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Abstract: Using the two-box energy balance model (EBM), we explore the climate system response to
radiative forcing generated by variations in the concentrations of stratospheric aerosols and estimate
the effect of uncertainties in radiative feedbacks on changes in global mean surface temperature
anomaly used as an indicator of the response of the climate system to external radiative perturbations.
Radiative forcing generated by stratospheric sulfate aerosols from the second-largest volcanic eruption
in the 20th century, the Mount Pinatubo eruption in June 1991, was chosen for this research. The global
mean surface temperature response to a specified change in radiative forcing is estimated as a
convolution of the derived impulse response function corresponding to EBM with a function that
describes the temporal change in radiative forcing. The influence of radiative feedback uncertainties
on changes in the global mean surface temperature is estimated using several “versions” of the
EBM. The parameters for different “versions” were identified by applying a specific procedure for
calibrating the two-box EBM parameters using the results of climate change simulations conducted
with coupled atmosphere–ocean general circulation models from the Coupled Model Intercomparison
Project phase 5 (CMIP5). Changes in the global mean surface temperature caused by stratospheric
aerosol forcing are found to be highly sensitive not only to radiative feedbacks but also to climate
system inertia defined by the effective heat capacity of the atmosphere–land–ocean mixed layer
system, as well as to deep-ocean heat uptake. The results obtained have direct implications for a better
understanding of how uncertainties in climate feedbacks, climate system inertia and deep-ocean heat
uptake affect climate change modelling.

Keywords: climate feedbacks; stratospheric aerosols; atmospheric optics; climate change; climate
sensitivity; energy balance model

1. Introduction

Natural and anthropogenic atmospheric aerosols substantially influence the Earth’s climate by
both directly and indirectly affecting the planetary energy balance, redistribution of radiative fluxes and
the formation of thermal and dynamic structures of the ocean and atmosphere (see [1,2] and references
cited herein). The climatic effect of atmospheric aerosols depends on their optical properties (scattering
and absorption coefficients, single scattering albedo, Ångström exponent, particle size distribution
and particle number) as well as the aerosols’ residence time (lifetime) in the atmosphere (e.g., [3–6]).
The residence time is in turn determined by the particle sizes and the altitude of the aerosol layer
(plume). Tiny stratospheric aerosols (e.g., volcanic sulfate aerosols) have one of the most significant
effects on the climate since their lifetime can be up to several years, which is much longer than the
residence time of the tropospheric aerosols (e.g., [7,8]). The stratospheric sulfate aerosol layer is an
almost purely scattering medium for shortwave solar radiation. Therefore, some of the incoming solar
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radiation is reflected back into space, contributing to the near-surface cooling. However, stratospheric
sulfate aerosol plume is a weakly absorbing medium for the infrared terrestrial radiation. Sulfate
aerosols artificially injected into the stratosphere, due to their optical properties, are considered as a
potential measure to mitigate anthropogenic global warming (e.g., [9–12] and references cited herein).

Currently, climate models of varying degrees of complexity play their role as our main tools
for expanding our scientific understanding of the influence of stratospheric aerosols on the Earth’s
climate change and its variability in the past, present and future. In climate studies, two main
measures—equilibrium climate sensitivity (ECS) and transient climate response (TCR)—are commonly
used to estimate the climate system response to a given external radiative forcing caused by various
agents, including stratospheric aerosols. Meanwhile, it has long been known that different climate
models demonstrate varying extents of climate system response since the range of climate sensitivity
in climate models is quite wide (e.g., [13–15]). This uncertainty in climate sensitivity results in a large
extent from intermodel differences in the strength of radiative feedback processes that are inherent in
the physical climate system [16–23].

From the standpoint of control theory, feedback loops represent regulatory mechanisms that
amplify (positive feedback) or diminish (negative feedback) the effects of external radiative forcing,
thereby determining the climate sensitivity [24]. Observations and climate model simulations show
that feedback loops jointly amplify the climate system response (in terms of surface temperature) to
external radiative forcing [21,25]. In the context of the climate system, feedbacks can be analyzed
within the global top-of-atmosphere (TOA) linear forcing-feedback framework [26,27]:

N = F−R = F− λ∆T, (1)

where N is the global-mean net downward radiative flux at the TOA representing the rate of increase
in heat stored in the climate system, F is the radiative forcing (positive downwards) imposed on
the climate system due to changes in concentrations of radiatively active atmospheric components,
R is the radiative response of the climate system (positive upwards) to change in the global mean
surface temperature ∆T and λ (W m−2 K−1) is the climate response parameter which characterizes
the net climate feedback strength (in the scientific literature, the parameter λ is also referred to as the
climate feedback parameter). The sign convention used in Equation (1) corresponds to the so-called
“positive-stable” climate feedback (for details, please refer to Gregory et al. [27]).

The global mean surface temperature change ∆T is considered relative to an unperturbed steady
state of the climate system for which N = F = 0 and therefore, R = 0. In a perturbed steady state
F = λ∆T and therefore, λ = F/∆T. The inverse of the feedback parameter α = 1/λ (K W−1 m2),
is called the climate sensitivity parameter. Thus, the change in global-mean surface temperature
∆T due to radiative forcing F, once the climate system reaches the equilibrium state, is defined as
∆T = F/λ = αF. If, for example, the radiative forcing F = F2×, where F2× is the radiative forcing
induced by a doubling of the atmospheric carbon dioxide (CO2) concentration, then the ECS is given
by ∆Teq

s, 2× = αF2×. There is a wide variety of both positive and negative feedback mechanisms in the
Earth’s climate system. Some of them are important in terms of their influence on the climate system
response to external radiative forcing [25]. However, the strength of the feedback estimates in Coupled
Model Intercomparison Project phase 5 (CMIP5) models [28] varies noticeably [29], which causes
significant intermodel differences in the global-mean temperature response to a given radiative forcing.

In this paper, we apply the two-layer energy balance model (EBM) [30,31] to explore the climate
system response to radiative forcing generated by variations in stratospheric aerosol concentrations,
and ultimately to better understand how the uncertainties in climate feedbacks affect changes in
global mean surface temperature anomaly used as an indicator of the response of the climate system
to external radiative perturbations. Radiative forcing generated by stratospheric sulfate aerosols
from the second-largest volcanic eruption of the 20th century, the Mount Pinatubo eruption in June
1991, was chosen for this research. Hansen et al. [32] suggested using the Pinatubo case as a test
of climate sensitivity to a given forcing since the availability of data for Pinatubo allows one to
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accurately determine the magnitude of stratospheric aerosol forcing. The climate system response to a
specified change in radiative forcing is estimated as a convolution of the derived impulse response
function corresponding to EBM with a function that describes the temporal change in radiative forcing.
The influence of radiative feedback uncertainties on changes in the global mean surface temperature
is estimated using several EBM “versions”, the parameters of which were identified by applying a
specific procedure for calibrating the two-box EBM parameters using the results of climate change
simulations with coupled atmosphere–ocean general circulation models from the CMIP5 [29].

2. Materials and Methods

2.1. The Model

We used the two-box EBM [30,31] which, in stochastic formulation, has previously been applied
to estimate the effects of parametric uncertainty on climate variability [19,20]. In this EBM, the climate
system was divided into two subsystems: the upper box that corresponds to the atmosphere, the land
surface and the ocean mixed layer, and the lower box that represents the deep ocean. The state of each
box was characterized by the globally averaged temperature anomalies ∆T and ∆TD with respect to
their reference (equilibrium) values T0 and TD,0. Equations that describe the evolution over time of the
model state variables ∆T and ∆TD under the influence of radiative forcing F are of the form:

C
d∆T

dt
= −λ∆T − γ(∆T − ∆TD) + F (2)

CD
d∆TD

dt
= γ(∆T − ∆TD), (3)

where C and CD are the effective heat capacities of the upper and lower boxes of the model; γ is a heat
exchange parameter describing the interactions between the boxes. Temperature anomaly of the upper
box ∆T is identified with the global-mean surface air temperature perturbation.

In the absence of radiative feedbacks (i.e., with only the ”Planck” response), we can define the
so-called “reference-system climate sensitivity parameter” α0 [16,24]:

α0 =
(
4εσT3

0

)−1
≈ 0.30 K W−1 m2, (4)

where ε is the Earth’s emissivity [33]; σ = 5.67·10−8
(
kg s−3 K−4

)
is the Stephan–Boltzmann constant;

T0 = 288 K is the reference global mean surface temperature. The reference climate sensitivity
parameter α0 gives a long-term (equilibrium) surface temperature increase ∆T0 ≈ 1.1 ◦C in response to
radiative forcing due to the doubling of the CO2 concentration.

Along with the feedback parameter λ, we can also consider the dimensionless feedback coefficient
(factor) f [16], which is a fraction of the climate system output “signal” sent back to its input defined by
the following expression: f = 1− α0/α. Then, the response of the climate system ∆T to the radiative
forcing F is given by ∆T = ∆T0/(1− f ) = G∆T0, where G = 1/(1− f ) is the climate system gain. It is
obvious that the negative feedback (−∞ < f < 0) reduces the gain (G < 1) and, therefore, taking negative
feedback into account weakens the climate system response to radiative forcing. In contrast, positive
feedback (0 < f < 1) enhances the gain (G > 1) and, thus, amplifies the climate system response. It is
clear that climate feedbacks fall into this range [24]. If f ≥ 1, then the perturbed climate system is unable
to reach the new equilibrium state, therefore, this case is hardly applicable to the climate system [24].
Note that in a (linear) EBM, different feedbacks are considered as additive: f = f1 + f2 + . . .+ fn [34].
Equation ∆T = G∆T0 shows that the relationship between the absolute uncertainty in the system
response δ(∆T) and the absolute uncertainty in the feedback factor δ f is nonlinear: δ(∆T) = ∆T0G2δ f .
In climate studies, the uncertainty in system response to radiative forcing can be evaluated employing
multiple models (an ensemble-based approach to climate simulations and projections). In this case,

the feedback uncertainty can be given by the variance σ2
∆T = σ2

f ∆T0/
(
1− f

)2
= ∆T0G

2
σ2

f , where f is
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the model-mean feedback factor, σ f its standard deviation, and σ∆T is the standard deviation of the
climate system response ∆T.

The two-box EBM includes four free parameters, C, CD, λ and γ, and a radiative forcing amplitude
parameter F, which affect the time evolution of the state variables ∆T and ∆TD. Model parameter
values used in this study were taken from [29] (see Table 1). These values were identified via the
specific procedure of calibrating the two-box EBM parameters from the results of climate change
simulations performed using coupled atmosphere–ocean general circulation models from the CMIP5.
As the base values of the model parameters, we will consider the rounded values of the multi-model
means of the CMIP5 fitted values: = 7.3 W yr m−2 K−1, CD =106 W yr m−2 K−1, γ = 0.73 W m−2 K−1

and λ = 1.13 W m−2 K−1, which corresponds to f = 0.66. Certainly, all CMIP5 models are similar
since they are based on the same basic physical laws and principles and describe the evolution of
the same (climate) system. Meanwhile, some characteristics of CMIP5 models (e.g., the description
of physical processes and cycles, the numerical algorithms and spatial resolution) differ from each
other [15]. This can be one of the greatest sources of differences in CMIP5 model parameter estimates.
As in [29], the feedback parameters used in this study represent the instantaneous global radiative
response at the TOA to global mean surface temperature changes, irrespective of how those variations
occur. In contrast to complex climate models, in which the total feedback parameter is regarded
as the “sum” of various individual feedback parameters, in EBMs the total feedback parameter is
only considered. The values of the total feedback parameters listed in Table 1 were derived based
on the assumption that the net radiative flux change at the TOA is induced by a quadrupling of the
atmospheric CO2 concentration. However, as shown in [35], the global anthropogenic aerosol radiative
feedback parameter is “indistinguishable” from the GHG feedback parameter. Thus, the use of the
values of the total feedback parameter obtained in [29] is a fairly reasonable assumption.

Table 1. The thermal inertia parameters C and CD, deep-ocean heat uptake γ, climate feedback
parameter λ, and climate feedback factor f estimates of the Coupled Model Intercomparison Project
phase 5 (CMIP5) models used in this study, and their multimodel mean and standard deviation given
for the 16-model ensemble (all parameter values, with the exception of the climate feedback factor,
are taken from [29]).

Model
Parameter

C (W yr m−2 K−1) CD(W yr m−2 K−1) γ (W m−2 K−1) λ (W m−2 K−1) f

1 BCC-CSM1-1 7.6 53 0.67 1.21 0.64
2 BNU-ESM 7.4 90 0.53 0.93 0.72
3 CanESM2 7.3 71 0.59 1.03 0.69
4 CCSM4 6.1 69 0.93 1.24 0.63
5 CNRM-CM5 8.4 99 0.50 1.11 0.67
6 CSIRO-Mk3.6.0 6.0 69 0.88 0.61 0.82
7 FGOALS-s2 7.0 127 0.76 0.88 0.74
8 GFDL-ESM2M 8.1 105 0.90 1.34 0.60
9 GISS-E2-R 4.7 126 1.16 1.70 0.49
10 HadGEM2-ES 6.5 82 0.55 0.65 0.81
11 INM-CM4 8.6 317 0.65 1.51 0.55
12 IPSL-CM5A-LR 7.7 95 0.59 0.79 0.76
13 MIROC5 8.3 145 0.76 1.58 0.53
14 MPI-ESM-LR 7.3 71 0.72 1.14 0.66
15 MRI-CGCM3 8.5 64 0.66 1.26 0.62
16 NorESM1-M 8.0 105 0.88 1.11 0.67

Mean 7.3 106 0.73 1.13 0.66
STD 1.1 62 0.18 0.31 0.09
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For convenience of further discussion, we note that model Equations (2) and (3) can be easily
converted to a linear second-order differential equation describing a damped harmonic oscillator
driven by a force that depends on time:

d∆T2
D

d2t
+ 2β

d∆TD

dt
+ω2

0∆TD =
γ

CCD
F(t), (5)

where ω0 =
√
λγ/CCD is the angular resonance frequency, and β = [(λ+ γ)CD + γC]/(2CCD) is the

damping coefficient.
The analysis of the above second-order differential equation, which is equivalent to the system of

first order linear differential Equations (2) and (3), shows that the climate system response to radiative
forcing is characterized by the “fast” τ f and the “slow” τs relaxation times given, respectively, by

τ f =
β

ω2
0

(
1−

√
1−ω2

0/β2
)
, τs =

β

ω2
0

(
1 +

√
1−ω2

0/β2
)
. (6)

For the base parameter values, we obtain τ f ≈ 3.9 yr and τs ≈ 242 yr.

2.2. The Global Radiative Forcing Due to Stratospheric SulfateA

In general, estimating the response of the climate system to radiative forcing produced by
variations in the atmospheric concentrations of radiatively active gases and natural and anthropogenic
aerosols requires quite a complex radiation transfer model. However, in the two-box EBM, an external
radiative forcing is defined as a change in the planetary radiative balance at the TOA (or in other words,
as the net radiative flux change at the TOA). In this study, to obtain an estimate of radiative forcing
FA produced by stratospheric sulfate aerosols, we apply a simplified single-factor parameterization
scheme [6], in which the aerosol optical depth (or thickness) τA at the wavelength 550 nm is used as
a determining parameter to account for the optical properties of aerosol particles that scatter solar
shortwave radiation for the case of a uniform layer of aerosols:

FA(t) = −ζτA(t), (7)

where ζ = 25 W m−2 is the empirical parameter [6], and τA is the global mean optical depth of
stratospheric aerosols.

In this study, the temporal change in τA was specified in accordance with the GISS (Goddard
Institute for Space Studies) aerosol data products [36] for the period 1989–2012 (the span of time from
2 years before to 21 years after the Pinatubo volcanic eruption in June 1991). The total amount of
sulfur dioxide SO2 injected into the stratosphere as a result of the Pinatubo eruption is considerably
uncertain and ranged from 10 to 20 Tg ([37,38] and references cited herein). Sulfur dioxide formed
sulfate aerosols, which rapidly spread around the Earth reaching global coverage about 1 year after
the eruption. We highlight that Hansen et al. [32] specifically suggested using the Pinatubo case as a
test of climate sensitivity to a given forcing since the availability of data for Pinatubo allows accurate
determination of the magnitude of stratospheric aerosol forcing.

2.3. Technique for the Solution of EBM Equations

Since the two-box EBM is linear, the response of the global mean surface temperature anomaly
∆T to radiative perturbation caused by stratospheric aerosols can be estimated as a convolution of the
impulse response function (IRF) for continuous-time dynamical system (2)–(3) with a function that
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describes the change in radiative forcing FA(t) [39]. Let g(t) be the IRF for the system described by
Equations (2) and (3). Then ∆T is given by [40]

∆T(t) = [g ∗ FA](t) =
∫ t

0
g(τ)FA(t− τ)dτ. (8)

where [g ∗ FA](t) denotes convolution of g and FA over a finite time range [0, t].
In the general case, the impulse characteristic g(t) of a linear dynamical system is the response

of a system to the input specified as a Dirac delta function δ(t) with zero initial conditions. To find
the IRF of a linear continuous-time dynamical system we can take the inverse Laplace transform of
the system’s transfer function H(s): g(t) = L−1{H(s)

}
, where L is the symbol of the Laplace operator,

and s is a complex variable known as the complex frequency. In turn, the transfer function of the
two-box EBM can be obtained by taking the Laplace transform of differential equations (2) and (3) with
zero initial conditions. Omitting intermediate calculation, we give the final expression for the transfer
function of system (2) and (3) [40]:

H(s) =
γ+ sCD

s2CCD + s[γC + (γ+ λ)CD] + γλ
. (9)

Taking the inverse Laplace transform of the transfer function (9), we have [40]

g(t) =
τ fτ f

C
(
τ f − τ f

) [( 1
τ f
−
γ

CD

)
e−t/τ f −

( 1
τs
−
γ

CD

)
e−t/τs

]
. (10)

The IRF (10) completely characterizes the dynamic properties of EBMs (2)–(3) affected by any, but
sufficiently small, time dependent external radiative perturbation.

3. Results and Discussion

To validate the proposed IRF-based technique for calculating the global mean surface temperature
anomaly ∆T in response to external radiative perturbation, we performed calculations using two
idealized forcing scenarios for which analytical solutions are available. These are (a) step forcing,
which instantly jumps from 0 to the value of F4× ≈ 6.9 W m−2 [2] at t = 0, and then remains constant
(abrupt quadrupling of atmospheric CO2 scenario) and (b) linear forcing that corresponds to 1%
yearly CO2 concentration growth (1 pct CO2 scenario), for which F(t) = F1pctCO2(t) = ηt, where
η = 5.2857 W m−2 yr−1 [12,40]. These two idealized scenarios are standard radiative forcing scenarios
used to obtain the estimates of ECS and TCR from global climate models [28].

For a step forcing, the analytical solution for the global mean surface temperature anomaly ∆T as
a function of time is given by

∆T(t) =
F4×

λ

[
1− α1e−t/τ f − α2e−t/τs

]
. (11)

Here α1 = (1− v22)/(v12 − v22) and α2 = (1− v12)/(v22 − v12), where v12 and v22 are the
components of eigenvectors (for further details, see Appendix A).

For a linear forcing, the anomaly ∆T is calculated using the following formula:

∆T(t) = β1e−t/τ f − β2e−t/τs −
η(C + CD)

λ2 +
η

λ
t, (12)

where the coefficients β1 and β2 depend on the model parameters. The formulas for calculating β1 and
β2 are omitted due to lack of space [40].
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As shown in [40], the approximate solutions are in agreement with the exact analytical solutions.
For both forcing scenarios, the relative error is lower than 1%, while the largest absolute error is about
0.04 ◦C.

Figure 1a illustrates the time evolution of the global mean total optical depth τA at the wavelength
550 nm for the case of the Mount Pinatubo eruption. In order to isolate the global mean surface
temperature signal induced by volcanic aerosols, we removed the radiative effects of background
stratospheric aerosols by assuming that their total optical depth τb is ~0.005 [41]. This allows us to
neglect the influence of radiative perturbation caused by background stratospheric aerosols on the
global mean surface temperature change. The value of τb is given by the mean of stratospheric aerosol
optical depth at the wavelength 550 nm for the 18 months preceding the Mount Pinatubo eruption.
Thus, the optical depth of the stratospheric aerosols used in calculations is defined by τA = τGISS − τb,
where τGISS is the aerosol optical depth taken from the GISS aerosol data products [36].Atmosphere 2020, 11, x FOR PEER REVIEW 7 of 14 
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Figure 1. Global mean total optical depth τA at 550 nm for the case of the Mount Pinatubo 1991 eruption
(a) and the corresponding global mean surface temperature anomalies ∆T (◦C) derived from running
various energy balance models (EBMs) with parameters listed in Table 1 (b).

As shown in Figure 1a, the global mean total optical depth would rise rapidly to a maximum
value of ~0.15 by the beginning of 1992, and then exponentially decrease to insignificant values by 1995.
A similar behaviour is inherent in radiative forcing generated by volcanic stratospheric aerosols, since
the relationship between the total optical depth and the top-of-the-atmosphere radiative forcing (7) is
linear. The corresponding changes in the global mean surface temperature anomalies, derived using
various EBMs with parameters listed in Table 1, are presented in Figure 1b. As reflected in this figure,
all models show an abrupt cooling after the Mount Pinatubo eruption. However, the changes in global
mean surface temperature anomaly due to radiative perturbation generated by volcanic aerosols vary
noticeably between the different EBMs (see Figure 2). The lowest global mean surface temperature
∆Tm, taken as an indicator of the climate system changes in response to a volcanic aerosol forcing,
occurs about 1.5–2 years after the eruption of Pinatubo.

To evaluate the model ensemble, we used standard statistical measures such as mean, standard
deviation (StD) and the range of changes in ∆Tm. Multi-model ensemble mean volcanic cooling < ∆Tm >
is about −0.52 ◦C with a full range of −0.43–−0.63 ◦C, and the ensemble StD is ~0.06 ◦C. The strongest
response ∆Tm ≈ −0.63 ◦C was obtained using the CSIRO (Commonwealth Scientific and Industrial
Research Organisation) model with the feedback parameter λ = 0.61 W m−2 K−1, while the smallest
response ∆Tm ≈ −0.43 ◦C was calculated using the INM (Institute of Numerical Mathematics) model
with λ = 1.51 W m−2 K−1. As shown in previously published studies (e.g., [32,38,41]), the Pinatubo
volcanic aerosol plume caused short-term global surface cooling of up to 0.4–0.6 ◦C. Thus, the results
obtained by the two-box EBM are reasonably accurate despite the multi-model ensemble spread of
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∼0.2 ◦C for ∆Tm. For reference, Figure 2 presents the results obtained by the one-box EBM commonly
used in theoretical climate studies. The main equation of this model can be derived from Equations (2)
and (3) with the condition γ→ 0 . Calculations show that omitting the deep-ocean heat uptake (γ = 0)
leads to an increase in the climate system response to volcanic radiative forcing by about 15%.
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Figure 2. Climate system response ∆Tm (◦C) to volcanic aerosol radiative forcing obtained by different
EBMs with parameters listed in Table 1.

Figure 3, which to a certain extent compliments Figure 2, provides the box-whisker plot that
summarizes the descriptive statistical measures (median, minimum and maximum values of ∆Tm,
lower and upper quartiles) obtained from the multi-model ensemble. The whiskers show the range
of ∆Tm obtained from the 16 realizations, while the box displays the interquartile range (the range
between the first and third quartiles or, in other words, the middle 50% of the distribution), and the
red line indicates the median.
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Since all model parameters affect the response of global mean surface temperature to external
radiative forcing, in order to estimate the effect of only the feedback parameter λ on ∆Tm, we performed
a series of numerical experiments in which multi-model mean (or base) values of C, CD and γ
were assigned, while the parameter λ changed in the range of 0.6 − 1.71 W m−2 K−1 (see Table 1).
This so-called “One-factor-at-a-time” method [19] is a commonly used approach in sensitivity analysis
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of dynamical systems including climate models [20]. As can be seen in Figure 4, the variable ∆Tm is
almost linearly dependent on the feedback parameter λ. The relationship between ∆Tm and λ can be
represented by the following linear equation: ∆Tm = 0.0768λ− 0.5975. A value of R2

≈ 0.99 indicates
a strong correlation between ∆Tm and λ. The results obtained from the one-box EBM are shown in
Figure 4, for reference.
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It is, however, well known (e.g., [21]) that the level of uncertainty in climate feedbacks is still
high. Since the uncertainty in feedbacks is the essential source of uncertainty in the response of the
Earth’s climate system to the anthropogenic greenhouse gas emissions, radiative feedback mechanisms
are predominantly explored in the context of longer-term climatic changes measured on inter-annual,
decadal and century scales. However, even at present, the intermodel spread in climate sensitivity,
which is one of the main indices that measures the relationships between the increase in greenhouse
gases (GHG) in the atmosphere and the magnitude of climate change, remains large, mainly due
to the uncertainties in the representations of radiative feedbacks in state-of-the-art climate models.
In this paper, we intended to estimate the effect of radiative feedback uncertainties on the short-term
response of the climate system to a sharp radiative perturbation due to volcanic aerosols injected into
the stratosphere by the 1991 Mount Pinatubo eruption.

To estimate the influence of feedback uncertainties on the climate system response to volcanic
aerosol radiative forcing, we used the sensitivity coefficient Sλ defined as the partial derivative of ∆Tm

with respect to λ, i.e., Sλ = ∂(∆Tm)/∂λ [19,20,42]. Then, the impact of feedback uncertainty on the
model output can be quantified as follows: δ(∆Tm) ≈ Sλδλ, where the variation δλ characterizes the
uncertainty in the parameter λ, and δ(∆Tm) is the change (uncertainty) in the global mean surface
temperature anomaly caused by δλ. For linear regression of the form y = ax + b, the sensitivity
coefficient is simply the slope a of the regression line. From the equation that relates ∆Tm and λ (see
above), one can find that Sλ = 0.0768 m2 K2 W−1.

Assuming the absolute uncertainty in the feedback parameter λ is δλ = ±0.7 W m−2 K−1 (1-sigma
uncertainty) [18,21], then the absolute uncertainty in ∆Tm caused by δλ is δ(∆Tm) ≈ ±0.05 ◦C, and the
fractional (or percentage) uncertainty is about ±10.4%. Recall that the fractional uncertainty is given by
the ratio of the absolute uncertainty δ(∆Tm) to the multi-model average value ∆Tm. For comparison,
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we also present results based on the one-box EBM: the absolute uncertainty in ∆Tm is δ
(
∆T(1)

)
≈ ±0.08 ◦C

and the fractional uncertainty is about ±15.0% for the same uncertainty in the feedback parameter.
Using a similar approach, we can estimate the impact of uncertainties in each of the model

parameters on the climate system response ∆Tm to volcanic stratospheric aerosol forcing, and thereby
rank model parameters based on their relative contribution to the uncertainty in ∆Tm, as well as assess
the relative role and importance of feedback parameter uncertainty in the overall model uncertainty.
Figure 5 shows the dependences of ∆Tm on the effective heat capacity C of the upper box model
(a) and on the deep-ocean heat uptake parameter γ (b). The corresponding sensitivity coefficients
that characterize the influence of the uncertainties in parameters C and γ on the uncertainty in ∆Tm

are, respectively, SC ≈ 0.0681 m2 K2 W−1 yr−1 and Sγ ≈ 0.0702 m2 K2 W−1. The sensitivity coefficient
characterizing the response of a model to variations in the parameter CD is estimated at around
2× 10−6 m2 K2 W−1 yr−1. If the uncertainties δC, δγ and δCD are given, then we can estimate their
effect on the uncertainty in ∆Tm using these sensitivity coefficients.
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(
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and (b) deep-ocean heat uptake parameter γ
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.

Let us assume that all parameter values are known with some degree of uncertainty.
Thus, each model parameter p can be expressed in the standard form as p0 ± δp, where p0 is the
base value of the parameter p, and δp is the characteristic of the uncertainty range. For the sake of
illustration, we consider the case when the uncertainty in each of the parameters is ±10% in relation to
its base value, i.e., p = p0 ± 0.1p0. Table 2 illustrates how the uncertain model parameters affect the
uncertainty in model output ∆Tm. In other words, this table shows the effect of parameter uncertainties
on variation in the global mean surface temperature anomaly δ(∆Tm). Analysis of this table suggests
that the variations in ∆Tm caused by uncertainties in the parameters λ and γ are quantities of the same
order of magnitude. The influence of uncertainty in the parameter C on variations in ∆Tm is about one
order of magnitude greater than affects caused by δλ and δγ, whereas the influence of δCD on δ(∆Tm)

is one order of magnitude less than affects due to δλ and δγ.

Table 2. Absolute δ(∆Tm) (◦C) and relative
[
δ(∆Tm)/∆Tm

]
(%) uncertainties in model output caused

by ±10% uncertainty in model parameters.

Parameter λ (W m−2 K−1) C (W yr m−2 K−1) CD(W yr m−2 K−1) γ (W m−2 K−1)

Parameter uncertainty ±0.113 ±0.73 ±10.60 ±0.073
δ(∆Tm) (◦C) ±8.68 × 10−3

±4.97 × 10−2
±2.11 × 10−5

±5.12 × 10−3[
δ(∆Tm)/∆Tm

]
× 100% ±1.68 ±9.62 ±0.0041 ±0.99
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The relative uncertainty in the model output ∆Tm due to the uncertainty in the parameter C is
~6 times as large as the relative uncertainty in ∆Tm due to the uncertainty in the feedback parameter
λ, while the latter, in turn, is ~1.7 times as large as the relative uncertainty due to the uncertainty
in the parameters γ. The uncertainty in deep-ocean heat capacity CD has a negligible influence on
δ(∆Tm). These results provide some basis to suggest that the parameter C is the most influential
model parameter and thus affects ∆Tm to the greatest extent. Parameters λ and γ rank second and
third, respectively, followed by the parameter CD. This conclusion is accurate only if the range of
uncertainty in all model parameters is given by the same fraction of the corresponding base parameter
value (in our particular case we use a 10% uncertainty range). In fact, the range of uncertainty can
vary from parameter to parameter. Thus, ranking the model parameters according to their degree of
influence on the model output is not such a trivial problem as it might seem, and therefore requires
special consideration. However, that important aspect is beyond the scope of our study. This paper
seeks to only explore the influence of the uncertainty in radiative feedbacks on the variations in the
magnitude of the global mean surface temperature anomaly due to radiative forcing generated by
stratospheric aerosols.

4. Conclusions

In this paper, using the two-box EBM with several sets of parameter values that correspond to
CMIP5 models, we have examined the effect of uncertainties in radiative feedbacks on the short-term
response of the climate system to sharp radiative perturbation due to volcanic aerosols injected into
the stratosphere by the 1991 Mount Pinatubo eruption. The impulse response method was applied
to determine the globally averaged surface temperature anomalies that result from radiative forcing
generated by volcanic stratospheric aerosols. We have considered two idealized forcing scenarios,
one is linear and the other is step forcing, to show the computational accuracy of the impulse response
technique. The global mean surface temperature anomalies in response to volcanic radiative forcing
were estimated by considering 16 sets of EBM parameter values. The obtained quantitative estimates
allow for the conclusion that the uncertainty inherent in feedbacks significantly affects the response of
the climate system to volcanic aerosol forcing, thereby generating surface temperature uncertainties
on short time scales. In addition, the effect of uncertainties in EBM parameters on the uncertainty
in global mean surface temperature anomalies was estimated using a sensitivity analysis approach.
However, care should be used in interpreting the results obtained, since the modelling framework
is simple and idealized to a certain extent. Nevertheless, we expect that our approach and results
obtained will be useful in providing a way to explore the effects of radiative feedbacks on the climate
system response to external forcing whether of natural or man-made origin.
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Appendix A

We rewrite the two-box model Equations (2) and (3) in the following form:

d∆T
dt

= −a∆T + b∆TD + f , (A1)

d∆TD

dt
= p∆T − p∆TD, (A2)

where

a =
λ+ γ

C
, b =

γ

C
, p =

γ

CD
, f =

F
C

. (A3)
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The system of liner Equations (A1) and (A2) can be represented in matrix from:

dx/dt = Ax + B, (A4)

where

x(t) =
[

∆T
∆TD

]
, A =

[
−a b
p −p

]
, B(t) =

[
f
0

]
. (A5)

The matrix A can be factorized as
A = QΛQ−1, (A6)

where Q is the square 2 × 2 matrix whose ith column is the eigenvector Vi of A, and Λ is the diagonal
matrix whose entries are the eigenvalues corresponding to the columns of Q:

Q = [V1, V2] =

[
v11 v21

v12 v22

]
,Λ = diag[µ1, µ2] =

[
µ1 0
0 µ2

]
. (A7)

Eigenvalues µ1 and µ2 can be found analytically:

µ1 = −1/τ f , µ2 = −1/τs, (A8)

V1 =

[
v11

v12

]
=

 1

βC
γ

(
1−

√
1−ω2

0/β2
)
−

C
CD

,
V2 =

[
v21

v22

]
=

 1

βC
γ

(
1 +

√
1−ω2

0/β2
)
−

C
CD

.
(A9)

The general solution to the homogeneous system corresponding to (A4) is given by

∆T(t) = 1
v12−v22

[
(−∆T0v22 + ∆T0,D)e−t/t f + (∆T0v12 − ∆T0,D)e−t/ts

]
,

∆TD(t) = 1
v12−v22

[
v12(−∆T0v22 + ∆T0,D)e−t/t f + v22(∆T0v12 − ∆T0,D)e−t/ts

]
,

(A10)

where ∆T0 = ∆T(0), ∆T0,D = ∆TD(0).
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