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Abstract: In order to solve the existing problems of easy spatiotemporal information loss and low
forecast accuracy in traditional radar echo nowcasting, this paper proposes an encoding-forecasting
model (3DCNN-BCLSTM) combining 3DCNN and bi-directional convolutional long short-term
memory. The model first constructs dimensions of input data and gets 3D tensor data with
spatiotemporal features, extracts local short-term spatiotemporal features of radar echoes through 3D
convolution networks, then utilizes constructed bi-directional convolutional LSTM to learn global
long-term spatiotemporal feature dependencies, and finally realizes the forecast of echo image changes
by forecasting network. This structure can capture the spatiotemporal correlation of radar echoes
in continuous motion fully and realize more accurate forecast of moving trend of short-term radar
echoes within a region. The samples of radar echo images recorded by Shenzhen and Hong Kong
meteorological stations are used for experiments, the results show that the critical success index (CSI)
of this proposed model for eight predicted echoes reaches 0.578 when the echo threshold is 10 dBZ,
the false alarm ratio (FAR) is 20% lower than convolutional LSTM network (ConvLSTM), and the
mean square error (MSE) is 16% lower than the real-time optical flow by variational method (ROVER),
which outperforms the current state-of-the-art radar echo nowcasting methods.
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1. Introduction

Radar echo nowcasting is a crucial method in the field of atmospheric science. The goal of this
task is to carry out prediction timely and accurately for weather conditions of local areas in a relatively
short period (such as 0–2 h) in the future [1–3]. Currently, this technology has been widely applied
to provide flood prevention information for resident trip, agricultural production, flight safety, and
other aspects. It is both convenient for people and conducive to disaster prevention and mitigation,
and it has always been a pivotal task in weather forecast field. With climate change and the rapid
process of urbanization, atmospheric conditions have become more complex, various meteorological
phenomena frequently happen, such as precipitation, hail, high temperature, typhoon, etc. Climate
change has brought about many adverse impacts on the life and work of people and increased many
dangers of uncertainty. If effective forecast and precaution can be made regarding the aforementioned
meteorological phenomena, the losses will be reduced dramatically [4]. However, for nowcasting,
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the process of future strong convection formation is affected with the current convection situation in
the region and previous change trend. Under the influences of these climate factors, it is difficult to
determine the shape and size of convection, the distribution of convection presents a complex change
trend, which requires prediction model and data with strong spatiotemporal correlation to solve the
problem [5,6]. On the other hand, due to the higher requirements for accuracy and timeliness compared
with traditional forecast tasks, the work is very challenging and also gradually becomes a hot study
topic in the meteorological community.

At present, the regular methods of nowcasting are mainly based on radar echo extrapolation
methods [7,8]. The radar echo extrapolation can be divided into traditional methods and deep learning
methods. Specifically, traditional methods generally include the centroid tracking method, cross
correlation method, and the optical flow-based methods. Initially, a simple tracking algorithm [9]
obtains the moving vector by continuously tracking the position of the centroid in an alpine region,
so as to predict the position of the echo, but it is only suitable for strong single echo. The TRACE3D
algorithm [10] identifies convective cells and tracks them by exclusively using radar reflectivity data as
input. This method shows promising preliminary results for centroid tracking. An enhanced centroid
tracking method [11] makes least square fitting for the position of the echo centroid at the adjacent
moment, and obtains the atmospheric parameters such as the moving vector, the maximum reflection
factor and the centroid coordinates of the single echo, and proposes a dynamic constraint-based
combinatorial optimization method to track storms. This method is effective for the echo block with
larger intensity, when the echo splits or merges, the accuracy of tracking and prediction is low. A cross
correlation method based on TREC vectors [12] and an improved cross correlation method [13] are
mainly used to calculate out spatial correlation of two consecutive moments and establish fitting
relation for echoes, but for the strong convection echoes that evolve fast, these methods cannot ensure
the effect of tracking, the data utilization rate and nowcasting accuracy are obviously low. In addition,
the optical-flow-based methods in computer visual technology [14,15] has proved to be effective
for radar echo extrapolation prediction with fast evolution, especially the real-time optical flow by
variational methods for echoes of radar algorithm (ROVER) that was recently proposed [16]. ROVER
completes echo prediction by use of the changes of pixels of image sequence in time threshold and
calculation of optical flow correlation between adjacent frames, combing with climate and other factors.
However, the optical flow estimation step and the radar echo extrapolation step are separated, so it is
difficult to decide model parameters to obtain good prediction, which results in a limitation of the
optical-flow-based method for nowcasting of strong convection. Moreover, an excellent review of
these methods was given by Keenan et al. [17], it presents an overview and comparison of nine existing
nowcasting systems deployed in the forecast demonstration project during the 2000 Olympic Games
in Sydney, Australia. This fully reflects the practicability of the nowcasting technique in big events.
Traditional radar echo nowcasting extrapolation methods only assume simple linear evolution of echo,
and the utilization of massive radar echo image data is low, so there are defects in nowcasting accuracy.

Compared with traditional radar echo prediction methods, deep learning is able to better mining
and analyze big data in depth and improve prediction performance of models [18], which has been
practically applied in many fields. Therefore, the application of this technology in weather nowcasting
field is also a meaningful research task. The dynamic convolutional layer network [19] was first
proposed and used for short range weather nowcasting, it applies a dynamically varied convolution
kernel to extrapolate radar echoes, but it is limited to extrapolating only one echo at a time. For the
characteristics of convolutional neural networks such as local perception of images and feature
extraction, the recurrent dynamic convolution neural network model (RDCNN) [20] further was
established to learn changing features of echoes by adding a dynamic sub network and a probability
prediction layer, improved the accuracy of echo extrapolation prediction. In recent years, the recurrent
neural network (RNN) [21] and long short-term memory (LSTM) [22] bring some new solutions for
radar echo nowcasting task [23,24]. RNN has excellent effect in dealing with time series problems,
and as an emerging technology driven by big data, deep learning can make full use of large amount of
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collected radar echo data, this will train the network model more effectively and predict the future echo
trend more accurately. The unsupervised video representation learning model based on LSTM structure
was proposed [25], and by using this encoding-decoding structure, multi-frame actions in the future can
be predicted, which has laid a foundation for the spatiotemporal sequence prediction. Subsequently, in
order to capture long-term time features more fully, the bidirectional LSTM network with 1D CNN
model [26] was constructed to solve precipitation nowcasting problem. The forecast of radar echoes
has comparatively strong spatiotemporal correlation, spatiotemporal information at previous moment
can decide the prediction of next moment, but general, LSTM does not consider spatial correlation
in temporal dimension. Considering the problems of LSTM structure such as containing too much
redundant data and easy spatial information loss, a convolutional LSTM network (ConvLSTM) [27]
was proposed on this basis, which can learn the spatial features and temporal features at the same
time, and it is more suitable to solve the problem of radar echo prediction. Tan et al. [28] proposed
a hierarchical convolutional LSTM network named FORECAST-CLSTM. The model is designed to
fuse multi-scale features in the hierarchical network structure to predict the pixel value and the
morphological movement of the cloudage simultaneously. Thereafter, a ST-LSTM method [29] with
convolution calculation and spatiotemporal memory flow was introduced into a radar nowcasting
task, which makes it possible to extract spatiotemporal features of echoes in different time and sizes,
but, the computational complexity is increased. Furthermore, a 3D convolution method [30] was
proposed to capture motional information between consecutive frames, it made convolutional neural
networks be suitable for dealing with the information of spatiotemporal features. Compared with
the method [30], a 3DCNN video generation model combining generative adversarial networks was
proposed [31], this method used 3D convolution network to extract spatiotemporal features efficiently
and generated new dynamic echo sequences.

Therefore, this paper proposes a novel 3DCNN-BCLSTM radar echo nowcasting model with
encoding-forecasting structure to tackle the challenging task of low forecast accuracy and easy
spatiotemporal information loss. Because inputs and outputs are both multi-frame radar echo
sequences, the prediction of radar echo evolution trend can be expressed as a video sequence prediction
with spatiotemporal features [32]. In order to achieve a more accurate nowcasting result, it first
introduces a 3D convolution network that is usually used for feature extraction of continuous video
frames. This can preserve the feature information of motion in the temporal dimension and extract
local short-term spatiotemporal features of consecutive images more effectively, which then enters
the bi-directional convolutional LSTM networks. Its state to state transitions are all convolutional
structures, and the bi-directional structure can learn the global long-term motion trend of the front
and back echoes more fully, then completes prediction of future echoes through forecasting network.
Finally, we evaluate and compare it with traditional extrapolation algorithms and other deep learning
algorithms, the experiment fully proves that the comprehensive evaluation of the improved deep
learning model proposed in this paper is always better than other compared models.

2. 3DCNN-BCLSTM Model

In order to further improve nowcasting accuracy and make better use of spatiotemporal correlation
between radar echo images, this paper proposes a encoding-forecasting structure combining 3DCNN
and bi-directional convolutional LSTM according to the multiple deep learning technologies, this can
capture spatiotemporal feature relation of consecutive radar echoes more effectively and enhance
transmission ability between spatiotemporal features, the specific model architecture is shown in
Figure 1.
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Figure 1. Model structure of 3DCNN-BCLSTM.

First of all, the consecutive radar image sequences are constructed as model input with
uniformly spatial and temporal dimensions, for this treatment of data dimension, tensors with
complete spatiotemporal features can be obtained. In terms of main structure, a generative model
of encoding-forecasting structure is established which is mainly consisted of two networks—one
is encoding network and the other one is forecasting network. Second, this paper extracts local
short-term spatiotemporal features of consecutive multi-frame images through 3DCNN, then
learns dependencies of global long-term bi-directional spatiotemporal features through three-layer
bi-directional convolutional LSTM networks, and compresses captured and learned echo motion
features into hidden state tensors (the former part is the encoding network of model). After that, the
forecasting network is composed of three-layer bidirectional convolutional LSTM connected with
the internal states of the encoding network and the last layer of 3DCNN, which is used to fuse the
multi-frame spatiotemporal states, the spatiotemporal feature information learned by the encoding
network is transmitted into the forecasting network, the future echo image sequences are reconstructed
according to the current input and feature information. In addition, the batch normalization (BN)
method [33] is introduced, and the rectified linear unit (ReLU) as nonlinear activation function is
used to replace the traditional Sigmoid to improve network convergence speed and alleviate the over
fitting phenomenon. This deep learning structure can obviously enhance learning capability of model,
and the model possesses stronger expression capability of spatiotemporal features for multi-frame
radar echo images; therefore, the prediction accuracy is improved effectively.

2.1. Construction of 3D Spatiotemporal Data

In terms of radar echo prediction problem, the original input data dimensions can no longer
meet the requirements of network model, its main disadvantage is that the convective spatiotemporal
feature information cannot be encoded completely. In order to solve this problem, all input, unit output
and cell states need to be transformed to 3D tensors X ∈ RT×W×H, where R denotes the domain of
atmospheric data features. The first dimension T is temporal dimension, the second dimension W,
and the third dimension H are spatial dimensions of row and column, respectively. In fact, the 3D
spatiotemporal data is different to the use of the volumetric data of the weather radar. As showed
in Figure 2, the original single echo image has been transformed to vectors of multi-frame temporal
dimension in spatial grid, a 3D spatiotemporal stereostructure is generated by stacking consecutive
images in turn, then the neural networks may predict future states of unit in grid through local adjacent
information and past states.
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Figure 2. Dimension construction of radar echo data.

For the 3DCNN-BCLSTM network structure, input data dimensions of echo images need to be
restructured, the temporal dimension and spatial dimension are constructed respectively. During the
process of spatiotemporal feature extraction and motional information learning, input and output
are both 3D tensors, the transitions between states are also convolution calculation of 3D tensors,
which makes the radar echo data have a unified dimension, preserves all spatial and temporal features
at the same time, and the radar echo nowcasting in the region is more comprehensive and accurate.

2.2. 3DCNN Module

The convolutional neural networks are very suitable for image data processing due to its local
connection, feature mapping and weight sharing. Even though traditional 2DCNN possesses strong
feature extraction capability of image data, when it deals with consecutive echo image tasks, it fails
to consider the impact of relation between multi-frame images on prediction, and is easy to lose
motion trend information of target features, thus cannot solve the problem of motional echo prediction
effectively. We utilize constructed 3DCNN instead of traditional 2DCNN for more accurate results.
The calculation formula for 3DCNN is showed as follows:

vWHT
ij = f (bi j +

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
i jmv(W+p)(H+q)(T+r)
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There are multiple convolution kernels in the convolution layers of the neural networks, each
convolution kernel corresponds one echo feature, the more convolution kernels, the more feature maps
are generated. In the formula, the value at position (W, H, T) on the jth feature map in the ith layer is
given by vWHT

ij , Ri is the size of the 3D kernel along the temporal dimension. wpqr
i jm is the (p, q, r)th value

of the kernel connected to the mth feature map in the previous layer. bi j is the bias for this feature map,
f is a nonlinear activation function introduced to improve the expression capability of neural networks.
This 3DCNN structure can preserve more information of continuous multi-frame images and can be
used for meteorological nowcasting tasks effectively. In the process of dimension reconstruction of
the input radar echo images, several consecutive frames of uniform spatial size are stacked in time
order to form 3D data with spatiotemporal features. Then, as shown in Figure 3, the 3D convolution
kernel is used for operation in this continuous 3D data, the 3D convolution kernel in the figure contains
three frames of temporal dimension, that is, the convolution operation for three consecutive maps
are required. The feature data extracted by 3DCNN in the last layer of the encoding network will be
transmitted to the next network as input [30]. In this structure, every feature map in convolution layer
will be connected to several consecutive frames in the previous layer, and the specific value of each
position of feature map is obtained through local feeling of successive multiple same positions in the
previous layer, thereby captures spatiotemporal motional information of echo images.
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Figure 3. Illustration of 3D convolution to extract spatiotemporal features.

In the encoding network part of the radar echo extrapolation model, we improve the problems
of multi-frame images that are difficult to deal with, and the spatiotemporal information is easily
lost. The input of the network is composed of consecutive image sequences, and then successively
enters to Conv1 and Conv2 for short-term feature extraction. This part is mainly composed of two
Conv3D layers, each Conv3D layer is followed by a batch normalization (BN) and a ReLU nonlinear
activation function layer. The convolution kernels of two-layer Conv3D are small size 3 × 3 × 3, the
number of filters is 16 and 32, respectively, and each 3D convolution kernel has the same weight
coefficient. In order to keep the size of feature maps constant, the padding operation is carried out
before convolution operation. In order to accelerate the deep learning network training and effectively
avoid the related gradient problems, we increase the BN after each 3D convolution layer [33] and
normalize the data distribution of each batch in the network calculation process. The derivative range
of the traditional activation function is less than 1, and the gradient will be continuously attenuated
when passing through each layer, with the deepening of the network structure, the gradient may
disappear. Thus, the ReLU activation function is selected to replace the traditional Sigmoid activation
function. The formula is as follows:

ReLU(x) = max(0, x) (2)

When the input x is less than 0, the mandatory output will be 0; when input x is larger than 0,
it is constant. ReLU increases sparsity of networks and makes convergence rate grow, then the
generalization capability of the feature extraction is stronger, the over fitting phenomenon is alleviated,
and the accuracy is improved to a certain extent. 3DCNN module uses two shallow layers here, this is
to capture spatiotemporal features of images more effectively by combining bi-directional convolutional
LSTM layers afterward; this reduces feature loss and accelerates convergence speed of neural networks.

A 3DCNN network is also used in the forecasting network part, followed by a ReLU nonlinear
activation function layer. The number of filters is set to 1 here, so that the model can finally generate the
gray images with the same channel number as the original input and outputs the visualization results.

2.3. Bi-Directional Convolutional LSTM Module

Recurrent neural network (RNN) can handle the time series problem of meteorological forecast,
long short-term memory (LSTM) is a special structure based on RNN, this network structure is used
for learning the changes with temporal sequence factor. In recent years, LSTM is frequently used in



Atmosphere 2020, 11, 569 7 of 18

fields such as natural language processing (NLP), and in this paper, we try to learn spatiotemporal
dependencies of consecutive echo images through improved LSTM structure.

As a special variant of a recurrent neural network, the innovation of LSTM is the memory
units whose essence is the place for continuous update and interaction of information. However,
the traditional recurrent update structure cannot either realize update and filter of information or
meet long distance dependency of information; therefore, the three gates structure is introduced to
fulfill those requirements. LSTM relies on memory units to update continuously state information
of current moment uses forget gate, input gate, and output gate to decide what information to
forget, what information to input, and what information to output. LSTM network solves long-term
dependency problem of RNN and extends extrapolation timeliness, which makes input sequences
effectively map to hidden nodes, and can learn the relation between the front and the back of the long
time series through training. The LSTM structure possesses strong capability of solving time series
problems; however, for the processing of spatial data, it contains too much redundant information.
Spatiotemporal information cannot be encoded; if it is directly applied to radar echo nowcasting, the loss
of spatiotemporal information will be inevitable. A convolutional LSTM [27] was proposed whose
structure is still LSTM in essence, but the transitions between states is changed from multiplication to
convolution. It establishes a time series relation like LSTM does and also depicts spatial features like
CNN does, effectively overcoming the problem of spatial information loss in sequence transmission
process. Based on this structure, this paper constructs bi-directional convolutional LSTM, the structure
is showed in Figure 4.
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A bi-directional convolutional LSTM network is composed of one forward transmission and
one backward transmission. This network comprehensively combines the forward and backward
information, outputs the radar echo results, and solves the problem that single directional transmission
cannot handle the information from the back to the front. In the network, each bi-directional
convolutional LSTM memory unit contains the spatial and temporal output from 3D convolution
network, the calculation process of each part in the structure is as follows:

it = σ(Wxi ∗Xt + Whi ∗Ht−1 + Wci ◦Ct−1 + bi) (3)

ft = σ(Wx f ∗Xt + Wh f ∗Ht−1 + Wc f ◦Ct−1 + b f ) (4)

ot = σ(Wxo ∗Xt + Who ∗Ht−1 + Wco ◦Ct + bo) (5)

Ct = ft ◦Ct−1 + it ◦ tanh(Wxc ∗Xt + Whc ∗Ht−1 + bc) (6)

Ht = ot ◦ tanh(Ct) (7)
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where Xt is the input of current moment; Ht−1 is the output of t-1 moment; ft, it, and Ot denote forget
gate, input gate, and output gate in CLSTM respectively; and W and b are connection weight and bias
of gate structure. Let the convolution operation ∗ replace original multiplication of LSTM, and let ◦
denote the Hadamard product, which is the multiplication of corresponding elements of matrix. The
nonlinear activation function σ used here is Sigmoid, with the formula S(x) = [1 + exp(−x)]−1, and
the value range of three gates is controlled to [0,1]. Ct is state update unit which is the core part of
bi-directional convolutional LSTM.

The 3DCNN-BCLSTM model proposed in this paper, three-layer bi-directional convolutional
LSTM is placed at encoding network, three layers are in prediction network, and the number of filters in
two parts is both 32, 48, 64 with size of convolution kernel 3x3. In the bidirectional convolutional LSTM,
the padding operation is also performed in order to make the size of spatiotemporal features unified, and
each layer is followed by a layer of Batch Normalization. The spatiotemporal information of continuous
multi-frame image sequences is transmitted by bi-directional convolutional LSTM, which has been
effectively fused in the global long-term range. Compared with single direction convolution LSTM,
bi-directional convolutional LSTM can learn the global long-term feature dependencies in the forward
and reverse directions and completes the nowcasting task more efficiently.

2.4. EncodingFforecasting Network Structure

For the radar spatiotemporal sequence nowcasting, when there is a set of 3D tensor sequence data
{X1, . . . , Xt}, given the previously fixed length of L observation sequence data, the radar echo image
sequences with the future length of K

{
∼
yt+1, . . . ,

∼
yt+K

}
can be generated through the encoding-forecasting

network structure, where the t denotes current moment, and
∼
y represents the prediction output, as

shown in Equation (8), taking the past prediction echoes as the condition, argmax
Xt+1,...,Xt+K

represents the

maximum probability to make the prediction of future moment as close to reality as possible.

ỹt+1, . . . , ỹt+K = argmax
Xt+1,...,Xt+K

P(Xt+1, . . . , Xt+K
∣∣∣ỹt−L+1, ỹt−L+2, . . . , ỹt) (8)

The generative model of encoding-forecasting network structure showed in Figure 5 is mainly
used in this paper, it is composed of encoding network and forecasting network [25]. The network
combines encoding network of stacked two-layer 3DCNN and three-layer BCLSTM, and the forecasting
network of three-layer BCLSTM and one-layer 3DCNN, which receives internal state of encoding
network. This structure compresses the captured feature information of motional echoes into hidden
tensor format by the encoding network and then the forecasting network will unfold hidden state
tensors and generate new radar echo prediction results based on the feature information of last moment.
The network is as follows.Atmosphere 2020, 11, x FOR PEER REVIEW  9 of 18 
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When data is input, radar echo images in the dataset need to be narrowed to single channel gray
images with 100x100 pixel spatial dimension, then images are transformed to array format and save it
in numpy array to wait for extraction and use. For pre-processing process, temporal dimension of data
also needs to be constructed, which constitutes eight consecutive frames of images input and predicts
right frames of images in the future. Thus, radar data is transformed to 3D tensors with spatiotemporal
features to facilitate model inputting and training.

Step 2: Extracting local short-term spatiotemporal feature information

Consecutive radar echo images with uniformly spatial and temporal dimensions after dimension
construction processing as a whole are the network input. Thirty-two echo feature maps are extracted
through two layers of 3DCNN, and the ReLU activation function is used to replace the original Sigmoid
to alleviate over fitting phenomenon and effectively increase prediction accuracy.

Step 3: Learning global long-term spatiotemporal feature information

Then, the global long-term spatiotemporal correlation from delivered feature information is
learned through three-layer BCLSTM, the learned spatiotemporal features are compressed into hidden
state tensors. Up to this point, it is the encoding network of first half of whole generative network,
the forward and backward structure in this part can learn bi-directional spatiotemporal feature
dependency fully.

Step 4: Reconstructing and generating predicted radar images

Finally, a forecasting network composed of three-layer BCLSTM and the last layer 3DCNN is
constructed, the atmospheric spatiotemporal feature information learned by the encoding network is
transmitted into the forecasting network, and the future prediction images are generated according to
the current input and hidden states.

3. Experiment and Evaluation Analysis

3.1. Dataset

The radar echo nowcasting task is the prediction of the evolution of multi-frame radar echo
images in the future using the multi-frame radar echo images in the previous moment. In order to
verify the effectiveness of this method, we use Standardized Radar Dataset 2018 (SRAD2018) [34],
which was established by the Shenzhen Meteorological Bureau and the Hong Kong Observatory
based on radar data from Guangdong, Hong Kong, and Macao in recent years as experimental data.
Quality controlled radar echo gray images from March to July every year in which seasonal strong
convection happens frequently is selected as the data in dataset. The range control of data in this figure
is 0-80dBZ, the resolution of provided radar echo images is 501x501 pixel, the images are collected at
3000 meters above sea level, covering an area of 500 km x 500 km. Data is obtained every six minutes
from meteorological radar, and every record is a frame and named after original data sequence to
facilitate experimental indexing in the future.

Here, 6283 pieces of radar echo images are adopted as training samples in this experiment—1775
as validation set and 1775 as testing set (no crossing and overlapping in data). In order to accelerate
training speed and improve training effect, the original radar echo images whose resolution is 501 × 501
pixel are not suitable to directly input model to carry out training, it needs to be compressed to
100 × 100 pixel gray images and inputs constructed spatiotemporal sequences into model.

3.2. Network Training

The whole model structure is showed in Figure 1. We realize the proposed algorithm network
with the TensorFlow framework, and a NVIDIA Tesla V100 GPU (NVIDIA, Santa Clara, CA, US) is used
to accelerate various experimental models training. In this paper, the radar echo encoding-forecasting
model is verified by multiple trainings, the adaptive learning rate Adadelta algorithm [35] is used to
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optimize the loss function, the attenuation coefficient is 0.95 in the specific parameters, and the batch
size is set to 4. After 5000 iterations on the basis of GPU acceleration, the network has converged well.

3.3. Experimental Quantitative Analysis

In order to verify the effectiveness of this 3DCNN-BCLSTM radar echo nowcasting model,
pixel-level mean square error (MSE), the number of network parameters, critical success index (CSI),
probability of detection (POD), and false alarm ratio (FAR) are commonly used by the meteorological
community [36]. These measures are similar to the commonly used concepts of accuracy, recall, and
precision in deep learning. The MSE measures the mean square error of every location pixel between
actual radar echoes and prediction. Before calculation, the pixel value of each location needs to be
transformed to rainfall intensity value based on Z-R relation [37], and then it is used to calculate
error loss. In terms of CSI, POD, and FAR evaluation indexes, the regression problem of radar echo
prediction needs to be transformed into a 0/1 classification problem for calculation. In this paper, the
echo thresholds of 10dBZ, 20dBZ, and 40dBZ are used to distinguish whether it is a positive case or a
negative case (a positive case is greater than the threshold value while a negative case is less than the
threshold value). Then, the prediction and the fact are transformed into a 0/1 matrix by combining
the threshold value, and calculate, respectively, the number of TP (prediction = 1, truth = 1), FN
(prediction = 0, truth = 1), FP (prediction = 1, truth = 0), and TN (prediction = 0, truth = 0). Calculation
formulas for mean evaluation indexes are as follows:

CSI =
TP

TP + FN + FP
(9)

POD =
TP

TP + FN
(10)

FAR =
FP

TP + FP
(11)

Considering the fact that the frequencies of different rainfall levels are highly imbalanced, the
weight w in (12) is added to the MSE loss function to alleviate this problem, where R(y) denotes rainfall
intensity, the higher rain rate are multiplied by a higher weight, and the weight of masked pixels is set
to 0 [2].

w =



1 R(y) < 2
2 2 ≤ R(y) < 5
5 5 ≤ R(y) <10
10 10 ≤ R(y) <30
30 R(y) ≥ 30

(12)

As shown in Equation (13), the pixel-level mean square error (MSE) of the radar echo is constructed
as the loss function of the model to measure the similarity between the predicted results and the actual
results. In the formula, w is the weight, y is the actual output,

∼
y is the predicted output, N means the

total number of current output frames, and W and H represent respectively horizontal and vertical
coordinate of radar echo images.

L(y,
∼
y) =

1
N

N∑
n=1

100∑
W=1

100∑
H=1

wn,W,H(yn,W,H −
∼
yn,W,H)

2
(13)

Input is the sample of previous moment while actual output is sample of next moment, when
current moment is t, and the eight frames input of data are {Xt−7, Xt−6, . . . , Xt}, then the 8 frames of
radar echo image output in the future which can be predicted are

{
∼
yt+1,

∼
yt+2, . . . ,

∼
yt+8

}
. Radar echo

images are continuously input the model for training, the deviation of the predicted results and the
actual results is calculated, and the network weights and other parameters are updated constantly
by back propagation, the loss function value can be constantly reduced, and repeats iterations until
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convergence [18], so that the reconstructed echo image sequences are more and more like the real
image sequences. This defined similarity loss function improves the feature expression ability of
generated images.

3.3.1. Evaluation Analysis of Convolution Kernel Size

During the experiments, the size of the convolution kernel in the convolution layer is an important
factor impacting accuracy of echo prediction. In this paper, we select 3, 5, 7, and 9 specifications of
convolution kernel as experimental parameters to study the impact of the convolution kernel size for
prediction accuracy. The provided layers of network, ReLU activation function and other parameters
remain a constant. The mean square error (MSE) for similarity is used to test the accuracy of radar
echo extrapolation, and the number of parameters is used to represent the computational complexity
of network space, the evaluation result is showed in Table 1.

Table 1. Performance comparison among different convolution kernel sizes. Each number in bracket
represents corresponding size of convolution kernel in each network layer. M denotes million.

Models Number of Parameters Mean Square Error

Proposed (3-3-3-3-3-3-3-3-3) 3.08M 1.398
Proposed (5-5-5-5-5-5-5-5-5) 8.58M 1.487
Proposed (7-7-7-7-7-7-7-7-7) 16.87M 1.590
Proposed (9-9-9-9-9-9-9-9-9) 27.97M 1.735
Proposed (3-3-5-7-9-9-7-5-3) 21.27M 1.554
Proposed (9-9-7-5-3-3-5-7-9) 7.23M 1.572

We can see from Table 1 that with the increase of size of convolution kernel, the network parameter
value grows constantly, when convolution kernel is 9 in all layers. The network parameters have
already reached 27.97 million, which reflects that the computational complexity of the neural network
is the largest in this case, and the operation time will be longest. Moreover, MSE loss increases
gradually as well, and the loss of last two models is also lager than the convolution kernel in small
size 3. The convolution kernel sizes are all 3 for best results, and the mean square error is only 1.398,
which means that the smaller the loss, the higher the similarity between the predicted images and
the real images. Plenty of network parameters cause dramatic increase of computational complexity
while the stacking of multiple small convolution kernels improves accuracy of prediction. In addition,
we have not considered the case of 1×1×1 (3DCNN) or 1×1 (BCLSTM) because it cannot effectively
enhance the receptive field and capture the spatiotemporal features of radar echo prediction. Combining
the size of radar echo images at the same time, we use small convolution kernel in size 3 as experimental
parameter in this paper.

3.3.2. Evaluation Analysis of Network Layers

The prediction accuracy of deep learning algorithms also depends on setting of layers in neural
networks. In this paper, one layer of BCLSTM is used for encoding network and one layer of BCLSTM
is used for forecasting network firstly, and then three different network layers of two layers, three layers
and four layers are also respectively used to test the impact on the prediction accuracy. The number
of filters is 32, 48, 64, and 128, respectively, which correspond to the number of network layers from
small to large. Other network layers remain a constant, the size of convolution kernel is 3, and the test
results are shown in Table 2.
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Table 2. Performance comparison of different network layers.

Models Number of Parameters Mean Square Error

Proposed (3-3-3-3-3) 0.39M 1.545
Proposed (3-3-3-3-3-3-3) 1.35M 1.440

Proposed (3-3-3-3-3-3-3-3-3) 3.08M 1.398
Proposed (3-3-3-3-3-3-3-3-3-3-3) 9.57M 1.376

We can see from Table 2 that the changes between whole performance test results in two evaluation
indexes is not very large. With the increase of network layers, the parameters of the network model
increase constantly, and the computational complexity also increases constantly, especially slow increase
before three layers. MSE reduces gradually, and the experiment shows that network model with deeper
layers provides better prediction effect. However, after three layers of bi-directional convolutional
LSTM in the encoding and forecasting network, the number of parameters still increases but the
changes of error loss slow down a lot, with only 0.022 reductions in MSE. In this algorithm network,
extrapolation accuracy between two layers and three layers makes progress, while there is no obvious
difference between three layers and four layers. Setting three layers bi-directional convolutional LSTM
network respectively is suitable, and it does not consume much memory and simultaneously keeps a
decent prediction accuracy.

3.3.3. Evaluation Analysis of Performances of Various Models

In the evaluation analysis of performance of various models, we select six different radar echo
nowcasting methods to conduct comparative experiments, including FC-LSTM, the optical flow-based
method (ROVER), 3DCNN, ConvLSTM, and the 3DCNN-BCLSTM model (which respectively uses
Sigmoid activation function and ReLU activation function) proposed in this paper. During the training
process of the meteorological nowcasting models, we select the best experimental effect through
multiple adjustments on each parameter for ROVER. In addition, the experiment selects MSE with
good performance as a loss function and Adam as an optimization function of deep learning model
besides the model newly put forward in the paper. The leaning rate is set to 0.001, and the batch size
is 4. ConvLSTM uses encoding-forecasting structure of three-layer encoding network and three-layer
prediction network with small convolution kernel, the number of filters in two sub networks are 32,
64, and 128. Better situations are also selected for other experimental parameters and the general
evaluation results are shown in Tables 3–5 and Figure 6.

Table 3. Performance comparison of different models of the 10dBZ threshold.

Models CSI POD FAR

FC-LSTM 0.305 0.376 0.368
ROVER 0.480 0.624 0.312
3DCNN 0.512 0.641 0.280

ConvLSTM 0.547 0.659 0.239
Proposed (Sigmoid) 0.325 0.395 0.379

Proposed (ReLU) 0.578 0.673 0.192

Table 4. Performance comparison of different models of the 20dBZ threshold.

Models CSI POD FAR

FC-LSTM 0.178 0.235 0.556
ROVER 0.302 0.423 0.480
3DCNN 0.337 0.442 0.421

ConvLSTM 0.361 0.476 0.395
Proposed (Sigmoid) 0.173 0.241 0.591

Proposed (ReLU) 0.375 0.489 0.382
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Table 5. Performance comparison of different models of the 40dBZ threshold.

Models CSI POD FAR

FC-LSTM 0.032 0.042 0.836
ROVER 0.047 0.064 0.805
3DCNN 0.055 0.082 0.812

ConvLSTM 0.069 0.101 0.781
Proposed (Sigmoid) 0.034 0.045 0.828

Proposed (ReLU) 0.084 0.121 0.736
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In the field of atmospheric science, the prediction performance of different rainfall conditions is
different, this section studies the accuracy of various radar echo nowcasting methods under different
thresholds. Divided into three rainfall threshold conditions of 10dBZ, 20dBZ, and 40dBZ, the following
tables compare CSI, POD, and FAR evaluation indexes in each model based on the situation described in
Figure 7, in which the second work is traditional extrapolation prediction method based on optical flow
and other five methods are deep learning methods. In general, the proposed model (ReLU) is always
better than other compared models under various thresholds. Compared with 10dBZ and 20dBZ,
the performance of each model is not good enough at 40dBZ. We think that heavy rain data is rare,
and these events are considered mistakenly as outliers by the network models. Although advanced
extrapolation results for our model have been achieved so far, the indexes need to be further improved
in heavy rainfall or severe weather. Under all rainfall thresholds, the overall performance ranking
of each model is basically maintained. Specifically, it can be found from experiment results that
deep learning models besides of FC-LSTM and our model (Sigmoid) are generally better than the
traditional method based on optical flow. The FC-LSTM model seems to not be suitable for echo
nowcasting task, as each meteorological evaluation index is very poor. Multi-frame radar echoes
possess very strong spatiotemporal correlation, and this fully connected structure is easy to cause large
amount of redundant atmospheric information, so this common LSTM structure cannot accurately
predict the motion trend of echoes. Besides, the performance of various evaluation indexes in model
proposed in this paper (Sigmoid) is also not good—FAR reaches 0.379 at 10dBZ. It reflects that there
are many wrong rainfall predictions in this method, during the experiments, gradient disappearance
phenomenon is easy to happen with bad convergence, therefore the predicted echo images are usually
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distorted and vague. Among deep learning models, 3DCNN-BCLSTM model (ReLU) performs best,
its CSI and POD evaluation indexes reach 0.578 and 0.673, respectively at 10dBZ, both higher than
other models (higher is better), and FAR is the lowest. This is because 3DCNN can better extract the
spatiotemporal features of echoes, and the special bidirectional structure is more stable under the
complex atmospheric conditions. The ConvLSTM model is better than the 3DCNN model, which
confirms that the convolutional LSTM structure is often more powerful in time series. The general
evaluation of traditional ROVER is worse than other three deep learning methods, mainly because
ROVER algorithm is difficult to deal with atmospheric boundary conditions and update the future
flow fields end-to-end.
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Figure 7. The prediction example of advection motion for radar echo nowcasting at 15:06 UTC on
16 July 2015. From top to bottom: input, ground truth, prediction of 3DCNN-BCLSTM model, and
prediction of the ConvLSTM model.

To view the results more clearly, the comparison of the mean squared errors of different models
for the radar echo nowcasting task is described in Figure 6. The result shows that the performance
of the proposed model (Sigmoid) and FC-LSTM is similar, and their errors are obviously larger than
other models. At the initial stage, the mean square errors of other models are similar and alternate.
Over time, the performance of various algorithms reduces, but the proposed (ReLU) still significantly
outperforms other models—this means the model is more tolerant to high and increasing meteorological
uncertainty, and it possesses the higher transmission ability of spatiotemporal features by constructing
two spatiotemporal convolutional structures with 3DCNN and bidirectional convolutional LSTM.
The test result of ConvLSTM model is close to that of model proposed (ReLU) in this paper, ConvLSTM
is the second-best performing model, and the 3DCNN model follows closely. Besides, it can be
obviously seen that the error loss of the FC-LSTM model is the largest, which makes the echo prediction
accuracy comparatively low. This shows that 3DCNN possesses a stronger capability to extract
spatiotemporal features than FC-LSTM. The spatiotemporal convolutional structure substantially
improves MSE and extends radar echo extrapolation timeliness.

3.4. Experimental Qualitative Analysis

We compare 3DCNN-BCLSTM model (ReLU) with the second best ConvLSTM model,
the extrapolation results are showed in Figures 7 and 8. During nowcasting, the continuous 8 frames
of radar echo images (from t-7 to t) are used as the input of the model, and the radar images of the
next 8 frames (from t+1 to t+8) are output. On the whole, ConvLSTM in the figures can predict the
general motion trend of radar echoes, but compared with actual images, the detailed part is not precise
enough, there are more error predictions in echo shape and intensity. The prediction result of the
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model proposed in this paper is more accurate, it not only roughly predicts along motion direction,
but also effectively predicts boundary conditions and detailed changes of inner part of convection.
In Figure 7, it can be seen that the main echo moves slowly towards right direction and merges a
generated small echo on the right gradually. Following the moving direction, the rainfall rate has no
obvious change. It can also be noticed that the echo predicted by ConvLSTM is smoother and many
details are lost, because the transmission capability of spatiotemporal features is poor for this structure,
the modeling ability is limited, some echo features are lost in the learning process. In Figure 8, there is
almost no echo on the left side in the first few frames of input, then the left echo enhances obviously
and constantly. ConvLSTM is vague in every time period, whereas the proposed model can predict
the future echoes well under the formation situation of complex direction change, the detailed part is
more in line with the actual status and the images are clearer and more stable. We argue that because
our model first constructs 3DCNN to extract spatiotemporal features of radar echoes, avoids the
confusion of spatial features caused by directly using ConvLSTM for learning, and the bi-directional
convolutional LSTM structure is more stable in the learning process of echo features. As explained in
Section 3.3.3, over time, the uncertainty increases, the accuracy of the two methods is slightly reduced
in the figures, but 3DCNN-BCLSTM (ReLU) is still closer to reality than ConvLSTM.
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Figure 8. The same that Figure 7, but for the case of formation for radar echo nowcasting at 21:18 UTC
on 10 August 2016. From top to bottom: input, ground truth, prediction of 3DCNN-BCLSTM model,
prediction of ConvLSTM model.

The proposed model realizes accurate prediction of future short-term echo images. As expected,
3DCNN possesses strong capability to extract spatiotemporal features of multi-frame echo images and
bi-directional convolutional LSTM can learn more comprehensive spatiotemporal correlation compared
with single direction network, this improves the problem of vague prediction images. And through
the combination of 3DCNN and bi-directional convolutional LSTM, enhances transmission capability
of spatiotemporal features, avoids the loss of radar echo information, so it improves predictive skills.

4. Conclusions

Utilizing and mining massive radar echo data is low in traditional radar echo nowcasting, and the
meteorological process of future echo formation is affected with the current echo situation in the region
and previous change trend, which possesses strong spatiotemporal correlation. In this paper, a novel
deep learning model of 3DCNN-BCLSTM encoding-forecasting structure is proposed and applied to
radar echo nowcasting task. This model captures and learns spatiotemporal feature dependencies
of consecutive radar echo images more effectively by utilizing the constructed 3D spatiotemporal
data and the encoding-forecasting network combining two spatiotemporal convolutional structures.
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Three-dimensional spatiotemporal data contains spatial and temporal dimensions in the atmospheric
change, which is more suitable for radar echo nowcasting tasks with strong spatiotemporal correlation.
The constructed 3DCNN is first used to extract the local short-term spatiotemporal features, avoids the
confusion of spatial features caused by directly utilizing the convolutional LSTM network for learning,
and the bi-directional convolutional LSTM structure can learn the global long-term motion trend of the
forward and backward radar echoes more fully. This model improves the situation of vague prediction
images and solves the problems of easy spatiotemporal information loss and low forecast accuracy.
It is shown in the evaluation result that the performance of this model is obviously better than other
models under various rainfall threshold conditions, and the predicted future echo images are more
accurate, which fully proves the effectiveness of this method.

In future work, we will try to integrate the generative adversarial network (GAN) into the
meteorological deep learning network proposed in this paper. The current encoding-forecasting
network model is regarded as a generator, and we plan to add a discriminator network and reconstruct
the loss function to force the generation of more accurate echo images through the adversarial training.
On the other hand, although our model has some advantages under various rainfall thresholds by
setting the weights of different rainfall levels, there is still room for improvement in heavy rainfall or
severe weather; therefore, we argue that the model needs to try more heavy rainfall data further or
introduce the parameters of rainfall intensity change such as humidity and topography for correction.
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