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Abstract: The occurrence of a Ural blocking (UB) event is an important precursor of severe cold
air outbreaks in Siberia and East Asia, and thus is significant to accurately predict UB events.
Using subseasonal to seasonal (S2S) models of the European Centre for Medium-Range Weather
Forecasts (ECMWF) and the Environment and Climate Change Canada (ECCC), we evaluated the
predictability of a persistent UB event on 18 to 26 January 2012. Results showed that the ECCC
model was superior to the ECMWF model in predicting the development stage of the UB event
ten days in advance, while the ECMWF model had better predictions than the ECCC model for
more than ten days in advance and the decaying stage of the UB event. By comparing the dynamic
and thermodynamic evolution of the UB event predicted by the two models via the geostrophic
vorticity tendency equation and temperature tendency equation, we found that the ECCC model
better predicted the vertical vorticity advection, ageostrophic vorticity tendency, the tilting effect,
horizontal temperature advection, and adiabatic heating during the development stage, whereas
the ECMWF model better predicted the three dynamic and the two thermodynamic terms during
the decaying stage. In addition, during both the development and decaying stages, the two models
were good (bad) at predicting the vortex stretching term (horizontal vorticity advection), with the
PCC between both the predictions and the observations larger (smaller) than +0.70 (+0.10) Thus,
we suggest that the prediction of the persistent UB event in the S2S model might be improved by the
better prediction of the horizontal vorticity advection.

Keywords: Ural blocking event; predictability; S2S model; diagnostic analysis

1. Introduction

Atmospheric blocking is a large-scale persistent high-pressure center of atmospheric circulation,
which exerts a high impact on extreme weather events downstream and upstream of the blocking region.
In the winter, the climatology of blocking frequency shows two peaks over the Euro-Atlantic and Pacific
sectors [1,2]. In addition, the third peak of the frequency is located in the vicinity of the Ural Mountains
(–60◦ E), which has a pronounced impact on East Asian winter monsoon activities [3–7]. As the
occurrence of a Ural blocking (UB) event is crucial for reinforcing the Siberian high, the establishment of
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UB has been identified as an important precursor of cold air outbreaks in East Asia [8–14]. For instance,
the long-lasting cold weather in Southern China in January 2008 was closely related to the persistent
UB event [15–18]. On the other hand, UB is located in the downstream of North Atlantic storm tracks.
When the North Atlantic storm track extends eastward to the European continent coupled with a
high-pressure ridge over Europe, the wave-mean flow interaction associated with the storm track and
the high-pressure ridge is crucial for the Rossby wave breaking and the establishment of UB [19–21].
The important role of UB on the cold event in East Asia highlights the demand for a better prediction
of UB events.

Atmospheric blocking is a challenge to the short-term and medium-range weather forecasts.
Systematic errors of dynamic models contribute to the errors of the blocking prediction [1,22–25].
The blocking frequency is always underestimated in climate models, including those participating in the
Atmospheric Model Intercomparison Project and the Coupled Model Intercomparison Project [26–30].
For example, Jia et al. [31] evaluated the predictability of the wintertime blocking event in NCEP
Climate Forecast System version 2 (CFSv2) and found that CFSv2 simulates the distribution of blocking
in the Northern Hemisphere well, but it underestimates the blocking intensity and frequency. Moreover,
CFSv2 predicts the development and decaying stages of the blocking events five days in advance
well, and the forecasting skill of blocking events over the Pacific sector is higher than those over
the Euro-Atlantic sector. Most of the previous studies focused on the blocking predictions over the
Euro-Atlantic and Pacific sectors, but few studies focused on the predictions of UB. In addition to the
evaluation of the predictability of the wintertime blocking frequency, it is also important to assess the
performance of climate models in predicting persistent UB events.

In January–February of 2012, extremely cold weather occurred in Europe and large parts of Asia.
The associated extremely low temperatures broke the historical records in parts of Europe and Siberia,
which resulted in large property losses and casualty [32]. Specifically, the long-lasting severe cooling
in East Asia from mid-January to early February in 2012 was closely tied to the frequent occurrence of
persistent UB events [33,34], and thus, it is important to investigate the predictability of these persistent
UB events. Considering that the World Weather Research Programme and the World Climate Research
Programme launched the subseasonal to seasonal (S2S) project in November 2013, and established a
database containing hindcasts up to 60 days forecasting from 11 meteorological centers [35], in this
study we evaluate the predictability of the persistent UB event in January 2012 using the model outputs
from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Environment
and Climate Change Canada (ECCC) participating in the S2S project. As suggested by Quinting
and Vitart [36], both models have a higher resolution and a better forecasting skill in predicting the
UB events.

2. Data and Methods

2.1. Data

Daily fields of the ECMWF and ECCC predictions in the S2S Prediction Project Database were
extracted. The ECMWF and ECCC models are selected for their highest resolution among the
11 S2S models, with the resolution of 0.25◦ × 0.25◦ within 10 days (0.5◦ × 0.5◦ after) and 0.45◦ × 0.45◦,
respectively. Both models are derived 24-hourly at 00 UTC and interpolated to a resolution of 1.5◦ × 1.5◦

in the S2S prediction project [35]. The observational datasets used for model verification were provided
by the NCEP-NCAR reanalysis datasets (grid resolution 2.5◦ × 2.5◦) [37]. The high-resolution rectilinear
grids (ECMWF and ECCC) are interpolated to low-resolution rectilinear grids (NCEP-NCAR) with
the area-weighted averaging interpolation. Variables include the 500 hPa geopotential height (Z500),
the zonal mean wind (U), the meridional mean wind (V), and omega (ω). The 2011/2012 winter
included three consecutive months from December 2011 to February 2012. We obtained 11 (4) members
for the ECMWF (ECCC) model predictions initialized on 12 and 19 January 2012 with the forecast lead
time of 47 (32) days. The ensemble-mean was taken as the unweighted averaged of 11 (4) members
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for the ECMWF (ECCC) model. The root-mean-square-difference (RMSE) and the pattern correlation
coefficient (PCC) between the two predictions and the observations were used to evaluate the forecasting
skills. Statistical significance was computed by the two-tailed Student’s t-test using the effective
number of degrees of freedom, Ne f f , which can be calculated by the following approximation [38,39]

1
Ne f f

≈
1
N

+
2
N

N∑
j=1

N − j
N

ρXX( j)ρYY( j) (1)

where N is the sample size and ρXX( j) and ρYY( j) are the auto-correlations of two sampled time-series
X and Y at time lag j, respectively.

2.2. Detection of Blocking

We followed the method proposed by Barriopedro et al. [40] to detect blocking events, and a brief
description of this method is given below. Blocking is defined by the 500 hPa geopotential height.
Blocking is typically composed of a low-pressure south at 40◦ N and a ridge near 60◦ N [41], associated
with a negative geopotential height gradient at its northern part (ZGN) and a positive geopotential
height gradient at its southern part (ZGS). The blocking center is a closed high, so its anomaly should
be positive in sign. The following equations are used for each grid point to detect blocking:

ZGN(λ) =
Z500(λ, ϕN)−Z500(λ, ϕ0)

ϕN−ϕ0
< −10

ZGS(λ) = Z500(λ, ϕ0)−Z500(λ, ϕS)
ϕ0−ϕS

< 0

Z500(λ,ϕ0) −Z500(λ, ϕ0) > 0 ,

(2)

where
λ ∈ [0, 357.5]
ϕN = 80N + ∆
ϕ0 = 60N + ∆
ϕS = 40N + ∆
∆ = −5,−2.5, 0, 2.5, or 5.

We select 60◦ N as the central reference point (ϕ0) [41,42], 40◦ N as the southern reference point
(ϕS) and 80◦ N as the northern reference point (ϕN) [1]. The position of the blocking center changes with
geographic regions and seasons [2,43], so a 5◦ latitude fluctuation is used to overcome the disadvantage
of this one-dimensional index [1]. When one of the latitude pairs of a grid point satisfies the three
criteria simultaneously in Equation (2), the grid is considered as a blocked longitude.

Blocking is a large-scale system, so we require a blocking region with more than five consecutive
blocked longitudes (i.e., >10◦ longitude) each day. Then, the longitudes at the easternmost and
westernmost are recorded, and the longitudes between them were defined as the extension.
The area-averaged Z500 of UB was regarded as the intensity. Following Tyrlis and Hoskins [44], daily
storm tracks were defined as the root mean square value of the 2–6 day band pass-filtered eddy kinetic
energy (V′V′) at 250 hPa [20,44]. The primes represent the departure from the climatological mean
during the 1981–2010 period.

2.3. Diagnostic Equations

First, we use the temperature tendency equation to diagnose the thermal structures of UB.
The equation is written as:

∂T
∂t︸︷︷︸
a

= −

(
U
∂T
∂λ

+ V
∂T
∂ϕ

)
︸               ︷︷               ︸

b

−W
T
θ
∂θ
∂p︸    ︷︷    ︸

c

+

.
Q
CP︸︷︷︸
d

(3)
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where (a) is the temperature tendency, (b) is the horizontal temperature advection, (c) is the adiabatic
heating term due to vertical motion, and (d) is the diabatic heating.

.
Q is the diabatic heating rate

per unit mass, Cp is the specific heat at constant pressure (=1004 J·K−1
·kg−1), and θ is the potential

temperature which is derived from T using Poisson’s equation.
We use the geostrophic vorticity tendency equation to diagnose the height structure of UB.

The geostrophic vorticity tendency equation is expressed as:

∂ξg

∂t︸︷︷︸
a

= −
1
r

(
U

∂ξa

cosϕ∂λ
+ V

∂ξa

∂ϕ

)
︸                         ︷︷                         ︸

b

−
ξa

r

(
∂U

cosϕ∂λ
+
∂V
∂ϕ

)
︸                     ︷︷                     ︸

c

−
1
r

(
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cosϕ∂λ
∂V
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−
∂W
∂ϕ

∂U
∂p

)
︸                              ︷︷                              ︸

d

−W
∂ξa

∂p︸   ︷︷   ︸
e

−
∂ξag

∂t︸ ︷︷ ︸
f

+
1
r

(
∂F
∂ϕ
−

∂F
cosϕ∂λ

)
︸                   ︷︷                   ︸

g

(4)

where (a) is the geostrophic vorticity tendency, (b) is the horizontal vorticity advection, (c) is the vortex
stretching term, (d) is the tilting effect, (e) is the vertical vorticity advection, (f) is the ageostrophic
vorticity tendency, and (g) is the frictional effect. ξ is vorticity, and r is the Earth’s radius. Subscripts ag,
a, and g denotes the ageostrophic, absolute and geostrophic vorticity, respectively [37]. The partial
derivatives in the λ, ϕ, and p directions are calculated through the 2nd-order centered finite difference
method, and a one-sided finite difference method is used at both boundaries. Note that the frictional
effect (term g) is negligibly small [45,46], and hence it is not considered in this study.

3. Simulation of the Evolution of UB Event

We defined UB when the blocking center was located between 30◦ E and 100◦ E [5]. The UB event
was selected as the UB persisting for more than five consecutive days. Figure 1a shows the evolution of
blocking regions over the Northern Hemisphere in January 2012 based on the observational datasets.
Before 15 January, one weak UB event occurred from 6 to 9 January, with an extension of less than
20 longitudes. Afterward, blocking events occurred frequently near the Urals and the western Pacific.
In particular, a strong UB event centered at 60◦ E was established on 18 January, and then slightly
moved westward from 19 to 25 January, and finally decayed on 27 January. This strong UB event
persisted for 9 days and was extended from 30 to 100◦ E, which induced the cold air outbreak and
intense cooling in East Asia [33].

The storm tracks export warm eddies to the downstream, which modulates the establishment and
maintenance of blocking [20,21,47]. To explore the possible roles of the storm tracks anomalies in this
strong UB event, Figure 1b shows the evolution of the storm tracks anomalies over the Ural Mountains
from December 2011 to February 2012. It was found that the establishment of this strong UB event
was closely related to weakening (strengthening) of the storm tracks over 50–60◦ N (70–80◦ N) after
mid-January, with values below −15 m2

·s−2 (exceeding 30 m2
·s−2) (Figure 1b).
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(Figure 2c), which was accompanied by a slight westward shift of the UB event on January 26 (Figure 
2d), and the UB event decayed on January 27 (Figure 1a). Considering the movement of the UB event, 
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Figure 1. (a) Zonal distribution of blocking regions from 1 to 31 January 2012. (b) time–latitude
cross-section of the 15-day running-mean storm tracks (contour interval, 5 m2

·s−2) and their anomalies
(shaded) averaged over 40–70◦ E from December 2011 to February 2012 in observations. Labels on the
time axis are the central day of the 15-day moving window.

Figure 2 compares the evolution of the UB event in model predictions to the observations,
where Z500 anomalies are the departure from the 1981–2010 daily climatology (Figure 2a–c), and
the Z500 biases are the difference between the two model predictions and observation (Figure 2e–l).
On 14 January, a ridge began to develop over Ural Mountains, associated with a trough over Eastern
Europe (Figure 2a). When the trough deepened, the Ural ridge amplified and extended northward, with
a closed isoline of geopotential height on 18 January, indicating the establishment of an Ural blocking
event (Figure 2b). Afterward, the trough moved eastward and weakened on 22 January (Figure 2c),
which was accompanied by a slight westward shift of the UB event on 26 January (Figure 2d), and the
UB event decayed on 27 January (Figure 1a). Considering the movement of the UB event, we focus on
the blocking central region (50–65◦ N, 50–75◦ E) in our analysis. When the two models’ predictions
initialized on 12 January are compared to the observations, although the Z500 biases are increasing
as the damping of initial conditions, we find that their predicted Z500 pattern are comparable to the
observations before the blocking establishment (Figure 2e–g,i–k). On 14 January, the PCC between the
predictions of two models and the observations exceeded +0.98. Indeed, the predictions of the two
models had some discrepancies. Whereas the ECCC model predicted the closed isoline of geopotential
height well on 18 January (Figure 2j), which was consistent with the observations, the ECMWF model
did not predict the establishment of a UB event. Therefore, the predictions of the establishment of
the UB event by the ECCC model were better than the ECMWF model. During the decaying stage
of the UB event on 26 January, on the other hand, the ECMWF model had a higher forecasting skill
than the ECCC model, as evidenced by a significantly higher PCC and lower RMSE (Figure 2h vs.
Figure 2l). The ECMWF model better predicted the decay of the UB event more than ten days in
advance, although it had a lower prediction skill of the formation of the UB event.
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The forecasting skill significantly decreased with increasing lead time. Both predictions 
initialized on January 12 had large biases in predicting the UB event after January 22 (Figure 2h,l), so 
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of the decaying stage of the UB event, as shown in Figure 3. On January 20 and January 22, predictions 
by the two models reproduced the persistence of the closed isoline of geopotential height, with the 
RMSE (PCC) smaller (larger) than 26 gpm (+0.98), indicating a strong resemblance to the observations 
(Figure 3e,f,i,j). Although the RMSE of their predictions was increased on January 24 and January 26, 
they predicted the persistence of the UB event with the PCC exceeding +0.90 (Figure 3g,k,h,l) well. 
Additionally, both models simulated the decay of the UB event from January 24 to January 26 well , 
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Overall, the predictions initialized on January 12 could simulate the establishment of the UB event, 

Figure 2. Evolution of the Z500 (contour interval, 40 gpm) and Z500 anomalies (shaded, gpm) in
(a–d) the observations from 14 to 26 January 2012. Evolution of the Z500 difference between the two
model predictions and observation (shaded, gpm) and Z500 (contour interval: 40 gpm) in (e–h) the
ECMWF predictions initialized on 12 January and (i–l) the ECCC predictions initialized on 12 January.
The RMSE and PCC between the predictions and the observations over the region (20–80◦ N, 20–100◦

E) are indicated at the top right.

The forecasting skill significantly decreased with increasing lead time. Both predictions initialized
on 12 January had large biases in predicting the UB event after 22 January (Figure 2h,l), so we further
compared the predictions initialized on the 19 January and analyzed the prediction skill of the decaying
stage of the UB event, as shown in Figure 3. On 20 and 22 January, predictions by the two models
reproduced the persistence of the closed isoline of geopotential height, with the RMSE (PCC) smaller
(larger) than 26 gpm (+0.98), indicating a strong resemblance to the observations (Figure 3e,f,i,j).
Although the RMSE of their predictions was increased on 24 and 26 January, they predicted the
persistence of the UB event with the PCC exceeding +0.90 (Figure 3g,k,h,l) well. Additionally,
both models simulated the decay of the UB event from 24 to 26 January well, where the positive
anomaly center on 26 January was weaker than that on 24 January (Figure 3g vs. Figure 3h; Figure 3k vs.
Figure 3l); this was consistent with the observations (Figure 3c vs. Figure 3d). Overall, the predictions
initialized on 12 January could simulate the establishment of the UB event, especially the ECCC model,
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and the ECMWF model performed better for more than ten days in advance. These predictions had
large biases in simulating the decay of the UB event due to the long lead time. Such biases were greatly
reduced by the predictions initialized on 19 January.
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4. Characteristics and Dynamic–Thermodynamic Structure of UB Event

4.1. Characteristics

Different UB events have different intensities, extensions, and durations [5]. Figure 4 shows the
intensity and extension of the UB event in January 2012. The observed UB intensity continuously
increased from 13 January to the establishment of the UB event on 18 January. After 18 January, the UB
intensity persisted and reached the peak on 21 January. Afterward, the intensity fluctuated between
22 and 25 January, and dramatically decreased after 26 January (Figure 4a,b). The evolution of the
observed UB extension was similar to the observed UB intensity, except that the largest extension
occurred on 20 January (Figure 4c,d). Because the intensity of the UB event was increasing from 20 to
21 January, we defined 21 January as the peak time of this UB event.
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When the predictions initialized on 12 January were compared, the ECCC model was found to
have a higher intensity that is closer to the observations than the ECMWF model before 18 January,
suggesting that the ECCC model performs better during the development stage of the UB event.
However, the predicted UB intensity decayed much faster in the ECCC model than the ECMWF
model after 23 January, suggesting that the ECMWF model performed better for more than ten days in
advance (Figure 4a). For the predictions initialized on January 19, both models accurately predicted
the decrease in intensity since 21 January, where the ECMWF predictions were closer to observations,
suggesting that the ECMWF model performed better during the decay of the UB event (Figure 4b).
Furthermore, Figure 4c,d show the prediction of the UB extension by the two models initialized on
12 and 19 January. Compared to the ECCC model, the members of the ECMWF model initialized on
12 January completely cover the range of the observed UB extension (Figure 4c). For the predictions
initialized on 19 January, although both models predict the extension during the decay of the UB event
well, they predicted a peak on 21 January, which was one day later than the observations (Figure 4d).
In summary, the ECCC model better predicted the development stage of the UB event, while the
ECMWF model was superior to the ECCC model in predicting the decay of the UB event, especially
the blocking intensity.
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4.2. Dynamic and Thermodynamic Structure

Investigating the individual terms of the geostrophic vorticity tendency equation and temperature
tendency equation are important to understand the dynamic-thermodynamic processes of the blocking
event [45,46]. We further analyzed individual terms of the geostrophic vorticity tendency equation
and the temperature tendency equation to understand the dynamics and thermodynamics of the
observed and predicted UB event. Note that the values of the geostrophic vorticity tendency, horizontal
advection, and vortex stretching term were higher than the other three terms of the geostrophic vorticity
tendency equation (Figure 5 vs. Figure 6; Figure 7 vs. Figure 8). During the development stage of
the observed UB event, the geostrophic vorticity tendency over 50–60◦ E was negative on 13 January,
which gradually moved eastward from 13 to 18 January, indicating the persistent enhancement of
the high pressure center (Figure 5a). The region with a negative geostrophic vorticity tendency
before 18 January was mainly due to the horizontal advection and ageostrophic vorticity tendency,
because they showed a similar spatial distribution with the evolution of the geostrophic vorticity
tendency (Figure 5a vs. Figure 5d; Figure 5a vs. Figure 6a). Conversely, the positive sign of the vortex
stretching term offset the negative sign of the geostrophic vorticity tendency (Figure 5a vs. Figure 5g).
In addition, the tilting over 50–60◦ E before 15 January and the vertical vorticity advection over
60–75◦ E on 14 to 15 January, also partly contributed to the negative sign of the geostrophic vorticity
tendency (Figure 5a vs. Figure 6d; Figure 5a vs. Figure 6g). Correspondingly, the positive sign of the
temperature tendency over 50–60◦ E was gradually moving eastward from 13 January, suggesting the
regional warming prompted the development of the UB event (Figure 9a). The region with a positive
temperature tendency was mainly attributed to the positive signs of horizontal temperature advection
and adiabatic heating (Figure 9a vs. Figure 9d; Figure 9a vs. Figure 9g). In contrast, the diabatic
heating partly dampened the blocking (Figure 9d vs. Figure 9j). Therefore, the dynamic terms of
horizontal advection and vortex stretching term were important during the development stage of the
UB event, which coincided well with the thermodynamic terms of horizontal temperature advection
and adiabatic heating.

Compared to the observations, the two models’ predictions initialized on 12 January simulated the
development stage of the UB event well, as well as the eastward propagation of negative geostrophic
vorticity tendency from 13 to 18 January (Figure 5b,c). Recall that the ECCC model predicted better the
development stage of the UB event. The PCC of the geostrophic vorticity tendency evolution between
the ECCC prediction and the observations (+0.51) were higher than that between the ECMWF prediction
and the observations (+0.35) (both significant at the 95% confidence level; Table 1). Meanwhile, the
vortex stretching (horizontal vorticity advection) predicted by the two models was the best (worst)
performance, with the PCC between both model predictions and observations larger (smaller) than
+0.70 (+0.10) (Table 1). In addition, the ECCC model better simulated the evolution of temperature
tendency during the development stage (Figure 9a–c; Table 1), which was related to the better simulation
of horizontal temperature advection and diabatic heating (Figure 9d–l; Table 1).
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Figure 5. Time-longitude cross-sections of the three terms in the geostrophic vorticity tendency equation
(shaded; 1 × 10−10 s−2) averaged over the latitudes 50–65◦ N from 13 to 21 January 2012, (a–c) the
tendency of geostrophic vorticity, (d–f) the horizontal advection of the absolute vorticity, (g–i) the vortex
stretching. (top) The observations, (middle) the ECMWF predictions initialized on 12 January, and
(bottom) the ECCC predictions initialized on 12 January. The contours represent differences between
the models predictions and the observations (contour interval: 2 × 10−10 s−2). Negative values are
represented by dashed contours, while positive values are represented by solid contours, and the zero
contours are omitted.
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Figure 6. Same as Figure 5, but for the other three terms in the geostrophic vorticity tendency equation.
(a–c) tendency of ageostrophic vorticity, (d–f) tilting, (g–i) vertical advection of absolute vorticity.

During the development stage of the UB event, most of the terms are simulated better by the
ECCC model than the ECMWF model. Furthermore, based on the predictions initialized on 19 January,
we compared the performance of the two models in predicting the dynamics during the decaying
stage of the UB event. In observations, the geostrophic vorticity tendency was negative over 50–60◦

E before 21 January, which promoted UB to reach the peak on 21 January (Figure 7a). Afterward,
the geostrophic vorticity tendency became positive, indicating a weakening of UB. The positive sign
of the geostrophic vorticity tendency after 21 January was attributed to the horizontal advection,
vortex stretching, ageostrophic vorticity tendency and tilting (Figure 7a vs. Figure 7d; Figure 7a vs.
Figure 7g; Figure 7a vs. Figure 8a; Figure 7a vs. Figure 8d). In contrast, the vertical vorticity advection
partly offset the positive sign of geostrophic vorticity tendency during the decaying stage of the UB
event (Figure 7a vs. Figure 8g). The temperature tendency represented a persistent negative sign
over 50–70◦ E after 20 January, suggesting the regional cooling prompted the decay of the UB event
(Figure 10a). The negative sign of temperature tendency was largely attributed to diabatic heating
effects, which was important to offset the positive sign of the horizontal temperature advection and
adiabatic heating (Figure 10j vs. Figure 10d; Figure 10j vs. Figure 10g).
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Figure 7. Same as Figure 5, but for (top) the observations from 20 to 28 January 2012, (middle) the
ECMWF predictions initialized on 19 January, and (bottom) the ECCC predictions initialized on 19
January. (a–c) the tendency of geostrophic vorticity, (d–f) the horizontal advection of the absolute
vorticity, (g–i) the vortex stretching.
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Figure 8. Same as Figure 6, but for (top) the observations from 20 to 28 January 2012, (middle)
the ECMWF predictions initialized on 19 January, and (bottom) the ECCC predictions initialized
on 19 January. (a–c) tendency of ageostrophic vorticity, (d–f) tilting, (g–i) vertical advection of
absolute vorticity.
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Figure 9. Time-longitude cross-sections of the four terms in the temperature tendency equation (shaded;
◦C·day−1) averaged over the latitudes 50–65◦ N from 13 to 21 January 2012, (a–c) temperature tendency,
(d–f) horizontal temperature advection, (g–i) adiabatic heating, (j–l) diabatic heating. (top) The
observations, (middle) the ECMWF predictions initialized on 12 January, and (bottom) the ECCC
predictions initialized on 12 January. The contours (interval, 2 ◦C·day−1) represent the departures of
models from the observations. Negative values are represented by dashed contours, while positive
values are represented by solid contours, and the zero contours are omitted.

Table 1. The PCCs between both models predictions and the observations about the terms of the
geostrophic vorticity tendency equation and temperature tendency equation (* denotes the values are
significant at the 95% confidence level).

PCC
ECMWF

(Initialized on
12 January)

ECCC
(Initialized on

12 January)

ECMWF
(Initialized on

19 January)

ECCC
(Initialized on

19 January)

geostrophic vorticity tendency +0.35 * +0.51* +0.35 * +0.51 *
horizontal vorticity advection +0.09 −0.02 −0.01 −0.12

vortex stretching term +0.71 * +0.73 * +0.81 * +0.73 *
tilting effect +0.14 +0.43 * +0.42 * +0.28 *

vertical vorticity advection +0.24 * +0.57 * +0.32 * +0.19
ageostrophic vorticity tendency +0.07 +0.23 * +0.40 * +0.23

temperature tendency +0.30 +0.46 * +0.59 * +0.46 *
horizontal temperature advection +0.29 +0.50 * +0.70 * +0.52 *

adiabatic heating +0.22 +0.37 * +0.39 * +0.23
diabatic heating +0.15 +0.11 +0.69 * +0.65 *
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Table 1. The PCCs between both models predictions and the observations about the terms of the 
geostrophic vorticity tendency equation and temperature tendency equation (* denotes the values are 
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Figure 10. Same as Figure 9, but for (top) the observations from 20 to 28 January 2012, (middle)
the ECMWF predictions initialized on 19 January, and (bottom) the ECCC predictions initialized on
19 January. (a–c) temperature tendency, (d–f) horizontal temperature advection, (g–i) adiabatic heating,
(j–l) diabatic heating.

5. Discussion

The observed characteristics of the persistent UB event in January 2012 are consistent with previous
studies [2,48–50]. When an extratropical cyclone moves eastward to upstream of a high-pressure ridge
over Eastern Europe or the Ural Mountains, the high-pressure center advection on the eastern side of
the cyclone makes the high-pressure ridge extend northward, which is crucial for the establishment of
a UB event. The UB event decays when the cyclone further moves eastward and gradually weakens.
Interestingly, we find that both models’ predictions have huge differences between the development
and decaying stages of the UB event. The ECCC model is better than the ECMWF model during
the development stage, but during the decaying stage, the ECMWF model performs better than the
ECCC model. However, our conclusions are only based on a single persistent UB event. Moreover,
the geostrophic vorticity tendency equation and temperature tendency equation were applied in our
study to assess the predictability, but it is insufficient because the isentropic potential vorticity equation
has advantages in discerning the differences of tendencies between the prediction and observation [51].
To better understand the predictability of strong UB events, we will (1) analyze more intense and
persistent UB events simulated by different models, and (2) apply the isentropic potential vorticity
equation to further investigate the predictability of the UB event in the future.
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6. Summary

The occurrence of UB events is crucial for the severe cold air outbreaks in East Asia, so it is
important to predict the UB event accurately. We investigated the ability of two S2S models (ECMWF
and ECCC) to predict the persistent UB event from 18 to 26 January 2012. It was found that the
establishment of this strong UB event was closely related to the weakening (strengthening) of the
storm tracks over 50–60◦ N (70–80◦ N) after mid-January. The establishment of this UB event was
well simulated by the predictions initialized on 12 January, especially for the ECCC model. While the
ECMWF predictions performed better for more than ten days in advance, with the PCC between the
ECMWF predictions and the observations exceeding +0.81 on 26 January, which was much higher than
the PCC between the ECCC predictions and the observations. However, the predictions initialized
on 12 January had large biases in simulating the decaying stage of the UB event after 21 January.
These biases were significantly reduced by the predictions initialized on 19 January, especially for
the ECMWF model. In short, the ECCC model is good in predicting the UB intensity during the
development stage, while the ECMWF model is superior to the ECCC model in predicting the UB
intensity during the decaying stage.

Furthermore, we compare the dynamic and thermodynamic evolution of the predictions to the
observations via the geostrophic vorticity tendency equation and temperature tendency equation.
The ECCC model better predicts the development stage of the UB event, so it predicts better the
change of geostrophic vorticity tendency from the negative sign to the positive sign, with the PCC
between the predictions and the observations exceeding +0.51. The better predictions are mainly
related to the vertical vorticity advection, the ageostrophic vorticity tendency, and the tilting effect.
Correspondingly, the temperature tendency is also predicted well by the ECCC model during the
development stage, with the PCC exceeding +0.46. The positive sign of temperature tendency was
mainly attributed to the positive signs of horizontal temperature advection and adiabatic heating.
On the other hand, the ECMWF model better predicts the decaying stage of the UB event. Its predictions
of the ageostrophic vorticity tendency, tilting effect, vertical vorticity advection, horizontal temperature
advection, adiabatic heating, and diabatic heating have improvements from the development stage
to the decaying stage. In addition, the two models accurately predict the evolution of the vortex
stretching term during both the development and the decaying stage of the UB event, with the PCCs
exceeding +0.70. However, their predicted horizontal vorticity advection has large biases with the
PCC less than +0.10. Thus, we need to improve the prediction of the horizontal vorticity advection by
the S2S models in order to better predict the UB event.
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