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Abstract: Topography and precipitation intensity are important factors that affect the quality of
satellite precipitation products (SPPs). A clear understanding of the accuracy performance of SPPs
over complex terrains and its relationship with topography is valuable for further improvement of
product algorithms. The objective of this study is to evaluate three SPPs—the Climate Prediction
Center morphing method bias corrected product (CMORPH CRT), Global Precipitation Measurement
Integrated MultisatellitE Retrievals (IMERG), and Tropical Rainfall Measuring Mission 3B42V7
(TRMM 3B42V7) against a high-density network of 104 rain gauges over the Taihang Mountains from
1 January 2016 to 31 December 2017, with special focus on the reliability of products’ performance at
different elevation and precipitation intensity. The results show that three SPPs slightly overestimate
daily precipitation, compared to rain gauge observations, with bias ratios (β) from 1.02 to 1.06 over
the entire regions. In terms of accuracy, 3B42 slightly outperforms CRT and IMERG over the Taihang
Mountains. As for different elevation ranges, three SPPs show better performance in terms of accuracy
in low and moderate elevation (0–500 m) regions. Similar performances of precipitation detection
capability can be found for three products over the whole areas, with detection scores ranging from
0.53 to 0.58. Better precipitation detecting performance of three SPPs was discovered in high-elevation
(>1000 m) regions. We adopted a linear regression (LR) model and Locally Weighted Regression (LWR)
model in an attempt to discover the linear/non-linear relationships between SPPs’ performances
and topographic variations. In the accuracy statistical metrics, the errors of 3B42 and CRT showed
significantly positive correlations (p < 0.01) with elevation variations. The critical success index for
three products gradually increased with elevation variation based on the LR model. The correlation
coefficient and probability of detection for three products showed significant non-linear trends in the
LWR model. The probability distribution function for the three products in different elevation regions
is similar to that over the entire regions. Three SPPs slightly overestimated the frequency of heavy
rain events (6.9 < precipitation intensity (PI) ≤ 19.6 mm/d); CRT and 3B42 tended to underestimate
the frequency of no rain events (PI < 0.1 mm/d), while IMERG generally overestimated the frequency
of no rain events. Our results not only give a detailed assessment of mainly current SPPs over the
Taihang Mountains, but also recommend that further improvement on retrieval algorithm is needed
by considering topographical impacts for SPPs in the future.
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1. Introduction

Precipitation is an important variable in global water and energy circulation systems [1,2],
and accurate precipitation measurements have direct benefits for water resources related applications
such as disaster prevention, agricultural water usage, water resource management, and weather
prediction [3–5]. Currently, methods of measuring precipitation traditionally included ground-based
rain gauges, weather radars, and remote sensing [6,7]. By far the most accurate ground-based
measurement via its “point-scale” observations are often limited due to an insufficient number of
gauges and sparse network in some remote regions such as less accessible mountainous and oceanic
regions [8,9].

One alternative source for overcoming such a limitation in ground-based measurement using
point scale is space-based assessment and observation of precipitation [10,11]. Satellite precipitation
products (SPPs) are promising sources for estimating precipitation. With SPPs having been employed
at regional and at near-global scales, they are quickly becoming important data resources in global
hydrometeorological applications [3,12–14]. Continued improvement in temporal and spatial
resolutions of satellite-based products has been achieved through recent updates in sensor and
technology methods via the merging of various data sources such as radar data, thermal infrared data,
active/passive microwave data, and information from the Global Telecommunication System [15,16].

Nevertheless, different surface cover types can generate different influences on the performances
of SPPs. Over the ocean, passive microwave (PMW) sensors can largely distinguish a surface radiation
signal and warm emission signal from liquid hydrometeors because microwave emissivity is low
and highly polarized [5]. In contrast, many greatly variable surface-covered features such as soil
moisture, roughness, vegetation properties, canopy, and snow cover will lead to higher variability of
microwave emissivity over the land [17]. Consequently, the working quality of PMW precipitation
estimation is significantly influenced by the spatial distribution and microphysical characteristics of
precipitation [18]. For example, the spatial patterns of precipitation are typically characterized by short
distances and occur within short time periods and high-intensity rainfall events over the mountainous
areas, which lead to the rainfall underestimation by PMW algorithms [19]. In addition, some studies
have reported that precipitation overestimation is possible because ice cover over the mountaintop is
misclassified as rain clouds by PMW such as in central regions of America and east Africa [19,20].

Terrain complexity poses a challenge to accurate precipitation measurement by SPPs in the future.
Bharti and Singh [21], who validated the TRMM 3B42V7 product against rain gauges over the northwest
Himalayan region, found that the bias of precipitation estimation was strongly dependent on local
climatic and topographical factors. Tong et al. [22] found that satellite products offer great potential for
providing high-resolution precipitation information in remote regions, but more considerations should
be made in terms of precipitation variability and terrain complexity. Recent research found a particular
evaluation of quasi-global scale high-resolution satellite-based products (TRMM 3B42 and GPM
IMERG) over the southern Tibetan Plateau based on a high-density rain gauge network [9]. The results
demonstrated that the performances of satellite-derived precipitation were highly dependent on
elevation and rainfall intensity. However, another standpoint was that a satellite product such as
TRMM 3B42V6 depended more on precipitation intensity than on topography [23]. In the era of global
climate change, an increased frequency of extreme events poses a threat to human populations and
economic development in affected areas. Extreme precipitation events have frequently occurred across
the world in recent decades. A significant positive trend in the frequency of extreme precipitation
was observed in the United States, North China, Philippines, India, etc. [24–27]. In addition to global
warming, precipitation extremes are also influenced by many other factors, such as topography as
well as tropical cyclones [28,29]. SPPs are promising approaches for obtaining precipitation estimates.
Further research is urgently needed into whether SPPs can accurately observe short and heavy
precipitation or even extreme precipitation over complex terrains.

Around the world, current studies mainly focus on the evaluation and comparison the accuracy
of SPPs on different timescales such as daily, monthly, seasonal, and annual precipitation over the
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mountainous regions. Little research has reported on the accuracy of SPPs in different elevation
ranges and the relationship between SPPs’ accuracy and elevation variations. On the other hand,
the short-term strong precipitation in complex terrains may lead to serious natural disasters such as
flood, landslides and debris flow, etc., which pose serious threats to humans. Consequently, this work
pays closer attention to explore the above issues so as to offer the results of an assessment that could be
utilized to improve retrieval algorithms and the knowledge of local precipitation information to early
warning of natural disasters. This study assesses the accuracy of three satellite-derived precipitation
products, namely CMORPH CRT, TRMM 3B42V7 and newly released GPM IMERG (abbreviated as
CRT, 3B42, and IMERG below, respectively) in different elevation regions based on a high-density and
-quality network of rain gauges over the Taihang Mountains. The major objectives of this study include:
(1) the general performances of three products in complex terrains; (2) the relationship between the
performances of SPPs and elevation variation based on ordinary linear regression and non-linear
regression models; and (3) the performances of three products in observing precipitation with different
intensity over different elevation regions. Because variations in precipitation may be caused by changes
in event frequency, changes in precipitation intensity for each event [5]. This study combines rain
gauges and SPPs in situations of light-, medium-, heavy-, very heavy-, and extreme-precipitation in
entire regions and in regions at different elevations.

2. Study Area and Datasets

2.1. Study Area

The Taihang Mountains, the northeast range of a mountain belt in North China, extend across four
provinces (Beijing, Hebei, Shanxi, and Henan) and 101 counties. These mountains are considerable
transition zones between the Loess Plateau and the North China Plain [30]. The Taihang Mountains,
located between 34◦34′–40◦43′ N and 110◦14′–114◦33′ E, are approximately 120,000 km2 in size.
A terrain map is given in Figure 1. The average elevation in the study area ranges from −95 m to 3091 m
and the relative difference in elevation over 3000 m (Figure 1). Low-altitude regions are concentrated
to the east, bordering the North China Plain. High-altitude regions are concentrated in the northern
and central parts of the Taihang Mountains, near the Loess Plateau.

This mountain area is exposed to moderate annual rainfall [30]. The annual average precipitation
(2005–2014) was 456.57 mm and the annual mean temperature was 11.36 ◦C [30]. Both precipitation
and temperature decrease from the southwest to the northeast [31]. The mid-latitude monsoon climate
is characterized by being hot and wet in summers and cold and dry in winters [32]. Interactions
between the mountain and the humid, moist weather pattern from the East Asian summer monsoon
cause the differences in spatial distribution of rainfall [33,34]. Mesoscale topography mainly influences
rainfall area and intensity via the disturbance of the dynamic field and moisture distribution [35].
The windward and leeward slopes of a mountain commonly have different natural environments since
terrain can block the rise of warm and moist air, resulting in cooler temperatures and more frequent
rainfall events in certain locations [36].

2.2. Rain Gauge Dataset

Rain gauge data comes from Hebei, Shanxi, and Henan meteorological bureaus of China.
Ground-based rain gauge data from 1 January 2016 to 31 December 2017 were adopted as the
verified information to examine the SPPs performance in the corresponding period over the Taihang
Mountains. Strict quality check and control procedures, including (i) eliminating outliers, (ii) examining
internal consistency, and (iii) examining spatial consistency were developed by Shen and Xiong to
ensure the high quality of the rain gauge data [37]. Moreover, the rain gauge network used here is
independent of the GPCC networks. It is worth mentioning that the density of rain gauge network
is about 8.7/10,000 km2 (a gauge within 0.0375◦ grid), which is higher than other similar studies
in other mountainous regions such as the Tibetan Plateau, Ethiopia as well as the main mountains
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of China [1,9,19]. The type of rain gauge is the automatic tipping bucket rainfall station. Because
some products in the study were provided only on an hourly basis, or a three-hourly basis, the daily
precipitation is the accumulated rainfall over 24 h starting at 08:00 am (Beijing time), equivalent to
00:00 Coordinated Universal Time (UTC), allowing daily rainfall values from the rain gauge stations to
be directly compatible with the SPPs since SPPs also measure daily rainfall at 00:00 UTC. Recognizing
that time resolution has a critical role in evaluating a precipitation product’s performance, the SPPs in
this study are considered on a daily scale.Atmosphere 2020, 11, x FOR PEER REVIEW 4 of 20 
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2.3. Satellite-Based Datasets

The suitable SPPs were found in this study can be utilized in the future for weather forecast
and hydrological modelling in selected regions. Therefore, three of the most state-of-the-art SPPs
with relatively high spatial resolution are compared against rain gauges. All of these SPPs are
widely-used all over the world, and thus, offer abundant research results to compare with this work.
A brief introduction of each SPP is provided in the next paragraphs, which include the development
institutions, algorithms, version information, satellite sensors, etc.
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2.3.1. CMORPH CRT

The CMORPH dataset, provided by the National Oceanic and Atmospheric Administration
(NOAA), is the global precipitation product with fine temporal and spatial resolution (Table 1).
This product integrates multiple PMW information from low Earth-orbiting satellites and Infrared
Radiation (IR) sensors from the geostationary platforms [38]. This technique uses precipitation
estimations that have been exclusively derived from low orbiting satellite microwave observations,
whose features are transported via the spatial propagation of information obtained entirely from
geostationary satellite IR data [38]. Since 1998, CMORPH V1.0 has provided the near-real-time and
bias-corrected products named CMORPH-RAW and CMORPH-CRT, respectively. The CMORPH CRT
product with a temporal/spatial resolution of 0.5 h/8 km was used in this study. The Uniform Resource
Locators (URLs) of CMORPH CRT dataset is: ftp://ftp.cpc.ncep.noaa.gov.

2.3.2. TRMM 3B42V7

The Tropical Rainfall Measuring Mission (TRMM) for monitoring precipitation in tropical and
subtropical zones was developed in collaboration with the United States National Aeronautics and
Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) (Table 1). The TRMM
satellite was decommissioned in April 2015 and re-entered Earth’s atmosphere and was destroyed later
in the year. The satellite was equipped with the TRMM microwave imager (TMI), precipitation radar
(PR), visible and infrared sensor (VIRS), lightning imaging sensor (LIS), and Clouds and the Earth’s
Radiant Energy System (CERES). Among equipment sensors carried by the TRMM satellite, PR was a
groundbreaking development that provides a three-dimensional structure of rainstorms beneficial to
detection precision [39,40].

Table 1. Summary of satellite-based products providing data at a quasi-global scale.

Dataset Full Name Latitudinal
Coverage

Spatial
Resolution Temporal Coverage References

CMORPH
NOAA Climate Prediction
Center (CPC)
MORPHing technique

60◦ N–60◦ S 8 km, 0.25◦ January 1998–present [38]

TRMM 3B42V7

TRMM Multi-satellite
Precipitation Analysis
research product 3B42
Version 7

50◦ N–50◦ S 0.25◦ January
1998–December 2019 [39]

GPM IMERG
GPM Integrated
Multi-satelliteE Retrievals
Version 05

60◦ N–60◦ S 0.1◦ June 2014–present [41,42]

The TRMM Multi-satellite Precipitation Analysis (TMPA) is one of the TRMM products designed
to combine precipitation measurement from various satellite systems and rain gauges [39,40]. The latest
TMPA version 7 consists of two main products, which include three-hourly combined microwave-IR
estimates (3B42) and monthly combined microwave-IR-gauge (3B43) products at 0.25◦ spatial resolution.
According to the introduction of NASA web page, this 3B42 V7 is no longer produced after 31 December
2019. The 3B42 product is further divided into near real-time (3B42RT) and gauge-adjusted research
(3B42) products. This study adopted the 3B42 product with a spatial/temporal resolution of 0.25◦/3 h.
The URLs of TRMM 3B42V7 dataset is https://daac.gsfc.nasa.gov/datasets?keywords=TRMM_3B42_7&
page=1.

2.3.3. GPM IMERG

TRMM’s follow-up satellite precipitation program, the Global Precipitation Measurement (GPM)
project, a collaboration between NASA and JAXA, initiated precipitation observations in 2014 (Table 1).
GPM brings advanced precipitation measurements from research and operational sensors from the
partner satellite to provide next-generation global precipitation data products. GPM satellites provide

ftp://ftp.cpc.ncep.noaa.gov
https://daac.gsfc.nasa.gov/datasets?keywords=TRMM_3B42_7&page=1
https://daac.gsfc.nasa.gov/datasets?keywords=TRMM_3B42_7&page=1
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global precipitation data products within 3 h and 0.5 h, based on microwave and microwave infrared
data, respectively, and they extended the scope of observations to the north and south polar regions.
Of the GPM satellite’s two main sensors, the GPM microwave imager (GMI) was utilized to measure
the intensity, type and size of the precipitation, and the dual-frequency precipitation radar (DPR)
was applied to observe the inner structure of storms [41,42]. The three versions of daily IMERG
products are IMERG Day 1 Early Run, with a near real-time with real-time delay of 6 h; IMERG Day
1 Late Run, with a reprocessed near real-time delay of 18 h; and IMERG Day 1 Final Run, with a
gauge-adjusted four-month latency. In this study, IMERG Day 1 Final Run daily products were
chosen as the data was obtainable beginning 12 March 2014. The URLs of GPM IMERG dataset is
https://pmm.nasa.gov/precipitation-measurement-missions.

3. Methodology

3.1. Methodology for Data Comparison

Following Zambrano-Bigiaini et al. [11] and Sharifi et al. [5], we adopted the point-to-pixel analysis
method to allow the series data observed by the rain gauge to be compared with the corresponding SPPs
pixel for each gauge over the entire regions. Only the pixel where there is at least one ground-based
rain gauge was selected for calculation. Comparison was directly between rain gauges and pixels
when the stations were within the pixels. In cases where ground-based rain gauge approached the
edge between two pixels to the corner of four pixels (<0.01◦ off the edge), the average value of two or
four pixels around the rain gauge is utilized as the basis for comparison. For a pixel with two or more
rain gauges, the average area precipitation is taken as the arithmetic mean of all rain gauges within
that pixel.

3.2. Classification of Elevation Group and Precipitation Intensity (PI)

All rain gauges in this region was divided into elevation categories based on topographic areas
corresponding to different elevations. The categories are (i) 0–100 m for plain, (ii) 100–500 m for hill,
(iii) 500–1000 m for mountainous region, and (iv) >1000 m for plateau. As previous studies have
suggested that during wet days, an extreme event can be taken as one with precipitation exceeding
the 98th percentile of daily precipitation value [43]. The percentile method was utilized to determine
differences in precipitation intensity. Therefore, we adopted percentile-based values to explore SPPs
performance at varied precipitation intensity. The 50th, 70th, 90th, and 98th percentiles of rain
gauge data correspond respectively to light, moderate, heavy, very heavy, and extreme precipitation
thresholds for daily precipitation. Similar classifications of precipitation intensities were also used in
Sharifi et al. [5].

3.3. Statistical Analysis

The study’s extensive evaluation of eight statistical metrics to quantify products’ accuracy was
given in Table 2. The correlation coefficient (CC) was used to depict the linear correlation level between
satellite data and gauge observations. The bias ratio (β) was adopted to describe the underestimation
(β < 1) or overestimation (β > 1) of SPPs against observed counterparts. The variability ratio (γ)
illustrates that the degree of dispersion satellite data is higher or lower as compared to ground
observations. The modified Kling-Gupta efficiency (KGE’), a relatively new index that integrates
statistics consisting of CC, β, and γ [44], can comprehensively show SPPs’ performance accuracy.
Another important index describing errors is the root mean square error (RMSE). Contingency table
indexes include the probability of detection (POD), the false alarm ratio (FAR), and the critical success
index (CSI), which are used to describe the consistency between estimated and observed rain events.
Because the minimum observation of rain gauge is 0.1 mm, we regarded 0.1 mm/d as rain/no rain
threshold [45].

https://pmm.nasa.gov/precipitation-measurement-missions
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Table 2. List of statistic metrics used in the evaluation and comparison of satellite precipitation products.

Statistic Metrics Equation Perfect Value

Correlation Coefficient (CC) CC =
1
N

∑N
n=1(Sn−S)(Gn−G)

σSσG
1

Bias Ratio (β) β = S
G

1

Variability Ratio (γ) γ = σS/S
σG/G

1

Modified KGE (KGE’)
KGE′ = 1−√

(CC− 1)2 + (?2− 1)2 + (?3− 1)2 1

Root Mean Squared Error (RMSE) RMSE =

√
1
N

N∑
n=1

(Sn −Gn)
2 0

Probability of Detection (POD) POD = n11
n11+n01

1
False Alarm Ratio (FAR) FAR = n10

n11+n10
0

Critical Success Index (CSI) CSI = n11
n11+n01+n10

1

Notation: N is the number of samples; Sn is the satellite precipitation estimate; S is the averaged satellite precipitation
estimate; Gn is the gauge based precipitation observation; G is the averaged gauge based precipitation observation;
σG is the standard deviations of satellite precipitation series; σG is the standard deviations of gauge based precipitation
observation; n11 is the number of precipitation events observed by satellites and gauges at the same time; n01 is the
number of precipitation events observed by gauges but not by satellites; n10 is the opposite to n01.

To find out the overall characteristics of precipitation, the precipitation frequencies with
different intensities are as important as knowing the mean and spatial/temporal variation patterns
of precipitation [46,47]. Even though the same amount of precipitation in the form of long-lasting
light rain or a short duration and heavy storm, it is likely to yield different results in natural hazards,
e.g., flood and landslide [37,48]. In this regard, a Probability Distribution Function (PDF) can provide
detailed information about the frequency of rainfall with different intensities [49].

3.4. Regression Models

In this study, we adopted two regression models to explore the relationship between performances
of SPPs and elevation variations. Linear regression (LR) is a common and classical parametric method
to find out the relations between one or more independent variables via the least squares function.

Additionally, we introduced another regression model called Locally Weighted Regression
(LWR) [50], which was a non-parametric method. Each time a new sample was predicted, the adjacent
data would be retrained to obtain the new parameter value. The data to be predicted were only related
to the distance to training data. The closer the distance, the larger the correlation, and vice versa.
In this way, we would be able to effectively avoid the interference of under-fitting and far-reaching
data. The prediction step of LWR is:

(1) Find the minimum value of
∑

i w(i)
(
yi
− θT

(
x(i)

))2
via fitting θ;

(2) The predicted value is θTx

yi is the dependent variable, ??T is not a fixed parameter of model, and it varies with each data
training. w(i) is a weight, not a fixed value; we can adjust the value of w(i) to determine the impact of
different training data on the modelling results, and the w(i) formula is as follow:

w(i) = exp (−

(
x(i) − x

)2

2τ2 ) (1)

In the above formula, x is the sample data of the new prediction, which is a vector, and τ controls
the rate of weight change.



Atmosphere 2020, 11, 633 8 of 20

Meanwhile, the characteristic of w(i) is:

If
∣∣∣x(i) − x

∣∣∣ ≈ 0, then w(i)
≈ 1;

If
∣∣∣x(i) − x

∣∣∣ ≈ +∞, then w(i)
≈ 0.

It can be seen that for the point closer to the predicted sample data x, the weight is larger and the
point is farther than the predicted sample data x.

4. Results

4.1. Overall Performance in Different Elevation Regions

For daily precipitation, the performance of the three SPPs can be evaluated in terms of a
ground-based dataset in different elevation categories. Table 3 shows the inter-comparison of daily
precipitation from all rain gauges and three SPPs at the corresponding grids collocated with rain
gauges. Three SPPs provide overall larger daily precipitation estimates than rain gauges, with the β

values ranging from 1.02 to 1.06 over the entire regions. The consistencies between the two satellite
products (IMERG and 3B42) and rain gauges are comparable, with a slight favor for IMERG. However,
CRT shows a poor correlation with rain gauges, with a CC value of 0.26.

To explore the performance of SPPs in different elevation ranges, we divided all rain gauges into
different categories according to their altitudes. The mean gauge precipitation of the entire region
is 1.63 mm/d. In each elevation group, the lowest precipitation was found in the medium elevation
(100–500 m) regions with value of 1.59 mm/d, and the highest precipitation in the low elevation
(<100 m) regions with value of 1.68 mm/d (Table 3). The highest consistencies of the three SPPs
achieved in the 100–500 m regions, with CC values ranging from 0.46 to 0.57. β of IMERG and 3B42
do not differ much across different elevation categories; they show a nearly unbiased tendency in
different elevation groups with the exception of 100–500 m elevation regions. However, CRT shows a
relatively larger overestimation in comparison with IMERG and 3B42 in moderate (100–500 m) and
high elevation (>1000 m) areas (Table 3). γ of three SPPs generally increase with elevation, indicating
serious underestimation of the variability of precipitation at low elevation regions. For all elevation
categories, RMSE values are lower for IMERG and 3B42 than for CRT (Table 3), and IMERG and 3B42
show approximately similar RMSE values over the Taihang Mountains. KGE’ summarizes the three
previous evaluation metrics (CC, β, γ) into one. Three SPPs present a moderate overall performance in
all elevation ranges, with KGE’ value range from 0.31 to 0.54. Table 4 shows error metrics of categorical
validation statistics for CRT, IMERG, and 3B42 data on a daily scale at whole and different elevation
regions. The error metrics of three SPPs over different elevation ranges is similar to that over the
entire region. POD values of CRT and 3B42 generally increase with elevation, while those of IMERG
decrease with elevation. FAR values of three SPPs decrease with the rise of elevation, and CSI show an
increasing trend with elevation. Table 3 shows the evaluation metrics calculated between CRT, IMERG,
3B42, and rain gauge data over the whole region and for different elevation ranges.
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Table 3. Elevation metrics calculated between CRT, IMERG, 3B42, and rain gauge data over the whole region and for different elevation ranges.

Elevation
(m)

Total
Gauges

Mean Rain
(mm/d)

CC β γ RMSE (mm) KGE’

CRT IMERG 3B42 CRT IMERG 3B42 CRT IMERG 3B42 CRT IMERG 3B42 CRT IMERG 3B42

Whole
regions 104 1.63 0.36 0.52 0.48 1.04 1.05 1.06 0.80 0.81 0.77 7.43 7.06 7.29 0.33 0.48 0.43

<100 30 1.68 0.37 0.49 0.43 0.95 1.04 1.02 0.73 0.77 0.72 9.43 8.87 9.09 0.31 0.43 0.37
100–500 20 1.59 0.46 0.57 0.52 1.15 1.12 1.11 0.76 0.76 0.73 7.68 6.79 7.15 0.39 0.49 0.44
500–1000 40 1.60 0.47 0.54 0.51 1.09 1.03 1.06 0.85 0.85 0.83 6.42 5.89 6.07 0.45 0.52 0.47

>1000 14 1.65 0.47 0.54 0.51 1.11 1.02 1.05 0.94 0.96 0.97 6.39 5.79 6.06 0.46 0.54 0.51
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Table 4. Error metrics of categorical validation statistics for CRT, IMERG, and 3B42 on daily precipitation
scale in different elevation ranges.

Elevation
(m)

Total
Gauges

POD FAR CSI

CRT IMERG 3B42 CRT IMERG 3B42 CRT IMERG 3B42

Whole
regions 104 0.58 0.53 0.57 0.49 0.41 0.48 0.37 0.38 0.38

<100 30 0.55 0.53 0.53 0.53 0.45 0.48 0.34 0.37 0.35
100–500 20 0.57 0.54 0.57 0.51 0.42 0.51 0.36 0.39 0.35

500–1000 40 0.60 0.52 0.59 0.48 0.40 0.47 0.39 0.39 0.39
>1000 14 0.59 0.52 0.59 0.44 0.35 0.43 0.40 0.40 0.41

Figure 2 shows the box plot of grid-scale statistics for CRT, IMERG, and 3B42 over the Taihang
Mountains. For each box, the central mark is the median, and the edges of the box are the 25th and
75th percentiles. In terms of CC, three products show similar magnitude at different elevation groups
with lower values in the low elevation (<100 m) regions. In terms of RMSE, IMERG shows better
performance than 3B42 and CRT. Meanwhile, RMSE of three products decrease with elevation variation
(Figure 2b). With respect to β, three products slightly overestimate precipitation for each elevation
group, but precipitation variabilities are underestimated by three products in all elevation categories
(Figure 2d). Better performances are found in high-elevation regions (>1000 m). As indicated by
Figure 2e, three SPPs show relatively poorer performance in low elevation (0–100 m) regions. IMERG
shows a slightly higher median KGE’ value among the three SPPs in the four elevation categories.
The precipitation detecting performance was evaluated in terms of categorical scores, i.e., the capability
in detecting rain and non-rain events over different elevation regions. Figure 2f,g illustrate that 3B42
and CRT have higher POD (higher probability of correctly detecting rain events), while IMERG shows
lower FAR (lower probability of falsely identifying rain events) in 500–1000 m elevation regions,
thus resulting in higher CSI (CSI provides an integrated measure of categorical scores) values in
relatively high-elevation (i.e., 500–1000 m) regions (Figure 2h).
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Figure 2. Box plot of grid-based metrics: CC (a), RMSE (b), β (c), γ (d), KGE’ (e), POD (f), FAR (g),
and CSI (h) calculated by evaluated CRT, IMERG, and 3B42 against gauge observations at different
elevation zones for the two-year study period (January 2016–December 2017).

4.2. Reliability of the Performance of SPPs on Elevation

The result of further observation of the reliability of SPPs based on the linear regression model at
different elevations was displayed in Figure 3. With elevation, 3B42 and CRT show an increased CC
(statistically significant trend at a confidence level of 99%, p < 0.01); IMERG also poses increased CC
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values with elevation, but neither is statistically significant (Figure 3a). It is noteworthy that all the
SPPs show decreased RMSE values (p < 0.001) with elevation (Figure 3b). The β values of three SPPs
expect for CRT fail to show significant correlation with elevation (Figure 3c). However, the γ values of
3B42 and IMERG increase (p < 0.001) with elevation (Figure 3d). Categorical validation statistics for
each gauge against its elevation are shown in Figure 3f–h. POD values show similar trend for both
3B42 and CRT, a significantly increasing trend with greater elevation, while the decreasing trend of that
of IMERG with elevation suggests the GPM product’s non-improvement in POD over high elevation
regions. CSI shows significantly increasing trend with elevation for three SPPs (p < 0.001), and the
slope of trend line for CSI is slightly larger for 3B42 and CRT than for IMERG. All in all, three SPPs
show better precipitation detection performance in higher elevation regions, mainly owing to lower
FAR in such areas.Atmosphere 2020, 11, x FOR PEER REVIEW 12 of 20 
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Figure 3. Relationship between evaluation metrics and elevation for 3B42, CRT, and IMERG based on
linear regression model. Each dot represents a rain gauge. The straight line shows the liner trends
estimated least squares error method. The p values of the significance test for the liner trend are shown
in the figure accordingly. Figure (a–h) stands for the metrics of CC, RMSE, β, γ, KGE’, POD, FAR and
CSI, respectively.

Although many evaluation statistical metrics including CC, RMSE, γ, POD, FAR, and CSI show
significant linear correlations with elevation, the common weakness of linear regression is under-fitting
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and over-fitting, which make the model fail to achieve the best prediction effects. Therefore, Locally
Weighted Regression (LWR) is considered to explore the non-linear (non-parameter) relations between
the performance of SPPs and elevation. Figure 4 shows the relationships between all evaluation indices
and elevation for 3B42, CRT, and IMERG. Results for LWR are roughly similar to those for linear
regression for γ, KGE’, FAR, and CSI for three SPPs (Figure 4d,e,g,h). However, the CCs of the three
products have a non-linear variation tendency like sinusoidal variations with elevation in the LWR
model, and the specific trend is that CC values increase gradually from low-elevation regions, peak in
areas at about 400 m and falls back to a lower level at around 1000 m (Figure 4a). In particular, RMSE of
three SPPs show a trend of decreasing first and then increasing with elevation, and the lowest values
occurred in about 500 m regions (Figure 4b). Likewise, the β of CRT also presents a slight to non-linear
variation with elevation variations (Figure 4c). In the LWR model, the POD of 3B42 and CRT show first
a rise and then a decrease with elevation, reaching the fitting peak roughly in regions of 500 m and
800 m (Figure 4f).
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4.3. Reliability of the Performance of SPPs on Precipitation Intensity in Different Elevation Regions

Figure 5 shows PDF occurrence (PDFo) and PDF volume (PDFv) for the entire region and
different elevation regions. PDFo and PDFv of three SPPs have great consistency over the Taihang
Mountains. CRT and 3B42 tend to underestimate the frequency of no rain events, while IMERG
generally overestimated their frequencies (Figure 5a). Three SPPs slightly overestimated the frequency
of heavy precipitation events (6.9 < PI ≤ 19.6 mm/d). This overestimation in the frequency of heavy
precipitation events is responsible for the overestimation in the total precipitation volume of heavy
precipitation (PI > 19.6 mm/d). In particular, the three SPPs show an underestimation in the frequency
of extreme precipitation (PI > 45.8 mm/d); except that the frequency probabilities from CRT and IMERG
were larger than rain gauges when the rain rate was greater than 45.8 mm/d over the >1000 m regions
(Figure 5e). The frequencies of CRT for extreme precipitation demonstrate the most-similar pattern
with ground-based observations over the entire regions (all gauges).Atmosphere 2020, 11, x FOR PEER REVIEW 14 of 20 
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Figure 6e,j,o,t show SPPs’ accuracy and precipitation detection capability performance in different
precipitation intensities and thresholds over the whole regions. In light of different precipitation
intensity measurements, the RMSE values of the three SPPs increase with the rise in precipitation
intensity (Figure 6a–d). From the perspective of slope of line in different intensity ranges, the slope
of line between very heavy rainfall and extreme rainfall is greater than other ranges, indicating
that SPPs perform less well when observing extreme precipitation events. In all elevation groups,
SPPs tend to overestimate (β > 1) the amount of light and moderate precipitation events (0.1 ≤ PI ≤ 6.9
mm/d), whereas the opposite is true for heavy, very heavy, and extreme precipitation events (Table S1).
Because the KGE’ is a comprehensive evaluation index to reflect SPP overall accuracy performance,
three products show worse accuracy performance in the moderate precipitation (2.6 < PI ≤ 6.9 mm/d)
range compared to extreme precipitation (PI > 45.8 mm/d) range (Figure 6j). The detecting ability
of IMERG and 3B42 for moderate precipitation events (2.6 ≤ PI ≤ 6.9 mm/d) is superior to that of
CRT based on the results of POD and FAR values. POD values of three products decrease with the
increment of precipitation intensity, while FAR values increase with the rise of precipitation intensity.Atmosphere 2020, 11, x FOR PEER REVIEW 15 of 20 
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Figure 6. RMSE (a–e), KGE’ (f–j), POD (k–o), and FAR (p–t) from CRT, IMERG, and 3B42 products in
different precipitation intensity over different elevation ranges.

As for different elevation groups, the variation trends of RMSE value are similar to the entire
region with the increase of precipitation intensity. Generally, the RMSE values of the three SPPs for
observing extreme precipitation events (PI > 45.8 mm/d) in low and medium elevation (<500 m)
regions were higher than that in high elevation regions (Table S1). Likewise, the KGE’ values of IMERG
gradually increased from moderate precipitation to very heavy precipitation over all elevation regions
(Figure 6h). Commonly, CRT, IMERG, and 3B42 showed relatively better accuracy performance in
estimating extreme precipitation in regions of below 1000 m (Figure 6f–h). However, the three SPPs
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showed poor performance in observing extreme precipitation (PI > 45.8 mm/d) in high elevation
(>1000 m) regions (Figure 6i). Between low-elevation and high-elevation, we found no significant
difference in detection skill for three SPPs, with the similar magnitude POD and FAR values (Figure 5
and Table S2).

5. Discussion

Previous studies have suggested that topographic variations exert complex controls on
precipitation and pose challenges across different seasons to satellite estimates derived from the
observation of satellite sensors, including infrared, active microwave, and passive microwave
sensors [51–53], especially in mountainous regions [1,54]. For example, Zambrano-Bigiarini et
al. [11] evaluated seven satellite products, and found that all, except for PGFv3, performed poorly for
higher elevations, particularly in 2000–3500 m over Chile. Xu et al. [9] discovered that the performance
of GPM IMERG and TRMM 3B42V7 significantly correlated with topographic variation and that
there is no detection skill for two products at high-elevation (>4500 m) regions over the southern
Tibetan Plateau. The results of this study agree with their findings in that the performance of SPPs is
significantly influenced by complex terrains, especially regarding precipitation detection capability.
However, our results differ from Gao and Liu [23], who discovered that the correlation coefficient
between TRMM data and ground-based data showed an indistinctively topographic dependence.

According to the comparison of the two types of regression models, to some degree, we found
that the linear regression model can explain the relationships between some error indices and terrain
variations. Other models, such as the LWR model, should also be considered as a solution to improve
the algorithms of satellite products, especially new-version GPM products over the complex terrains.
By using the LWR model, we were able to discover that the CC, RMSE, and POD of SPPs show
distinct non-linear correlation with elevation variation. For example, the CC of the three products
had a non-linear variation tendency like sinusoidal function with elevation variations in LWR model.
The RMSE of the three SPPs displayed a trend of decreasing first and then increasing with elevation,
and the lowest values occurred in about 500 m regions. The POD of 3B42 and CRT first showed a
rise and then a decrease with elevation, reaching the fitting peak roughly in 500 m and 800 m regions.
These change features can be considered in the improvement of future algorithm products.

The reliability of the performance of satellite products on elevation variation may be connected
with not just defective skills in retrieval of light rain events [55,56], but also for solid precipitation
(e.g., ice and snow) and for corresponding measurement techniques. For instance, TRMM 3B42
had poor performance over highly undulating terrain, which might be occasioned by its embedded
surface snow screening procedure [9]. Snow and ice-covered surfaces at the top of mountains generate
stronger scattering, limiting microwave algorithms’ ability to correctly define scatter signals over
land [40]. It also has been pointed out that satellite sensors show better quality in open surface by
comparison with complex terrain regions, and the retrieval results of satellite products are affected
by complex terrains [55,57]. Currently, the thermal infrared radiation thresholds were utilized to
distinguish between raining and non-raining clouds, causing the IR rainfall retrieval algorithms to
miss light-rainfall events due to the relatively warm clouds in mountainous regions [57]. In addition
to IR, heavy regional rain or strong thunderstorms can be underestimated by PMW algorithms
over the mountainous regions during the summertime [20]. On the other hand, due to blocking of
the mountains, orographic rainfall is more likely to generate in the complex terrains. Orographic
precipitation, produced when moist air passes over mountainous terrain, creates a challenge for passive
microwave algorithms. Since it relies largely on data from scattering by ice or snow taken in by satellite
products over land [19], the combination of complex topography and the associated warm-wet water
uplift process could lead to significant errors in satellite precipitation estimates.

This study supports other findings that SPPs differ in reliability for different precipitation intensity
ranges over different elevation regions. The initial step of precipitation observation is to obtain
raw data by satellite sensors, which include infrared and microwave sensors [58,59]. In general,
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the main work principles of infrared and microwave sensing are to detect information about the
brightness/temperature of the cloud top and precipitation particles, respectively, essentially facet
precipitation information [60,61]. In this study, precipitation intensity was classified based on rain
gauge data (point data), which cannot fully represent the precipitation intensity of gauges’ surroundings
(facet precipitation information). This is a possible reason for finding that SPPs differ in reliability at
different precipitation intensity ranges.

GPM IMERG had a better performance in detecting light and moderate rain events in this
study. 3B42 showed relatively low precipitation detection scores, and the POD values decreased
with the rise in precipitation intensity. Consistent with our findings, previous studies have reported
that TRMM products have not performed well in correctly detecting light and heavy precipitation
events in Thailand and the northern Indian Ocean [62,63]. Specifically, the good detection ability
for three products occurred in high elevation regions (>1000 m). Furthermore, relatively high FAR
values for classified precipitation might be due to spurious events detected by satellites and/or the
inability of satellite products to detect precipitation in precisely specified precipitation categories [64].
In fact, SPPs are more likely to detect the amount of precipitation somewhat lower or higher than the
specified intensities.

6. Conclusions

In this study, three state-of-the-art SPPs datasets (CMORPH CRT, GPM IMERG, and TRMM
3B42V7) are evaluated against observations at 104 rain gauges over the Taihang Mountains, a highly
challenging task due to the area’s rugged, complex topography and high elevation (ranging from
sea level to 3091 m). Our validation is extensively based on a high-density network of rain gauges,
with special focus on examining CRT, IMERG, and 3B42 product performance and credibility for varied
topography and precipitation intensity.

The following summarizes our key findings:

1. Over the whole regions, the three SPPs provided overall larger daily precipitation estimates than
rain gauges, and 3B42 slightly outperformed CRT and IMERG. In the different elevation groups,
the three products showed better performance accuracy in the 0–500 m regions. The three SPPs
showed a similar precipitation detection performance over the whole area, and exhibited good
precipitation detecting ability in high-elevation (>1000 m) regions.

2. The errors of 3B42 and CRT showed a significant positive (p < 0.01) correlation with elevation.
Precipitation detection performance of three products was gradually improved with the rise
in elevation.

3. Over the whole regions, three SPPs slightly overestimated the frequency of heavy rain events
(6.9 < PI ≤ 19.6 mm/d). CRT and 3B42 tended to underestimate the frequency of no rain events
(PI < 0.1 mm/d), while IMERG overestimated the frequency of no rain events. Our study infers
that the precipitation detection performances of the three SPPs become worse with the increase of
precipitation intensity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/6/633/s1,
Table S1: The accuracy performance of satellite precipitation products in different precipitation intensity (PI) range
over different elevation regions; Table S2: The precipitation detection performance of satellite precipitation in
different precipitation intensity range over different elevation regions.
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