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Abstract: Both long- and short-term exposure to high concentrations of airborne particulate matter
(PM) severely affect human health. Many countries now regulate PM concentrations. Early-warning
systems based on PM concentration levels are urgently required to allow countermeasures to reduce
harm and loss. Previous studies sought to establish accurate, efficient predictive models. Many
machine-learning methods are used for air pollution forecasting. The long short-term memory and
gated recurrent unit methods, typical deep-learning methods, reliably predict PM levels with some
limitations. In this paper, the authors proposed novel hybrid models to combine the strength of
two types of deep learning methods. Moreover, the authors compare hybrid deep-learning methods
(convolutional neural network (CNN)—long short-term memory (LSTM) and CNN—gated recurrent
unit (GRU)) with several stand-alone methods (LSTM, GRU) in terms of predicting PM concentrations in
39 stations in Seoul. Hourly air pollution data and meteorological data from January 2015 to December
2018 was used for these training models. The results of the experiment confirmed that the proposed
prediction model could predict the PM concentrations for the next 7 days. Hybrid models outperformed
single models in five areas selected randomly with the lowest root mean square error (RMSE) and mean
absolute error (MAE) values for both PM10 and PM2.5. The error rate for PM10 prediction in Gangnam
with RMSE is 1.688, and MAE is 1.161. For hybrid models, the CNN–GRU better-predicted PM10 for all
stations selected, while the CNN–LSTM model performed better on predicting PM2.5.

Keywords: air quality; particulate matter; long short-term memory; gated recurrent unit; hybrid
models

1. Introduction

Recently, particulate matter (PM) levels have become a global problem. PM10 and PM2.5 are
fine particles with aerodynamic diameters smaller than 10 and 2.5 µm, respectively [1]. Many
epidemiological studies have shown that PM, especially at high concentrations, is very toxic to
humans [2]. PM10 and PM2.5 levels are strongly correlated with human health—the non-accidental
mortality increased by 0.36% and 0.40% for a 10 µg/m3 increase of PM10 and PM2.5. Short-term exposure
to high PM10 and PM2.5 concentrations increases cause-specific mortality [3], and long-term exposure
may cause temporary cardiopulmonary effects, respiratory diseases, and even lung cancer [4–6].
Especially, the World Health Organization (WHO) classified PM2.5 as a first-degree carcinogen and
announced that monitoring of PM10 and PM2.5 needs to be improved in many countries to assess
population exposure [7]. As high PM concentrations stunt growth and increase mortality, many
countries carefully monitor daily airborne PM concentrations [7]. Most countries have national air

Atmosphere 2020, 11, 348; doi:10.3390/atmos11040348 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
https://orcid.org/0000-0001-5211-3531
https://orcid.org/0000-0002-6482-3511
http://dx.doi.org/10.3390/atmos11040348
http://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/2073-4433/11/4/348?type=check_update&version=2


Atmosphere 2020, 11, 348 2 of 19

quality standards for pollutants considered harmful to public health and the environment. The WHO
Air Quality Guidelines (AQG) and European Union (EU) set pollutant concentrations’ thresholds that
shall not be exceeded in a given period [8]. In WHO AOG, hourly concentration thresholds of PM10 or
PM2.5 are 50 or 10µg/m3, respectively. In South Korea, average 24 h mean PM10 or PM2.5 concentrations
of >100 or >35 µg/m3 respectively, are recognized as high-concentration [9]. In Korea, the government
takes emergency actions to immediately reduce the emissions and protect the people against harmful
particle pollution when high concentrations of PM2.5 are predicted to occur or continue. The actions
include adjusting operation levels of coal-fired power plants, construction sites, and emission facilities,
and driving bans for cars with high emissions.

The real-time PM concentration data are essential when seeking to control air pollution and reduce
the effects of PM on health. A real-time warning system for the high concentration of PM is necessary.
These warning systems based on reliable predicting models contribute to reduce the PM impact on
public health and reduce the casualties and financial losses.

Many predictive methods have been developed, and are either deterministic or statistical.
Deterministic methods use chemical and physical data to model pollution processes [8], whereas
statistical methods predict PM concentrations using sophisticated theoretical approaches. Some of
these methods reliably predict air pollution episodes [10–12]. However, traditional statistical models
(such as autoregression) do not recognize non-linear patterns, rendering air pollution forecasting over
time difficult. Given the rapid developments in hardware and big data management, machine-learning
methods (particularly deep learning) have become popular. Many of these methods are used for
time-series predictions and have proven reliable. An artificial neural network (ANN) as a classical
form of machine learning handles non-linear mapping problems rather well, as there is no need to
pre-specify a particular model [13]. ANN models deliver better PM forecasts than do other basic
machine-learning methods [14,15].

The shortcoming of ANN-based models is lack of memory cell make it hard to find the connections
of inputs given the long time series. Typical recurrent neural network (RNN) models, which feature
deep-learning employing a unique recurrent structure, have found applications in speech recognition [16]
and machine translation [17]. Natural language processing requires time sequences, and RNNs handle
time series well. Such models yield time-series predictions [18,19] and are well-suited for supervised
learning using sequential data patterns. In terms of sequential time-series predictions, the recurrent
units remember earlier data, processing not only new data but also previous outputs to generate
up-to-date predictions. All RNN layers feature unique recurrent units that address temporal order and
sequence-dependencies [20]. RNNs can process arbitrary sequences [21].

However, RNNs find it difficult to handle long-term dependence when processing inputs and
sequences. Also, plain-vanilla RNNs can exhibit a vanishing gradient problem such that the networks
(especially deep neural networks) only learn and no longer predict. The long short-term memory
(LSTM) and gated recurrent unit (GRU) cells are optimal for time-series forecasting and do not have
the problems that RNN faces. Hochreiter and Schmidhuber developed the gated memory unit termed
LSTM [22]. LSTM memory blocks feature one or more recurrent memory cells, and they input, output,
and forget units that read, write, and reset information. Compared to RNNs, LSTM neural networks
can handle long-term data series predicting future time series. Moreover, the gradient problem is
eliminated. A GRU [17], a type of recurrent cell, is similar to but simpler than an LSTM. Both cell types
may be useful for prediction. Three popular RNN cells were compared in Reference [23] in the context
of short-term load forecasting, and LSTM and GRU cells afforded similar performances and were better
than the plain RNN. The performance of convolutional neural networks (CNNs) is comparable to that
of RNNs [24]. Indeed, compared to pure RNNs, CNNs may be more efficient—vanishing or exploding
gradients are absent [25]. CNNs may perform better when trained using multiple, similar time-series
inputs [26]. These deep learning models have been successfully applied to predict problems.

However, most studies focus on single models which have their limitations. RNN-based models
are capable of long-term prediction but with much longer training time and computation resources.
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In this paper, the authors focus on these methods to explore the predictive utility of stand-alone and
hybrid models in forecasting PM concentrations in Seoul, South Korea. The proposed hybrid methods
have less training time and higher predicting accuracy compared to single models.

Section 2 of the paper prepares relative material for model training. Section 3 explains the
proposed models and the training workflows. Section 4 deals with hyperparameter tuning and gives
detailed experiments. Section 5 compares the predictions afforded and model performances, and
Section 6 contains the conclusions and future research directions.

2. Materials

2.1. Observation Stations

The Korean Ministry of Environment installs and operates an air pollution monitoring station
nationwide to monitor the nation’s air pollution status, trends in change, and whether air quality
standards are achieved. In this paper, 39 observation stations in Seoul were selected for the study of
PM concentration level forecast. Figure 1 shows the location of the air pollution monitoring stations,
with two types of monitoring stations occupied in Figure 1. 25 city air monitoring stations distributed
in 25 districts in the whole of Seoul city are marked in red, and the green markers in Figure 1 represent
the location of each roadside monitoring station. Table 1 shows the detailed location information of
10 of the 39 monitoring stations. All these stations collect air pollution data every hour of the day, all
data are provided on the AirKorea website (http://www.airkorea.or.kr) by the Korean Environmental
Corporation. The collected air pollution data include PM10, PM2.5, O3, CO, SO2, and NO2. The authors
used PM10 and PM2.5 data collected from 1 January 2015 to 31 December 2018 for this study because
PM2.5 data has been released since 2015. The two types of monitoring stations were treated in the same
way, and only PM10 and PM2.5 hourly concentrations were used for research in this paper.
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Figure 1. Distribution of monitoring stations in Seoul.

Table 1. Selected monitoring stations in Seoul.

Type Station Site Code Location Latitude Longitude

Urban Gangnam-gu 111261 426, Hakdong-ro N 37.5181 E 127.0472
Urban Gwangjin-gu 111141 571, Gwangnaru-ro N 37.5441 E 127.0930
Urban Dobong-gu 111171 34, Sirubong-ro 2-gil N 37.6627 E 127.0269
Urban Gangdong-gu 111274 59, Gucheonmyeon-ro 42-gil N 37.5431 E 127.1255
Urban Gangseo-gu 111212 71, Gangseo-ro 45da-gil N 37.5446 E 126.8350

http://www.airkorea.or.kr
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Table 1. Cont.

Type Station Site Code Location Latitude Longitude

Roadside Seoul Station 111122 405, Hangang-daero N 37.5544 E 126.9717
Roadside Jongno 111125 169, Jong-ro, Jongno-gu N 37.5708 E 126.9965
Roadside Gonghangro 111213 727–1091, Magok-dong N 37.5678 E 126.8348
Roadside Cheonho-daero 111275 1151, Cheonho-daero N 37.5341 E 127.1510
Roadside Yangjaedong 111264 201, Gangnam-daero N 37.4820 E 127.0362

2.2. Data Description

The input variables that are significant in terms of predictive reliability were used. Prior air
pollutant concentrations are essential. As local meteorological data strongly correlated with pollutant
concentrations, the authors used some meteorological data for training. The Seoul meteorological
data collected from 1 January 2015 to 31 December 2018 used in the study was provided by the
Korea Meteorological Administration website (http://data.kma.go.kr). Many factors affect local PM
accumulation or dissipation, including temperature, wind, and rain. Temperature is important when
predicting PM concentrations [27], as high temperatures are associated with stable high-pressure
atmospheric conditions, favoring PM accumulation. Low relative humidity and low temperature
correlated with locally high PM2.5 concentrations [28]. Wind transports PM horizontally [29], and
low wind speeds tend to be associated with high PM concentrations because wind directly affects PM
dispersion [30]. Rain eliminates PM and dust in the air. Thus, PM concentrations are usually lower in
summer seasons because of frequent and heavy rain, and higher in the winter season, which has less
rainy days.

Meteorological datasets contain several features. Wind direction ranges from 0 to 360◦, and
wind speed followed the Beaufort wind scale from 0 to 12 to represent how fast the wind is blowing.
In Reference [31], southern and eastern wind directions and speeds were derived using a periodic
cosine function:

Wind_x = w cosα (1)

Wind_y = −w sinα (2)

where α is the wind direction, and w is the wind speed.
To explore the correlations between inputs, the authors used Pearson correlations between

9 training inputs of the Gangnam dataset in Table 2. For PM10 and PM2.5 concentrations, correlations
ranged from −1 to 1, with a higher absolute number indicating a higher correlation. A positive
number indicates a positive correlation between two factors, and a negative number indicates negative
correlations. The greater the number is, the higher the correlation is. PM10 and PM2.5 levels were
highly correlated. Using the original data, the correlation between the two columns, as seen in Table 2,
was 0.7763. When the authors resampled the original data into weekly mean data, the correlation
between the mean weekly values was 0.8017. Thus, an element of hidden correlation was present,
which deep-learning models can capture.

Figure 2 shows the trends of PM concentrations. The two data columns were resampled to yield
two single-point weekly values, making it easier to capture changes. In this case, the levels of the two
PM types exhibited similar trends.

Temperature, wind speed, and rain were negatively correlated with air pollutant concentrations,
facilitating NN learning. Thus, forecast PM10 levels were affected by PM2.5 and meteorological data.

Air pollution data and meteorological data were combined into one dataset for each station in
Seoul. Each dataset contains nine input feathers as hourly PM10 concentration, PM2.5 concentration,
the temperature at a local station, sky condition at a local station, rainfall, relative humidity, rain
condition, wind_x, and wind_y. These nine features were used as inputs for training models in
this paper.

http://data.kma.go.kr
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Table 2. Correlations between input factors.

PM10 PM2.5 Temperature Sky
Condition Rain Humidity Rain

Condition Wind_x Wind_y

PM10 1.0000 0.7763 −0.1637 −0.0537 −0.0509 −0.0809 −0.0355 −0.0031 0.0049
PM2.5 0.7763 1.0000 −0.1242 −0.0110 −0.0394 0.0316 −0.0197 0.0075 −0.0014

Temperature −0.1637 −0.1242 1.0000 0.2685 0.0510 0.1477 −0.0519 0.0068 −0.0113
Sky condition −0.0537 −0.0110 0.2685 1.0000 0.1234 0.3265 0.2314 −0.0050 −0.0040

Rain −0.0509 −0.0394 0.0510 0.1234 1.0000 0.1756 0.2625 0.0068 0.0009
Humidity −0.0809 0.0316 0.1477 0.3265 0.1756 1.0000 0.2614 0.0019 −0.0061

Rain condition −0.0355 −0.0197 −0.0519 0.2314 0.2625 0.2614 1.0000 0.0040 −0.0065
Wind_x −0.0031 0.0075 0.0068 −0.0050 0.0068 0.0019 0.0040 1.0000 −0.0028
Wind_y 0.0049 −0.001 −0.0113 −0.0040 0.0009 −0.0061 −0.0065 −0.0028 1.0000

* bold values are the correlation of same factor as 1.0000.
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Figure 2. Concentration trends of the resampled particulate matter (PM) data.

All training models featured nine input variables, including PM2.5 and PM10 concentrations. Each
dataset was generated by a monitoring station and contained 4 years of data, from 2015 to 2018. Each
dataset was divided into training (70%), validation (27%), and test datasets (3%). The 4-year data from
2015 to 2018 was divided into 1018 days for training, 392 days for validation, and 43 days for testing.
The trained models were tuned using the validation datasets, and the predictions were compared with
reality. Deep-learning models may become confused if values are missing or abnormal, compromising
the outputs. Thus, historical data may be lost. When this arose, the researchers input a value of 0. Also,
some data may be incorrectly recorded (machine or human error). For example, on several days, PM10

concentrations exceeded 1000 µg/m3 (several cases with extremely high concentration but show no
connection with the next or previous data in the dataset) or were less than 0 µg/m3 (as common sense),
replaced by 0. The input ranges are listed in Table 3. PM2.5 and PM10 concentrations were within
the normal range, and the temperature ranged from −25 to 45 ◦C. Wind_x (southern wind), as a float
number calculated by wind speed, and wind direction ranged from −12 to 12, and wind_y (eastern
wind), as a float number, ranged from −12 to 12, in South Korea. In terms of rain status, 0 indicates no
precipitation, 1 is rain, 2 indicates sleet, and 3 is snow. In terms of the sky, 1–4 indicate sunny, partly
cloudy, cloudy, and dark skies, respectively.

The models feature various cell activation functions. The sigmoid and tanh functions may become
saturated, rendering the outputs near constant. Thus, the input data require normalization before
forward feeding into the training model, as the outputs must not be saturated [32]. The authors used
the MinMaxScaler to normalize training data, so all features were scaled in the range 0 to 1.
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Table 3. Training data and model parameters.

Variable Measurement Unit Range

PM2.5 µg/m3 0~180
PM10 µg/m3 0~400

Temperature ◦C −25~45
Rain mm >0

Wind_x Float −12~12
Wind_y Float −12~12

Humidity % 0~100
Rain Integer 0, 1, 2, 3
Sky Integer 1, 2, 3, 4

3. Methodology

3.1. The Long Short-Term Recurrent Unit

The structure of a single recurrent LSTM unit is shown below (Figure 3).

ft = σ(W f ·[ht−1, xt] + b f ) (3)

it = σ(Wi·[ht−1, xt] + bi) (4)
∼

Ct = tanh(Wc·[ht−1, xt] + bc) (5)

Ct = ft ∗Ct−1 + it ∗
∼

Ct (6)

ht = σ(Wo·[ht−1, xt] + bo) ∗ tanh(Ct) (7)
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Figure 3. The basic long short-term (LSTM) unit.

These equations show that LSTM cells in recurrent layers process data forward. i refers to the
operation of input, o refers to output operation, and f refers to the operation of the forgetting gate. t is
the current time, and t – 1 is a previous time. h stands for hidden state and C refers to cell state, W and
b are the weight and bias vector, σ is the sigmoid activation function, and tanh is the hyperbolic tangent
activation function. Formula (3) is a function of the forgetting gate, which decides how much state
data to preserve. Equation (4) shows how the input gate determines the values to be updated, and

Equation (5) defines the candidate value
∼

Ct to be added to the cell state. Equation (6) manages cell
state update. The old state is multiplied by ft, and the values are summed and added to the results of
the multiplication of the input gate state and the candidate. This determines how much information is
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updated to the new cell state Ct. Equation (7) determines what proportion of the cell state will serve
as the output, and this is multiplied by the cell state filtered by the hyperbolic tangent function to
generate the final output.

3.2. The Gated Recurrent Unit

The structure of a GRU is shown in Figure 4, and the formulae below indicate how the recurrent
unit processes sequence data forward.

zt = σ(Wz·[ht−1, xt] + bz) (8)

rt = σ(Wr·[ht−1, xt] + br) (9)

h̃t = tanh(W·[rt ∗ ht−1, xt] + bh) (10)

ht = zt ∗ h̃t + (1− zt) ∗ ht−1 (11)

where x denotes the input vector, h is the output vector, z is the update gate vector, r is the reset gate
vector, w and b are the weight and bias respectively, and t is the time. As is true of the LSTM unit,
the GRU features gates processing data forward to the unit. The principal differences between the
two methods lie in their gates and weights. A GRU has two gates, the update gate and the reset gate.
The update gate performs functions similar to the forget and input gates of the LSTM, and the reset
gate decides how much past information to forget. Equation (8) shows how the update gate controls
new information and information generated by previous activations. Equation (9) shows which reset
gate activity is included in candidate activation. Equations (10) and (11) combine the candidate state
with previous output and filter the data to obtain the output of the current state.

Atmosphere 2020, 11, x FOR PEER REVIEW 7 of 20 

 

3.2. The Gated Recurrent Unit 

The structure of a GRU is shown in Figure 4, and the formulae below indicate how the recurrent 

unit processes sequence data forward. 

 

Figure 4. The basic gated recurrent unit (GRU). 

𝑧𝑡 = 𝜎(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) (8) 

𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) (9) 

ℎ̃𝑡 = tanh (𝑊 ∙ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑛) (10) 

ℎ𝑡 = 𝑧𝑡 ∗ ℎ̃𝑡 + (1 − 𝑧𝑡) ∗ ℎ𝑡−1 
(11) 

where x denotes the input vector, h is the output vector, z is the update gate vector, r is the reset gate 

vector, w and b are the weight and bias respectively, and t is the time. As is true of the LSTM unit, the 

GRU features gates processing data forward to the unit. The principal differences between the two 

methods lie in their gates and weights. A GRU has two gates, the update gate and the reset gate. The 

update gate performs functions similar to the forget and input gates of the LSTM, and the reset gate 

decides how much past information to forget. Equation (8) shows how the update gate controls new 

information and information generated by previous activations. Equation (9) shows which reset gate 

activity is included in candidate activation. Equations (10) and (11) combine the candidate state with 

previous output and filter the data to obtain the output of the current state. 

3.3. Convolutional Layers 

A one-dimensional convolutional neural network (1DConvNet) can handle local patterns in 

time-series sequences. In terms of time-series forecasting, the time sequence is treated as a spatial 

dimension (similar to two-dimensional height or width), which is optimal in our present context. 

Identical input transformations were performed on all extracted patches, so a specific pattern learned 

at the current position can be recognized in a different position. 

Figure 5 shows the processing of a single-feature input over time by the 1DConvNet. The 

window size used for sequence processing can be predefined, and fragments learned in sequence. 

These learned subsequences can then be identified wherever they occur in the overall sequence. ‘Max 

pooling’ reduces the lengths of input sequences, as CNN learns their critical parameters. In this paper, 

the researchers applied the 1DConvNet to our proposed models, as introduced in Section 3. 

Figure 4. The basic gated recurrent unit (GRU).

3.3. Convolutional Layers

A one-dimensional convolutional neural network (1DConvNet) can handle local patterns in
time-series sequences. In terms of time-series forecasting, the time sequence is treated as a spatial
dimension (similar to two-dimensional height or width), which is optimal in our present context.
Identical input transformations were performed on all extracted patches, so a specific pattern learned
at the current position can be recognized in a different position.

Figure 5 shows the processing of a single-feature input over time by the 1DConvNet. The window
size used for sequence processing can be predefined, and fragments learned in sequence. These learned
subsequences can then be identified wherever they occur in the overall sequence. ‘Max pooling’ reduces
the lengths of input sequences, as CNN learns their critical parameters. In this paper, the researchers
applied the 1DConvNet to our proposed models, as introduced in Section 3.
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3.4. Hybrid Models

In this paper, hybrid CNN–LSTM and CNN–GRU models are used to predict local PM10 and
PM2.5 concentrations. The authors assume that with the one-dimensional convolutional layer, it is
possible to recognize local patterns based on the feature of 1DConvNet, and recurrent layers are
designed to capture useful patterns to forecast the future. By combining convolutional layers and RNN
layers, the hybrid models expected to capture hidden patterns and deliver reliable predictions.

The structure of the CNN–LSTM model is illustrated in Figure 6. The model features four layers
with different neuron types and numbers. The data were fed into a one-dimensional convolutional
layer, an LSTM layer stack on top of that layer, a fully connected dense layer stack on the LSTM layer,
and the top layer is the output layer with two neurons.

To allow among-model comparisons, the CNN–GRU model has a similar structure. The model
processed nine input variables. The first layer is a one-dimensional convolutional layer with 64 neurons,
the second layer is a recurrent layer with 32 GRUs, and the third and final layers are dense. The principal
difference between the two models is the inner structure of the recurrent layer.

3.5. General Workflow

In this paper, the authors explored how well four models predicted air pollutant concentrations in
several regions of Seoul. The training workflow is illustrated in Figure 7:

The steps are:

1. Data choice. Good-quality training data are essential. For each specific model, the data type
and attributes must be chosen carefully. The authors used pollution data and meteorological
data to train models, combining several training factors (hourly particulates concentrations and
meteorological data) into one dataset, aligning the different types of data at the same time points.

2. Data preprocessing. The researchers used various data preprocessed via different methods to
generate inputs to the NNs. The specific preprocessing methods used met the requirements of the
training models. For example, the first layer of (the input to) the LSTM model was an LSTM layer.

3. Model training. The models use input data to learn hidden features. The training model structures
differ. For the LSTM model, the green layer with recurrent units is an LSTM layer, the white layer
is fully connected, and the last layer is the output layer. Training requires tuning of the various
hyperparameters that affect training and model performance.
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4. Hyperparameter tuning. During model training, many hyperparameters must be defined or
modified to optimize predictions. Model hyperparameters differ, and all models were optimized
before comparison.

5. Output generation. After training, the best model was identified, and the success of training was
evaluated by inputting test data. Both the PM10 and PM2.5 concentrations served as outputs.
Thus, the output layers featured two neurons.

6. Model comparison. All models were trained to generate predictions. The authors used all
models to predict air pollution concentrations in the same area and then identified the most
suitable model.
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4. Experiments and Results

4.1. Evaluation Methods

In this paper, root mean square errors (RMSEs) and mean absolute errors (MAEs) were calculated
when comparing predictions with actual values. Smaller values indicate better performances. The RMSE
imparts relatively high weights to large errors. The formulae are:

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2 (12)

MAE =
1
n

n∑
i=1

|yi−ŷi| (13)

where n is the number of sampled data in the test set, yi is a sample i of the predicted data, and ŷi is the
real i value.

4.2. Model Tuning

The model structure must be defined when comparing performance. Before training, many NN
factors affect performance, and when one-factor changes, the resultant prediction changes. These
factors, termed hyperparameters, must be carefully chosen. A model is optimized via hyperparameter
tuning. General hyperparameters include the number of layers in a neural network, the node numbers
in each layer, the learning rate, and layer activation and loss functions. Initially, the authors optimized
the GRU model and ensured that the hyperparameters of the other models were similar to the
GRU values. For example, a simple GRU model with four layers and 32 neurons set for recurrent
layers and the columns contain PM10 and PM2.5 data were shifted in given length, the shifted length
called ‘lookback’. We tuning the length of ‘lookback’ as it can dramatically affect predictions. Thus,
the researchers change lookback while holding the other hyperparameters fixed, as shown in Table 4.

Table 4. The effects of lookback length.

Shift Time (h) PM10 (RMSE) PM2.5 (RMSE)

1 11.798 7.719
6 26.230 12.497

12 26.096 13.266
24 11.789 6.997
48 16.598 9.642
72 21.127 10.010

* RMSE: root mean square error; Bold values are best predicted case for PM10 and PM2.5.

When lookback increased, the predictions either failed to improve or deteriorated monotonously.
A long lookback (72 h) compromised performance, as irrelevant data were included. Too-short
lookback (<12 h) data were unstable, perhaps because previous data were lacking, but nonetheless,
the researchers used these data. In Table 4, both PM10 and PM2.5 had best performance with the lowest
error when lookback was set as 24 h. Therefore, the researchers decided to use 24 h as the lookback for
these models.

To find the suitable number of layers and number of neurons in each layer, the researchers tuning
one single model at first, then applied the layer structure of tuned model to other models. Table 5
shows the results predicted upon tuning the GRU model. When tuning layer and neuron numbers,
the other hyperparameters are fixed.

To explore the number of layers for this model in Table 5, assuming each column represents that
the number of units is the same in all layers, values with italic style font in each column represent
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the best case. By comparing the prediction results of different layers with the same unit numbers,
the four-layer structure has seven best cases for PM10 and PM2.5 in general. The five-layer structure
has five best cases, and the three-layer structure did not perform ideally. Thus, the researchers chose
four-layer and five-layer structures for further experiments with the GRU model.

Table 5. The effects of neuron numbers.

Number
of Layers

Results
(RMSEs)

Number of Neurons in Each Layer

16 32 64 128 256 512

3 PM10
PM2.5

14.394
10.323

14.313
10.528

14.818
10.696

14.493
10.667

15.408
10.659

15.046
10.709

4 PM10
PM2.5

13.537
9.667

14.337
9.914

12.516
9.678

12.908
9.911

13.012
10.334

14.589
10.463

5 PM10
PM2.5

14.124
9.850

12.902
9.304

13.609
9.963

13.956
10.207

13.404
9.884

14.416
9.980

* Italics marked value represent the best cases for PM10 and PM2.5 when comparing layer number while number of
units in each layer is same (view in each column). Bold values are best cases for PM10 and PM2.5 when comparing
number of units in each layer while layer number selected as 4 or 5 (view in each row).

As the number of layers chosen was four or five, further experiments keep the number of layers
fixed and increase the number of neurons in each layer from 16 to 512, as shown in Table 5. Values
with bold font represent the best case in each row. For the four-layer structure, 64 units have the best
performance for PM10, and 16 are considered as the best cases for PM2.5. For the five-layer structure,
32 had the best neuron numbers for both PM10 and PM2.5 prediction. When the layer number was
held constant, and with the neuron number increased, the model did not improve while more training
time and more resource consumption occurred. Thus, the maximum neuron number in each layer was
defined as 64. The researchers chose 64, 32, and 16 as the number of neurons for further experiments.

Other hyperparameters (number of epochs, learning rate, layer drop rate, activation and loss
functions, and weight initializing scheme) were similarly tuned. The models featured CNN, RNN, and
fully connected layers. The authors tuned the single GRU and LSTM models and then built hybrid
models with the same layer and unit numbers. All models were trained using the same hardware,
software, and dataset, and all models ran in TensorFlow on Nvidia Quadro 4-core P4000 GPU (graphics
processing unit) and an Intel Xeon 3.3 GHz CPU (central processing unit). The layers of the various
models had different attributes, the details of which are listed in Table 6. LSTM models featured RNN
layers with internal LSTM units. The GRU model was similar to the LSTM model, but the recurrent
units differed. The hybrid models featured one convolutional and several recurrent layers.

Table 6. Layer attributions of the predictive models.

Model Attribution First Layer Second Layer Third Layer Fourth Layer

GRU

Layer type GRU GRU FC FC
Number of nodes 64 32 16 2

Number of parameters 14,208 9312 528 34
Activation function tanh ReLU linear linear

Remarks Recurrent activation: hard_sigmoid. Return sequences: True.

LSTM

Layer type LSTM LSTM FC FC
Number of nodes 64 32 16 2

Number of parameters 18,944 12,416 528 34
Activation function tanh ReLU linear linear

Remarks Recurrent activation: hard_sigmoid. Return sequences: True.
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Table 6. Cont.

Model Attribution First Layer Second Layer Third Layer Fourth Layer

CNN–GRU

Layer type 1DConvNet GRU FC FC
Number of nodes 64 32 16 2

Number of parameters 13,888 9312 528 34
Activation function ReLU ReLU linear linear

Remarks Kernel size: 24. Padding: same.

CNN–LSTM

Layer type 1DConvNet LSTM FC FC
Number of nodes 64 32 16 2

Number of parameters 13,888 12,416 528 34
Activation function ReLU ReLU linear linear

Remarks Kernel size: 24. Padding: same.

* FC: fully connected layer; tanh: hyperbolic tangent; ReLU: rectified linear unit.

The GRU model featured four layers, the first and second of which were recurrent, with GRU
inner units and the neuron numbers listed above. The third layer was fully connected, and the last
(output) layer with two neurons. The structure and (certain) attributes of the LSTM model were similar
to those of the GRU model. The principal difference lay in the inner structure of the recurrent layers.
The LSTM model employed LSTM units. In the CNN–GRU model, the first layer was one-dimensional
convolutional, and the second was recurrent with GRUs. The last two layers were fully connected.
The principal difference between the hybrid models was that the second layer of the CNN–LSTM model
was recurrent with LSTM rather than with GRUs. For all training models, the authors principally used
the MSE function to optimize parameters. The Adam optimization algorithm was also employed with
the learning rate set to 0.01. The early stopping method was used to pause training when validation
loss was not updated after three epochs.

5. Results

The four models were used to forecast up to 15 days of PM concentrations in Seoul. All models
were trained using the same datasets. As forecast length increased, accuracy decreased. Table 7 shows
the predictions of the GRU model for one station. The 15-day predictions remained reliable, and the
safest forecasts are up to 7 days in this paper.

Table 7. Fifteen-day predicted results at one station (Eunpyeong-gu).

Prediction Length (Days) PM10 (RMSE) PM10 (MAE) PM2.5 (RMSE) PM2.5 (MAE)

1 6.547 5.210 4.707 3.889
3 11.450 7.089 5.074 4.046
7 12.010 7.212 5.546 4.096
15 16.096 9.314 7.260 4.633

* RMSE: root square error; MAE: mean absolute error.

Tables 8 and 9 list the 7-day PM10 and PM2.5 predictions for five Seoul stations derived using the
four models. The five stations were Gangnam, Songpa, Seocho, Gangseo, and Geumcheon. All models
were trained using the Gangnam dataset—to explore model versatility, 4 of the remaining 38 areas were
randomly selected, and 7-day PM concentrations were predicted. Table 8 shows the PM10 predictions.
Of the single models, the LSTM performed better than the GRU model in all five stations. The hybrid
models were better than a single model for all five stations in this paper. The CNN–GRU model
outperformed all other models with all stations for PM10 prediction in this paper. The CNN-GRU model
better-predicted PM10 in Gangseo and Geumcheon stations. Other models had better performance in
these two stations compared with other stations.
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Table 8. Seven-day predictions of PM10 levels in five areas.

Area Evaluation GRU LSTM CNN–GRU CNN–LSTM

Gangnam-gu RMSE
MAE

12.995
7.981

11.091
6.901

1.688
1.161

2.696
1.959

Songpa-gu RMSE
MAE

15.652
10.124

11.322
7.454

1.620
1.264

2.996
2.259

Seocho-gu RMSE
MAE

14.010
9.648

8.293
6.002

1.246
0.942

2.507
2.073

Gangseo-gu RMSE
MAE

8.976
6.143

7.727
4.919

1.087
0.814

2.162
1.681

Geumcheon-gu RMSE
MAE

9.462
6.777

7.616
5.280

1.096
0.776

1.926
1.495

Table 9. Seven-day predictions of PM2.5 levels in five areas.

Area Evaluation GRU LSTM CNN–GRU CNN–LSTM

Gangnam-gu RMSE
MAE

6.987
4.676

6.918
4.603

1.558
1.444

0.867
0.488

Songpa-gu RMSE
MAE

6.816
4.636

6.097
4.241

1.547
1.464

0.788
0.509

Seocho-gu RMSE
MAE

6.058
4.137

5.461
3.413

1.643
1.587

0.608
0.417

Gangseo-gu RMSE
MAE

4.980
3.523

5.387
3.772

1.623
1.518

0.820
0.548

Geumcheon-gu RMSE
MAE

4.813
3.617

4.872
3.702

1.445
1.380

0.872
0.633

* Bold marked values are two best case for each predicting model in each column.

Table 9 shows the PM2.5 predictive data. The single models performed similarly in five stations.
The GRU model better predicted the Gangseo and Geumcheon realities, and the LSTM model was
better for Gangnam, Songpa, and Seocho compared to the GRU model. Two single models performed
better on Gangseo and Geumcheon stations. The hybrid models outperformed the single models for all
stations in this paper, with the CNN–LSTM model being the best of the hybrid models. The CNN–LSTM
model generally predicted better than the CNN–GRU model for PM2.5 predictions. The CNN–GRU
model predicted better in the Songpa and Geumcheon stations compared to other stations, while the
CNN–LSTM model performed better in the Songpa and Seocho stations in this paper.

Figures 8–11 below illustrate the 5-day Gangnam-gu predictions of all models. Each figure
compares the PM10 predictions (up), and PM2.5 predictions (down) yielded by a specific model.
The solid blue lines are the real data, and the dashed orange lines show the predicted concentrations.
The y-axis is the PM10 or PM2.5 concentration, and the x-axis shows time in hours. The GRU model
generally well-predicted PM trends. In terms of PM10 predictions, the GRU model failed to predict
the highest and lowest concentrations over the 5 days. This is of great concern in the sense that such
errors compromise early warning. In terms of PM2.5 predictions, the GRU model predicted high-level
pollution episodes, but not periods of low PM.

Compared to the GRU model, the LSTM model better predicted PM10 levels. As shown below,
the LSTM predictions were reliable and tracked changing PM concentrations well. The LSTM model
well-predicted the highest PM10 and PM2.5 concentrations but poorly predicted the lowest concentrations.

The CNN–GRU model well-predicted the highest and lowest concentrations. The PM10 predictions
reliably outperformed those of other models, and the predictions for the lowest PM2.5 levels were fairly
reliable, though not perfect.

The CNN–LSTM model reliably predicted the levels of both PM types. Especially for PM2.5, this
model outperformed other models and could be used for early warning of high-level PM concentrations.
The PM10 data were generally reliable, though not perfect.
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models generally performed better than the single models.
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In terms of predicting PM2.5 levels, both the GRU and LSTM models were weak in predicting
the future highest and lowest levels. All models simulated changing concentrations. The two hybrid
models forecast the extreme episodes and generally outperformed the single models. The CNN–GRU
model best-predicted PM10 levels, and the CNN–LSTM model best predicted PM2.5 levels.

6. Conclusions

In this paper, four predictive models were compared in terms of their ability to forecast future
air pollution for several days ahead in different areas of Seoul. All models were trained using the
same dataset and the same software and hardware. The principal contributions of this study are as
follows: (1) The two hybrid models that combined convolutional and recurrent layers yielded reliable
predictions 15 days in advance. (2) An LSTM model similar in structure to a GRU model performed
better than the GRU model. (3) CNN–GRU and CNN–LSTM hybrid models performed better than the
single models. (4) The CNN–GRU hybrid model better predicted PM10 levels, and the CNN–LSTM
model better predicted PM2.5 levels. (5) Meteorological data (auxiliary variables) improved the training
accuracy of all models. The new models forecast PM2.5 better than PM10 levels. For future research,
the authors will apply these models to other cities, and explore the seasonality and spatiotemporal
characteristics of the datasets to optimize forecast accuracy. For future research, other hybrid models,
such as fuzzy neural and other neural network models, will be applied to optimize the proposed
methodology. More data resources, such as related air pollutions, will be used to improve models and
examine other regions.
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