for Tables 4 and 5 are running using parallel computing of 16 processes.
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