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Abstract: Both long- and short-term exposure to high concentrations of airborne particulate matter 

(PM) severely affect human health. Many countries now regulate PM concentrations. Early-warning 

systems based on PM concentration levels are urgently required to allow countermeasures to reduce 

harm and loss. Previous studies sought to establish accurate, efficient predictive models. Many 

machine-learning methods are used for air pollution forecasting. The long short-term memory and 

gated recurrent unit methods, typical deep-learning methods, reliably predict PM levels with some 

limitations. In this paper, the authors proposed novel hybrid models to combine the strength of two 

types of deep learning methods. Moreover, the authors compare hybrid deep-learning methods 

(convolutional neural network (CNN)—long short-term memory (LSTM) and CNN—gated 

recurrent unit (GRU)) with several stand-alone methods (LSTM, GRU) in terms of predicting PM 

concentrations in 39 stations in Seoul. Hourly air pollution data and meteorological data from 

January 2015 to December 2018 was used for these training models. The results of the experiment 

confirmed that the proposed prediction model could predict the PM concentrations for the next 7 

days. Hybrid models outperformed single models in five areas selected randomly with the lowest 

root mean square error (RMSE) and mean absolute error (MAE) values for both PM10 and PM2.5. The 

error rate for PM10 prediction in Gangnam with RMSE is 1.688, and MAE is 1.161. For hybrid models, 

the CNN–GRU better-predicted PM10 for all stations selected, while the CNN–LSTM model 

performed better on predicting PM2.5. 

Keywords: air quality; particulate matter; long short-term memory; gated recurrent unit; hybrid 

models 

 

1. Introduction 

Recently, particulate matter (PM) levels have become a global problem. PM10 and PM2.5 are fine 

particles with aerodynamic diameters smaller than 10 and 2.5 µm, respectively [1]. Many 

epidemiological studies have shown that PM, especially at high concentrations, is very toxic to 

humans [2]. PM10 and PM2.5 levels are strongly correlated with human health—the non-accidental 

mortality increased by 0.36% and 0.40% for a 10 µg/m3 increase of PM10 and PM2.5. Short-term 

exposure to high PM10 and PM2.5 concentrations increases cause-specific mortality [3], and long-term 

exposure may cause temporary cardiopulmonary effects, respiratory diseases, and even lung cancer 

[4–6]. Especially, the World Health Organization (WHO) classified PM2.5 as a first-degree carcinogen 

and announced that monitoring of PM10 and PM2.5 needs to be improved in many countries to assess 

population exposure [7,8]. As high PM concentrations stunt growth and increase mortality, many 
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countries carefully monitor daily airborne PM concentrations [7]. Most countries have national air 

quality standards for pollutants considered harmful to public health and the environment. The WHO 

Air Quality Guidelines (AQG) and European Union (EU) set pollutant concentrations’ thresholds that 

shall not be exceeded in a given period [9]. In WHO AOG, hourly concentration thresholds of PM10 

or PM2.5 are 50 or 10µg/m³, respectively. In South Korea, average 24 h mean PM10 or PM2.5 

concentrations of >100 or >35 µg/m³ respectively, are recognized as high-concentration [8]. In Korea, 

the government takes emergency actions to immediately reduce the emissions and protect the people 

against harmful particle pollution when high concentrations of PM2.5 are predicted to occur or 

continue. The actions include adjusting operation levels of coal-fired power plants, construction sites, 

and emission facilities, and driving bans for cars with high emissions. 

The real-time PM concentration data are essential when seeking to control air pollution and 

reduce the effects of PM on health. A real-time warning system for the high concentration of PM is 

necessary. These warning systems based on reliable predicting models contribute to reduce the PM 

impact on public health and reduce the casualties and financial losses. 

Many predictive methods have been developed, and are either deterministic or statistical. 

Deterministic methods use chemical and physical data to model pollution processes [9], whereas 

statistical methods predict PM concentrations using sophisticated theoretical approaches. Some of 

these methods reliably predict air pollution episodes [10–12]. However, traditional statistical models 

(such as autoregression) do not recognize non-linear patterns, rendering air pollution forecasting 

over time difficult. Given the rapid developments in hardware and big data management, machine-

learning methods (particularly deep learning) have become popular. Many of these methods are used 

for time-series predictions and have proven reliable. An artificial neural network (ANN) as a classical 

form of machine learning handles non-linear mapping problems rather well, as there is no need to 

pre-specify a particular model [13]. ANN models deliver better PM forecasts than do other basic 

machine-learning methods [14,15], however the ANN-based models with lack of memory cell make 

it hard to find the connections of inputs given the long time series. 

Typical recurrent neural network (RNN) models, which feature deep-learning employing a 

unique recurrent structure, have found applications in speech recognition [16] and machine 

translation [17]. Natural language processing requires time sequences, and RNNs handle time series 

well. Such models yield time-series predictions [18,19] and are well-suited for supervised learning 

using sequential data patterns. In terms of sequential time-series predictions, the recurrent units 

remember earlier data, processing not only new data but also previous outputs to generate up-to-

date predictions. All RNN layers feature unique recurrent units that address temporal order and 

sequence-dependencies [20]. RNNs can process arbitrary sequences [21].  

However, RNNs find it difficult to handle long-term dependence when processing inputs and 

sequences, which is crucial in terms of accurate forecasting and may be lost. Also, plain-vanilla RNNs 

can exhibit a vanishing gradient problem such that the networks (especially deep neural networks) 

only learn and no longer predict. The long short-term memory (LSTM) and gated recurrent unit 

(GRU) cells are optimal for time-series forecasting and do not have the problems that RNN faces. 

Hochreiter and Schmidhuber developed the gated memory unit termed LSTM [22]. LSTM memory 

blocks feature one or more recurrent memory cells, and they input, output, and forget units that read, 

write, and reset information. Compared to RNNs, LSTM neural networks can handle long-term data 

series predicting future time series. Moreover, the gradient problem is eliminated. A GRU [17], a type 

of recurrent cell, is similar to but simpler than an LSTM. Both cell types may be useful for prediction. 

Three popular RNN cells were compared in Reference [23] in the context of short-term load 

forecasting, and LSTM and GRU cells afforded similar performances and were better than the plain 

RNN. The performance of convolutional neural networks (CNNs) is comparable to that of RNNs [24]. 

Indeed, compared to pure RNNs, CNNs may be more efficient—vanishing or exploding gradients 

are absent [25]. CNNs may perform better when trained using multiple, similar time-series inputs 

[26]. These deep learning models have been successfully applied to predict problems. 

However, most studies focus on single models which have their limitations. RNN-based models 

are capable of long-term prediction but with much longer training time and computation resources. 
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In this paper, the authors focus on these methods to explore the predictive utility of stand-alone and 

hybrid models in forecasting PM concentrations in Seoul, South Korea. The proposed hybrid methods 

have less training time and higher predicting accuracy compared to single models.  

Section 2 of the paper prepares relative material for model training. Section 3 explains the 

proposed models and the training workflows. Section 4 deals with hyperparameter tuning and gives 

detailed experiments. Section 5 compares the predictions afforded and model performances, and 

Section 6 contains the conclusions and future research directions.  

2. Materials 

2.1 Observation Stations  

The Korean Ministry of Environment installs and operates an air pollution monitoring station 

nationwide to monitor the nation’s air pollution status, trends in change, and whether air quality 

standards are achieved. In this paper, 39 observation stations in Seoul were selected for the study of 

PM concentration level forecast. Figure 1 shows the location of the air pollution monitoring stations, 

with two types of monitoring stations occupied in Figure 1. 25 city air monitoring stations distributed 

in 25 districts in the whole of Seoul city are marked in red, and the green markers in Figure 1 represent 

the location of each roadside monitoring station. Table 1 shows the detailed location information of 

10 of the 39 monitoring stations. All these stations collect air pollution data every hour of the day, all 

data are provided on the AirKorea website (http://www.airkorea.or.kr) by the Korean Environmental 

Corporation. The collected air pollution data include PM10, PM2.5, O3, CO, SO2, and NO2. The authors 

used PM10 and PM2.5 data collected from 1 January 2015 to 31 December 2018 for this study because 

PM2.5 data has only been released since 2015. The two types of monitoring stations were treated in 

the same way, and only PM10 and PM2.5 hourly concentrations were used for research in this paper. 

 
Figure 1. Distribution of monitoring stations in Seoul. 

Table 1. Selected monitoring stations in Seoul. 

Type Station  Site Code Location Latitude Longitude 

Urban Gangnam-gu 111261 426, Hakdong-ro N 37.5181 E 127.0472 

Urban Gwangjin-gu 111141 571, Gwangnaru-ro N 37.5441 E 127.0930 

Urban Dobong-gu 111171 34, Sirubong-ro 2-gil N 37.6627 E 127.0269 

Urban Gangdong-gu 111274 59, Gucheonmyeon-ro 42-gil N 37.5431 E 127.1255 

Urban Gangseo-gu 111212 71, Gangseo-ro 45da-gil N 37.5446 E 126.8350 

Roadside Seoul Station 111122 405, Hangang-daero N 37.5544 E 126.9717 



Atmosphere 2020, 11, 348 4 of 20 

 

Roadside Jongno 111125 169, Jong-ro, Jongno-gu N 37.5708 E 126.9965 

Roadside Gonghangro 111213 727–1091, Magok-dong N 37.5678 E 126.8348 

Roadside Cheonho-daero 111275 1151, Cheonho-daero N 37.5341 E 127.1510 

Roadside Yangjaedong 111264 201, Gangnam-daero N 37.4820 E 127.0362 

2.2 Data Description 

The input variables that are significant in terms of predictive reliability were used. Prior air 

pollutant concentrations are essential. As local meteorological data strongly correlated with pollutant 

concentrations, the authors used some meteorological data for training. The Seoul meteorological 

data collected from 1 January 2015 to 31 December 2018 used in the study was provided by the Korea 

Meteorological Administration website (http://data.kma.go.kr). Many factors affect local PM 

accumulation or dissipation, including temperature, wind, and rain. Temperature is important when 

predicting PM concentrations [27], as high temperatures are associated with stable high-pressure 

atmospheric conditions, favoring PM accumulation. Low relative humidity and low temperature 

correlated with locally high PM2.5 concentrations [28]. Wind transports PM horizontally [29], and low 

wind speeds tend to be associated with high PM concentrations because wind directly affects PM 

dispersion [29,30]. Rain eliminates PM and dust in the air. Thus, PM concentrations are usually lower 

in summer seasons because of frequent and heavy rain, and higher in the winter season, which has 

less rainy days. 

Meteorological datasets contain several features. Wind direction ranges from 0 to 360°, and wind 

speed followed the Beaufort wind scale from 0 to 12 to represent how fast the wind is blowing. In 

Reference [31], southern and eastern wind directions and speeds were derived using a periodic cosine 

function: 

Wind� =  � cos �  (1) 

Wind� =  − w sin �  (2) 

where α is the wind direction, and � is the wind speed. 

Table 2. Correlations between input factors. 

 PM10 PM2.5 
Temper

ature 

Sky 

conditio

n 

Rain 
Humid

ity 

Rain 

conditio

n 

Wind_

x  

Wind_

y 

PM10  1.0000 0.7763 −0.1637 −0.0537 −0.0509 −0.0809 −0.0355 −0.0031 0.0049 

PM2.5  0.7763 1.0000 −0.1242 −0.0110 −0.0394 0.0316 −0.0197 0.0075 −0.0014 

Temperat

ure 
−0.1637 −0.1242 1.0000 0.2685 0.0510 0.1477 −0.0519 0.0068 −0.0113 

Sky 

condition 
−0.0537 −0.0110 0.2685 1.0000 0.1234 0.3265 0.2314 −0.0050 −0.0040 

Rain −0.0509 −0.0394 0.0510 0.1234 1.0000 0.1756 0.2625 0.0068 0.0009 

Humidity −0.0809 0.0316 0.1477 0.3265 0.1756 1.0000 0.2614 0.0019 −0.0061 

Rain 

condition 
−0.0355 −0.0197 −0.0519 0.2314 0.2625 0.2614 1.0000 0.0040 −0.0065 

Wind_x  −0.0031 0.0075 0.0068 −0.0050 0.0068 0.0019 0.0040 1.0000 −0.0028 

Wind_y 0.0049 −0.001 −0.0113 −0.0040 0.0009 −0.0061 −0.0065 −0.0028 1.0000 

 

To explore the correlations between inputs, the authors used Pearson correlations between 9 

training inputs of the Gangnam dataset in Table 2. For PM10 and PM2.5 concentrations, correlations 

ranged from −1 to 1, with a higher absolute number indicating a higher correlation. A positive 

number indicates a positive correlation between two factors, and a negative number indicates 

negative correlations. The greater the number is, the higher the correlation is. PM10 and PM2.5 levels 

were highly correlated. Using the original data, the correlation between the two columns, as seen in 

Table 2, was 0.7763. When the authors resampled the original data into weekly mean data, the 

correlation between the mean weekly values was 0.8017. Thus, an element of hidden correlation was 
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present, which deep-learning models can capture. Figure 2 shows the trends of PM concentrations. 

The two data columns were resampled to yield two single-point weekly values, making it easier to 

capture changes. In this case, the levels of the two PM types exhibited similar trends. 

 

Figure 2. Concentration trends of the resampled particulate matter (PM) data. 

Temperature, wind speed, and rain were negatively correlated with air pollutant concentrations, 

facilitating NN learning. Thus, forecast PM10 levels were affected by PM2.5 and meteorological data. 

Air pollution data and meteorological data were combined into one dataset for each station in 

Seoul. Each dataset contains nine input feathers as hourly PM10 concentration, PM2.5 concentration, 

the temperature at a local station, sky condition at a local station, rainfall, relative humidity, rain 

condition, wind_x, and wind_y. These nine features were used as inputs for training models in this 

paper. 

All training models featured nine input variables, including PM2.5 and PM10 concentrations. Each 

dataset was generated by a monitoring station and contained 4 years of data, from 2015 to 2018. Each 

dataset was divided into training (70%), validation (27%), and test datasets (3%). The 4-year data from 

2015 to 2018 was divided into 1018 days for training, 392 days for validation, and 43 days for testing. 

The trained models were tuned using the validation datasets, and the predictions were compared 

with reality. Deep-learning models may become confused if values are missing or abnormal, 

compromising the outputs. Thus, historical data may be lost. When this arose, the researchers input 

a value of 0. Also, some data may be incorrectly recorded (machine or human error). For example, on 

several days, PM10 concentrations exceeded 1000 µg/m3 (several cases with extremely high 

concentration but show no connection with the next or previous data in the dataset) or were less than 

0 µg/m3 (as common sense), replaced by 0. The input ranges are listed in Table 3. PM2.5 and PM10 

concentrations were within the normal range, and the temperature ranged from −25 to 45 °C. Wind_x 

(southern wind), as a float number calculated by wind speed, and wind direction ranged from −12 to 

12, and wind_y (eastern wind), as a float number, ranged from −12 to 12, in South Korea. In terms of 

rain status, 0 indicates no precipitation, 1 is rain, 2 indicates sleet, and 3 is snow. In terms of the sky, 

1–4 indicate sunny, partly cloudy, cloudy, and dark skies, respectively.  

Table 3. Training data and model parameters. 

Variable Measurement Unit Range 

PM2.5  µg/m3 0~180 

PM10  µg/m3 0~400 

Temperature °C −25~45 

Rain mm >0 

Wind_x Float −12~12 
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Wind_y Float −12~12 

Humidity % 0~100 

Rain  Integer 0, 1, 2, 3 

Sky  Integer 1, 2, 3, 4 

 

The models feature various cell activation functions. The sigmoid and tanh functions may become 

saturated, rendering the outputs near constant. Thus, the input data require normalization before 

forward feeding into the training model, as the outputs must not be saturated [32]. The authors used 

the MinMaxScaler to normalize training data, so all features were scaled in the range 0 to 1. 

3. Methodology 

3.1 The Long Short-Term Recurrent Unit 

The structure of a single recurrent LSTM unit is shown below (Figure 3). 

 

Figure 3. The basic long short-term (LSTM) unit. 

�� =  �(�� ∙ [ℎ���, ��] + �� (3) 

�� = �(�� ∙ [ℎ���, ��] + �� (4) 

 (5) 

�� = �� ∗ ���� + �� ∗ Ƈ�  (6) 

ℎ� = �(�� ∙ [ℎ���, ��] + ��) ∗ tanh (��) (7) 

These equations show that LSTM cells in recurrent layers process data forward. i refers to the 

operation of input, o refers to output operation, and f refers to the operation of the forgetting gate. t 

is the current time, and t – 1 is a previous time. h stands for hidden state and C refers to cell state, W 

and b are the weight and bias vector, σ is the sigmoid activation function, and tanh is the hyperbolic 

tangent activation function. Formula (3) is a function of the forgetting gate, which decides how much 

state data to preserve. Equation (4) shows how the input gate determines the values to be updated, 

and Equation (5) defines the candidate value t to be added to the cell state. Equation (6) manages 

cell state update. The old state is multiplied by ft, and the values are summed and added to the results 

of the multiplication of the input gate state and the candidate. This determines how much information 

is updated to the new cell state Ct. Equation (7) determines what proportion of the cell state will serve 

as the output, and this is multiplied by the cell state filtered by the hyperbolic tangent function to 

generate the final output. 
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3.2. The Gated Recurrent Unit 

The structure of a GRU is shown in Figure 4, and the formulae below indicate how the recurrent 

unit processes sequence data forward. 

 

Figure 4. The basic gated recurrent unit (GRU). 

�� = �(�� ∙ [ℎ���, ��] + ��) (8) 

�� = �(�� ∙ [ℎ���, ��] + ��) (9) 

ℎ�� = tanh (� ∙ [�� ∗ ℎ���, ��] + ��) (10) 

ℎ� = �� ∗ ℎ�� + (1 − ��) ∗ ℎ��� 
(11) 

where x denotes the input vector, h is the output vector, z is the update gate vector, r is the reset gate 

vector, w and b are the weight and bias respectively, and t is the time. As is true of the LSTM unit, the 

GRU features gates processing data forward to the unit. The principal differences between the two 

methods lie in their gates and weights. A GRU has two gates, the update gate and the reset gate. The 

update gate performs functions similar to the forget and input gates of the LSTM, and the reset gate 

decides how much past information to forget. Equation (8) shows how the update gate controls new 

information and information generated by previous activations. Equation (9) shows which reset gate 

activity is included in candidate activation. Equations (10) and (11) combine the candidate state with 

previous output and filter the data to obtain the output of the current state. 

3.3. Convolutional Layers 

A one-dimensional convolutional neural network (1DConvNet) can handle local patterns in 

time-series sequences. In terms of time-series forecasting, the time sequence is treated as a spatial 

dimension (similar to two-dimensional height or width), which is optimal in our present context. 

Identical input transformations were performed on all extracted patches, so a specific pattern learned 

at the current position can be recognized in a different position. 

Figure 5 shows the processing of a single-feature input over time by the 1DConvNet. The 

window size used for sequence processing can be predefined, and fragments learned in sequence. 

These learned subsequences can then be identified wherever they occur in the overall sequence. ‘Max 

pooling’ reduces the lengths of input sequences, as CNN learns their critical parameters. In this paper, 

the researchers applied the 1DConvNet to our proposed models, as introduced in Section 3. 
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Figure 5. Time-sequence processing by a one-dimensional (1D) convolutional layer. 

3.4. Hybrid Models 

In this paper, hybrid CNN–LSTM and CNN–GRU models are used to predict local PM10 and 

PM2.5 concentrations. The authors assume that with the one-dimensional convolutional layer, it is 

possible to recognize local patterns based on the feature of 1DConvNet, and recurrent layers are 

designed to capture useful patterns to forecast the future. It was assumed that by combining 

convolutional layers and RNN layers, the hybrid models were able to capture hidden patterns and 

deliver reliable predictions. 

The structure of the CNN–LSTM model is illustrated in Figure 6. The model features four layers 

with different neuron types and numbers. The data were fed into a one-dimensional convolutional 

layer, an LSTM layer stack on top of that layer, a fully connected dense layer stack on the LSTM layer, 

and the top layer is the output layer with two neurons. 

To allow among-model comparisons, the CNN–GRU model has a similar structure. The model 

processed nine input variables. The first layer is a one-dimensional convolutional layer with 64 

neurons, the second layer is a recurrent layer with 32 GRUs, and the third and final layers are dense. 

The principal difference between the two models is the inner structure of the recurrent layer. 



Atmosphere 2020, 11, 348 9 of 20 

 

 

Figure 6. The layer structure of the convolutional neural network–long short-term (CNN–LSTM) 

model. 

3.5. General Workflow 

In this paper, the authors explored how well four models predicted air pollutant concentrations 

in several regions of Seoul. The training workflow is illustrated in Figure 7: 

 

Figure 7. Training workflow for all models. 

The steps are: 

1. Data choice. Good-quality training data are essential. For each specific model, the data type and 

attributes must be chosen carefully. The authors used pollution data and meteorological data to 

train models, combining several training factors (hourly particulates concentrations and 

meteorological data) into one dataset, aligning the different types of data at the same time points. 
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2. Data preprocessing. The researchers used various data preprocessed via different methods to 

generate inputs to the NNs. The specific preprocessing methods used met the requirements of 

the training models. For example, the first layer of (the input to) the LSTM model was an LSTM 

layer. 

3. Model training. The models use input data to learn hidden features. The training model 

structures differ. For the LSTM model, the green layer with recurrent units is an LSTM layer, the 

white layer is fully connected, and the last layer is the output layer. Training requires tuning of 

the various hyperparameters that affect training and model performance. 

4. Hyperparameter tuning. During model training, many hyperparameters must be defined or 

modified to optimize predictions. Model hyperparameters differ, and all models were optimized 

before comparison. 

5. Output generation. After training, the best model was identified, and the success of training was 

evaluated by inputting test data. Both the PM10 and PM2.5 concentrations served as outputs. Thus, 

the output layers featured two neurons. 

6. Model comparison. All models were trained to generate predictions. The authors used all 

models to predict air pollution concentrations in the same area and then identified the most 

suitable model. 

4. Experiments and Results 

4.1. Evaluation Methods 

In this paper, root mean square errors (RMSEs) and mean absolute errors (MAEs) were 

calculated when comparing predictions with actual values. Smaller values indicate better 

performances. The RMSE imparts relatively high weights to large errors. The formulae are: 

 (12) 

 (13) 

where n is the number of sampled data in the test set, yi is a sample i of the predicted data, and  is 

the real i value. 

4.2. Model Tuning 

The model structure must be defined when comparing performance. Before training, many NN 

factors affect performance, and when one-factor changes, the resultant prediction changes. These 

factors, termed hyperparameters, must be carefully chosen. A model is optimized via 

hyperparameter tuning. General hyperparameters include the number of layers in a neural network, 

the node numbers in each layer, the learning rate, and layer activation and loss functions. Initially, 

the authors optimized the GRU model and ensured that the hyperparameters of the other models 

were similar to the GRU values. For example, a simple GRU model with four layers and 32 neurons 

was set for recurrent layers and the PM10 and PM2.5 columns were time-shifted. This is termed 

‘lookback’ and can dramatically affect predictions. Thus, the researchers varied lookback while 

holding the other hyperparameters fixed, as shown in Table 4. 

Table 4. The effects of lookback length. 

Shift Time (h) PM10 (RMSE) PM2.5 (RMSE) 

1  11.798 7.719 

6  26.230 12.497 

12  26.096 13.266 

24  11.789 6.997 

48  16.598 9.642 

72  21.127 10.010 
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When lookback increased, the predictions either failed to improve or deteriorated 

monotonously. A long lookback (72 h) compromised performance, as irrelevant data were included. 

Too-short lookback (<12 h) data were unstable, perhaps because previous data were lacking, but 

nonetheless, the researchers used these data. As seen in Table 4, both PM10 and PM2.5 had the lowest 

RMSE values when lookback was set as 24 h. Therefore, the researchers decided to use 24 h as the 

lookback for these models. 

To find the suitable number of layers and number of neurons in each layer, the researchers tuned 

one single model, and applied the same layer structure to other models. Table 5 shows the results 

predicted upon tuning the GRU model. When tuning layer and neuron numbers, the other 

hyperparameters remain fixed. 

To explore the number of layers for this model in Table 5, assuming each column represents that 

the number of units is the same in all layers, values with italic style font in each column represent the 

best case. By comparing the prediction results of different layers with the same unit numbers, the 

four-layer structure has seven best cases for PM10 and PM2.5 in general. The five-layer structure has 

five best cases, and the three-layer structure did not perform ideally. Thus, the researchers chose four-

layer and five-layer structures for further experiments with the GRU model. 

As the number of layers chosen was four or five, further experiments keep the number of layers 

fixed and increase the number of neurons in each layer from 16 to 512, as shown in Table 5. Values 

with bold font represent the best case in each row. For the four-layer structure, 64 units have the best 

performance for PM10, and 16 are considered as the best cases for PM2.5. For the five-layer structure, 

32 had the best neuron numbers for both PM10 and PM2.5 prediction. When the layer number was held 

constant, and with the neuron number increased, the model did not improve while more training 

time and more resource consumption occurred. Thus, the maximum neuron number in each layer 

was defined as 64. The researchers chose 64, 32, and 16 as the number of neurons for further 

experiments. 

Table 5. The effects of neuron numbers. 

Number of Layers Results (RMSEs) 
Number of Neurons in Each Layer 

16 32 64 128 256 512 

3 
PM10 

PM2.5 

14.394 

10.323 

14.313 

10.528 

14.818 

10.696 

14.493 

10.667 

15.408 

10.659 

15.046 

10.709 

4 
PM10 

PM2.5 

13.537 

9.667 

14.337 

9.914 

12.516 

9.678 

12.908 

9.911 

13.012 

10.334 

14.589 

10.463 

5 
PM10 

PM2.5 

14.124 

9.850 

12.902 

9.304 

13.609 

9.963 

13.956 

10.207 

13.404 

9.884 

14.416 

9.980 

 

Other hyperparameters (number of epochs, learning rate, layer drop rate, activation and loss 

functions, and weight initializing scheme) were similarly tuned. The models featured CNN, RNN, 

and fully connected layers. The authors tuned the single GRU and LSTM models and then built 

hybrid models with the same layer and unit numbers. All models were trained using the same 

hardware, software, and dataset, and all models ran in TensorFlow on Nvidia Quadro 4-core P4000 

GPU and an Intel Xeon 3.3 GHz CPU. The layers of the various models had different attributes, the 

details of which are listed in Table 6. LSTM models featured RNN layers with internal LSTM units. 

The GRU model was similar to the LSTM model, but the recurrent units differed. The hybrid models 

featured one convolutional and several recurrent layers. 
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Table 6. Layer attributions of the predictive models. 

Model Attribution First Layer Second Layer 
Third 

Layer 
Fourth Layer 

GRU 

Layer type GRU GRU FC FC 

Number of nodes 64 32 16 2 

Number of parameters 14208 9312 528 34 

Activation function tanh ReLU linear linear 

Remarks Recurrent activation: hard_sigmoid. Return sequences: True. 

LSTM 

Layer type LSTM LSTM FC FC 

Number of nodes 64 32 16 2 

Number of parameters 18,944 12,416 528 34 

Activation function tanh ReLU linear linear 

Remarks Recurrent activation: hard_sigmoid. Return sequences: True. 

CNN–

GRU 

Layer type 1DConvNet GRU FC FC 

Number of nodes 64 32 16 2 

Number of parameters 13,888 9312 528 34 

Activation function ReLU ReLU linear linear 

Remarks Kernel size: 24. Padding: same. 

CNN–

LSTM 

Layer type 1DConvNet LSTM FC FC 

Number of nodes 64 32 16 2 

Number of parameters 13,888 12,416 528 34 

Activation function ReLU ReLU linear linear 

Remarks Kernel size: 24. Padding: same. 

 

The GRU model featured four layers, the first and second of which were recurrent, with GRU 

inner units and the neuron numbers listed above. The third layer was fully connected, and the last 

(output) layer had two neurons. The structure and (certain) attributes of the LSTM model were 

similar to those of the GRU model. The principal difference lay in the inner structure of the recurrent 

layers. The LSTM model employed LSTM units. In the CNN–GRU model, the first layer was one-

dimensional convolutional, and the second was recurrent with GRUs. The last two layers were fully 

connected. The principal difference between the hybrid models was that the second layer of the 

CNN–LSTM model was recurrent with LSTM rather than with GRUs. For all training models, the 

authors principally used the MSE function to optimize parameters. The Adam optimization 

algorithm was also employed with the learning rate set to 0.01. The early stopping method was used 

to pause training when validation loss was not updated after three epochs. 

5. Results 

The four models were used to forecast up to 15 days of PM concentrations in Seoul. All models 

were trained using the same datasets. 

Table 7. Fifteen-day predicted results at one station (Eunpyeong-gu). 

Prediction Length (days) PM10 (RMSE) PM10 (MAE) PM2.5 (RMSE) PM2.5 (MAE) 

1  6.547 5.210 4.707 3.889 

3  11.450 7.089 5.074 4.046 

7  12.010 7.212 5.546 4.096 

15  16.096 9.314 7.260 4.633 

 

As forecast length increased, accuracy decreased. Table 7 shows the predictions of the GRU 

model for one station. The 15-day predictions remained reliable, and the safest forecasts are up to 7 

days in this paper. Tables 8 and 9 list the 7-day PM10 and PM2.5 predictions for five Seoul stations 
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derived using the four models. The five stations were Gangnam, Songpa, Seocho, Gangseo, and 

Geumcheon. All models were trained using the Gangnam dataset—to explore model versatility, 4 of 

the remaining 38 areas were randomly selected, and 7-day PM concentrations were predicted. Table 

8 shows the PM10 predictions. Of the single models, the LSTM performed better than the GRU model 

in all five stations. The hybrid models were better than a single model for all five stations in this 

paper. The CNN–GRU model outperformed all other models with all stations for PM10 prediction in 

this paper. The CNN-GRU model better-predicted PM10 in Gangseo and Geumcheon stations. Other 

models had better performance in these two stations compared with other stations. 

Table 8. Seven-day predictions of PM10 levels in five areas. 

Area Evaluation  GRU LSTM CNN–GRU CNN–LSTM 

Gangnam-gu 
RMSE 

MAE 

12.995 

7.981 

11.091 

6.901 

1.688 

1.161 

2.696 

1.959 

Songpa-gu 
RMSE 

MAE 

15.652 

10.124 

11.322 

7.454 

1.620 

1.264 

2.996 

2.259 

Seocho-gu 
RMSE 

MAE 

14.010 

9.648 

8.293 

6.002 

1.246 

0.942 

2.507 

2.073 

Gangseo-gu 
RMSE 

MAE 

8.976 

6.143 

7.727 

4.919 

1.087 

0.814 

2.162 

1.681 

Geumcheon-gu 
RMSE 

MAE 

9.462 

6.777 

7.616 

5.280 

1.096 

0.776 

1.926 

1.495 

 

Table 9 shows the PM2.5 predictive data. The single models performed similarly in five stations. 

The GRU model better predicted the Gangseo and Geumcheon realities, and the LSTM model was 

better for Gangnam, Songpa, and Seocho compared to the GRU model. Two single models performed 

better on Gangseo and Geumcheon stations. The hybrid models outperformed the single models for 

all stations in this paper, with the CNN–LSTM model being the best of the hybrid models. The CNN–

LSTM model generally predicted better than the CNN–GRU model for PM2.5 predictions. The CNN–

GRU model predicted better in the Songpa and Geumcheon stations compared to other stations, 

while the CNN–LSTM model performed better in the Songpa and Seocho stations in this paper. 

Table 9. Seven-day predictions of PM2.5 levels in five areas. 

Area Evaluation  GRU LSTM CNN–GRU CNN–LSTM 

Gangnam-gu 
RMSE 

MAE 

6.987 

4.676 

6.918 

4.603 

1.558 

1.444 

0.867 

0.488 

Songpa-gu 
RMSE 

MAE 

6.816 

4.636 

6.097 

4.241 

1.547 

1.464 

0.788 

0.509 

Seocho-gu 
RMSE 

MAE 

6.058 

4.137 

5.461 

3.413 

1.643 

1.587 

0.608 

0.417 

Gangseo-gu 
RMSE 

MAE 

4.980 

3.523 

5.387 

3.772 

1.623 

1.518 

0.820 

0.548 

Geumcheon-gu 
RMSE 

MAE 

4.813 

3.617 

4.872 

3.702 

1.445 

1.380 

0.872 

0.633 

 

Figures 8–11 below illustrate the 5-day Gangnam-gu predictions of all models. Each figure 

compares the PM10 predictions (up), and PM2.5 predictions (down) yielded by a specific model. The 

solid blue lines are the real data, and the dashed orange lines show the predicted concentrations. The 

y-axis is the PM10 or PM2.5 concentration, and the x-axis shows time in hours. The GRU model 

generally well-predicted PM trends. In terms of PM10 predictions, the GRU model failed to predict 

the highest and lowest concentrations over the 5 days. This is of great concern in the sense that such 
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errors compromise early warning. In terms of PM2.5 predictions, the GRU model predicted high-level 

pollution episodes, but not periods of low PM. 

 

 

Figure 8. Five-day air pollution levels predicted by the GRU model. 

Compared to the GRU model, the LSTM model better predicted PM10 levels. As shown below, 

the LSTM predictions were reliable and tracked changing PM concentrations well. The LSTM model 

well-predicted the highest PM10 and PM2.5 concentrations but poorly predicted the lowest 

concentrations. 
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Figure 9. Five-day air pollution levels predicted by the LSTM model. 
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Figure 10. Five-day air pollution levels predicted by the CNN–GRU model. 

The CNN–GRU model well-predicted the highest and lowest concentrations. The PM10 

predictions reliably outperformed those of other models, and the predictions for the lowest PM2.5 

levels were fairly reliable, though not perfect. 

 

 

Figure 11. Five-day air pollution levels predicted by the CNN–LSTM model. 
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The CNN–LSTM model reliably predicted the levels of both PM types. Especially for PM2.5, this 

model outperformed other models and could be used for early warning of high-level PM 

concentrations. The PM10 data were generally reliable, though not perfect. 

 

Figure 12. Predicted 3-day PM10 concentrations; all models. 

Figure 12 shows the PM10 predictions of all models over 3 days. The solid blue line shows the 

real data. Generally, the GRU model exhibited the poorest match to the real data, while the other 

models were reliable. The hybrid models generally performed better than the single models. 

 

Figure 13. Predicted 3-day PM2.5 concentrations; all models. 

In terms of predicting PM2.5 levels, both the GRU and LSTM models were weak in predicting the 

future highest and lowest levels. All models simulated changing concentrations. The two hybrid 

models forecast the extreme episodes and generally outperformed the single models. The CNN–GRU 

model best-predicted PM10 levels, and the CNN–LSTM model best predicted PM2.5 levels. 
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6. Conclusions 

In this paper, four predictive models were compared in terms of their ability to forecast future 

air pollution for several days ahead in different areas of Seoul. All models were trained using the 

same dataset and the same software and hardware. The principal contributions of this study are as 

follows: (1) The two hybrid models that combined convolutional and recurrent layers yielded reliable 

predictions 15 days in advance. (2) An LSTM model similar in structure to a GRU model performed 

better than the GRU model. (3) CNN–GRU and CNN–LSTM hybrid models performed better than 

the single models. (4) The CNN–GRU hybrid model better predicted PM10 levels, and the CNN–LSTM 

model better predicted PM2.5 levels. (5) Meteorological data (auxiliary variables) improved the 

training accuracy of all models. The new models forecast PM2.5 better than PM10 levels. For future 

research, the authors will apply these models to other cities, and explore the seasonality and 

spatiotemporal characteristics of the datasets to optimize forecast accuracy. For future research, other 

hybrid models, such as fuzzy neural and other neural network models, will be applied to optimize 

the proposed methodology. More data resources, such as related air pollutions, will be used to 

improve models and examine other regions. 
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