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Abstract: Improvement of fog simulation accuracy was investigated for the fogs that occurred on 

the south coast of the Korean Peninsula using the WRF (3D) and PAFOG (1D) coupled model. In 

total, 22 fog cases were simulated and accuracy of the fog simulation was examined based on Critical 

Success Index, Hit Rate and False Alarm Rate. The performance of the coupled WRF-PAFOG model 

was better than that of the single WRF model as expected. However, much more significant 

improvement appeared only when the data from a 300 m meteorological tower was not only used 

for the initial conditions but also nudged during the simulation. Moreover, a proper prescription of 

soil moisture was found to be important for accurate fog simulation especially for the fog cases with 

prior precipitation since efficient moisture supply from the precipitation-soaked soil might have 

been critical for fog formation. It was also demonstrated that with such optimal coupled model 

setting, a coastal radiation fog event with prior precipitation could be very realistically simulated: 

the fog onset and dissipation times matched so well with observation. In detail, radiative cooling at 

the surface was critical to form a surface inversion layer as the night fell. Then the vapor flux from 

the precipitation-soaked surface was confined within the inversion layer to form fog. It is suggested 

that a proper prescription of soil moisture in the model based on observations, if readily available, 

could be a cost-effective method for improving operational fog forecasting, considering the fact that 

tall meteorological towers are a rarity in the world. 
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1. Introduction 

Fog has socioeconomic implications because significant decrease of visibility hinders aircraft 

operation, road traffic, shipping, air quality and crop productivity (e.g., Bartok et al., 2012; Klemm and Li, 

2016 [1,2]). Indeed, restricted visibility due to fog can hamper safe navigation of ships, onshore marine 

traffic systems in coastal regions and can result in marine traffic accidents (e.g., Fu et al., 2010 [3]). Despite 

many previous studies to better understand fog formation mechanism better (e.g., Duynkerke 1991; Fuzzi 

et al., 1992; Wobrock et al., 1992; Nakanishi 2000; Gultepe et al., 2007; Fu et al., 2006; Shi et al., 2011; Pu et 

al., 2016; Lin et al., 2017 [4–12]), fog forecasting is challenging because the formation of fog is a consequence 

of complex and nonlinear interactions at various scales from the synoptic conditions to the micro scale 

and topographical conditions (Steeneveld and de Bode 2018 [13]).  

Traditional fog prediction is based on statistical methods (e.g., Sujintjorn et al., 1994; Murtha, 

1995; Marzban et al., 2007; Petty et al., 2000 [14–17]) or atmospheric models (e.g., Lin et al., 2017, 

Ballard et al., 1991, Koracin et al., 2005; van der Velde et al., 2010 [12,18–20]). A full three-dimensional 

(3D) numerical weather prediction (NWP) model is a promising technique because of its ability to 

simulate complex interactions for fog formation and dissipation. For example, Ballard et al. (1991) 
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[18] attempted to use the numerical model of the United Kingdom Meteorological Office for fog 

forecasting. Koracin et al. (2005) [19] studied fog mechanism using 3D regional models and van der 

Velde et al. (2010) [20] attempted to forecast fog using Weather Research and Forecasting model 

(WRF) and High-Resolution Limited-Area Model (HIRLAM). Recently, Lin et al. (2017) [12] produced 

successful forecasting of an advection fog over the East China Sea using the WRF model. Despite 

such effort, even current 3D NWP models do not provide reliable fog prediction in a horizontal scales 

of <1 km especially over complex terrain and perfect initialization of soil moisture and temperature 

conditions for fog simulation cannot be achievable easily over a local terrain (Tang et al., 2009; Lim 

et al., 2012; Kim et al., 2019a [21–23]). On the other hand, one-dimensional (1D) model or linear model 

has been used for fog simulation because of its relatively small requirement of computing power (e.g., 

Bergot and Guedalia, 1994; Vosper, 2003 [24,25]). However, its application is limited because these 

simple models cannot handle horizontal heterogeneity properly.  

It has been alternatively proposed to couple 1D models to 3D models to overcome the limitations 

of each approach for fog simulation. For example, Tang et al. (2009) [21] successfully simulated fog 

with NWP models with single forcing profiles from a radiosonde profile or from a low-resolution 

model. Shi et al. (2011) [10] developed a coupling method that inserted horizontal advection of heat 

and moisture from the simulation of a 3D regional model (MM5; NCAR mesoscale model) into a 1D 

turbulence model (PAFOG; PArameterized FOG model). Similarly, Kim and Yum (2012) [26] showed 

that a coupled system using the WRF and PAFOG model achieved better accuracy in fog simulation 

over the Yellow Sea. Similar coupled model approaches have also been applied to the studies of fogs 

at Paris Airport (Roquelaure and Bergot 2007; Bergot et al. 2005 [27,28]) and Casablanca airport (Bari 

2019 [29]). 

In this study, we investigated the accuracy of fog simulation over the southern coastal region of 

the Korean Peninsula. The main purpose of this study is to find the model setup that can best simulate 

the fog occurrence in this region. For this purpose, various different model setups (coupling, utilizing 

meteorological observation data as initial conditions, nudging of meteorological observation data, 

and utilizing observed soil moisture information) were examined and the impact of such different 

factors on the accuracy of fog simulation accuracy were analyzed. Then using the best model setup, 

we analysed the results of one fog case to assess the physical processes that were involved in this fog 

occurrence. Lastly, we assess the applicability of these results in operational fog forecasting.  

2. Observations and Methods 

Boseong Standard Weather Observatory (BSWO) tower is 300 m high and located at the southern 

coast of the Korean Peninsula (34.7607° N, 127.2140° E) with a land cover of a double cropping rice 

paddy. Vertical profiles of air temperature (T), dew point temperature (Td), wind speed and wind 

direction have been measured at eleven different heights of the tower (i.e., 10 m, 20 m, 40 m, 60 m, 80 

m, 100 m, 140 m, 180 m, 220 m, 260 m and 300 m). At the BSWO, comprehensive remote sensing 

measurements also have been done using a cloud radar, wind profiler, microwave radiometer and 

ceilometer. The T and Td at the surface were obtained from an AWS. The climate mean annual 

precipitation and air temperature at the BSWO was 1450 mm and 14 °C. More information on the 

BSWO can be found at Kim et al. (2019b) [30] and Hong et al. (2019) [31].  
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Figure 1. (a) Location of Boseong Standard Weather Observatory (BSWO); (b) fog onset and 

dissipation time for each fog case; and (c) wind rose distribution during the fogs. 

In our study, fog was identified if the observed visibility was less than 1 km and we investigated 

22 fog cases observed at the BSWO for one year from May 2014 to June 2015 (Table 1). All 22 fog cases 

selected in this study were considered to be radiation fogs, since they formed during the night when 

radiative cooling was strong. Moreover, winds were from inland to the sea during the time of fog 

formation (Bari et al. 2015 [32]), barring moisture supply from the sea as a cause for fog formation 

(Figure 1).
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Table 1. List of 22 fog cases. 

No. Date Fog Type No. Date Fog Type 

1 09-10-2014 Radiation fog case 12 01-26-2015 Case with prior precipitation 

2 14-10-2014 Radiation fog case 13 02-22-2015 Case with prior precipitation 

3 10-20-2014 Case with prior precipitation 14 03-30-2015 Radiation fog case 

4 10-25-2014 Radiation fog case 15 03-31-2015 Case with prior precipitation 

5 10-26-2014 Radiation fog case 16 05-01-2015 Radiation fog case 

6 11-05-2014 Radiation fog case 17 05-02-2015 Radiation fog case 

7 11-22-2014 Radiation fog case 18 05-19-2015 Radiation fog case 

8 11-27-2014 Radiation fog case 19 06-03-2015 Case with prior precipitation 

9 12-08-2014 Case with prior precipitation 20 06-09-2015 Radiation fog case 

10 12-20-2014 Case with prior precipitation 21 06-10-2015 Radiation fog case 

11 01-21-2015 Case with prior precipitation 22 06-11-2015 Case with prior precipitation 
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3. Model and Numerical Experiments 

3.1. WRF Simulation 

The WRF model ver. 3.7 (Skamarock et al., 2008) [33], was used as the 3D model to simulate fog 

formation and dissipation over the southern coastal area of the Korean Peninsula (Figure 2). One-

way grid nesting procedure was used for the three domains. Domain 3, the finest horizontal 

resolution of 2 km, was centered at the BSWO and the model output from domain 3 was analyzed 

with the measurement data. The vertical layer consisted of 65 vertical layers. from the lowest eta level 

0.998 (about 7 m above surface) to 50 hPa on a terrain-following hydrostatic-pressure vertical 

coordinate. The 6-hourly NCEP GDAS data were used as the initial and boundary conditions. The 

physics package included rapid radiation transfer scheme for general circulation models, the Mellor-

Yamada-Nakanishi-Niino level 2.5 planetary boundary layer (PBL) scheme, Unified Noah land-

surface model, Morrison 2-moments microphysics scheme (Table 2). We had tried various different 

model configurations and this configuration was found to the best configuration of the WRF model 

for the 22 fog cases selected in this study. The criteria for the selection of the best configuration was 

the same as those presented in this study. A brief description of all numerical simulations is given in 

Table 1. 

 

Figure 2. Domain setting of the 3D Weather Research and Forecasting (WRF) model. 
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Table 2. Summary of the 3D model setting. 

Category WRF V3.7 

Horizontal Resolution 18, 6, 2 km 

Vertical Layers 
65 (top~20 km) 

20 (below 1 km) 

Initial field 
NCEP (National Center for Environmental Prediction) 

GDAS (Global Data Assimilation System) data 

Radiation Process 
RRTMg (Rapid Radiative Transfer model) scheme (both 

SW & LW) 

PBL Process MYNN(Mellor-Yamada Nakanish Niino) scheme 

Surface physics Unified Noah land-surface model 

Microphysics Morrison 

3.2. PAFOG Simulation 

The PAFOG model is a 1D model of the atmospheric boundary layer consisting of the prognostic 

equations for horizontal wind field, potential temperature and specific humidity and was used to 

simulate fog formation observed at the BSWO on a meter scale. Previous studies reported that the 

PAFOG model reproduced temporal variation of important relevant parameters on the vertical 

column when suitable initial and boundary conditions were given (e.g., Bott and Trautmann, 2002; 

Kim and Yum, 2012 [26,34]). Solar radiation was calculated for the solar spectral interval of 0.28–6.00 

μm and the infrared spectral interval of 3.5–100.0 μm, which includes the atmospheric window 

region of 8.75–12.25 μm (Zdunkowski et al., 1982 [35]). The microphysics scheme was based on 

double-moment parameterization (Nickerson et al., 1986; Chaumerlic et al., 1987 [36,37]) and the 

vegetation process was simulated following Siebert et al. (1992) [38]. The resolution of the model is 5 

m from the surface to 1500 m and 10 m from 1500 m to the top of the model (i.e., 2500 m). More 

information on the PAFOG is available at Bott et al. (1990) [39], Bott and Trautmann (2002) [35] and 

Siebert et al. (1992) [38]. 

 

Figure 3. Weighting rates of height and time for the nudging. (a), (b) 

The 1D PAFOG model was coupled to the 3D WRF regional model (see Kim et al., 2019c [40] for 

details). Accordingly, boundary conditions for the PAFOG simulation were provided by the 3D WRF 
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regional simulation. The initial conditions included geostrophic winds at 850 hPa, 2 m air 

temperature (Ta), surface pressure and the vertical profiles of pressure, air temperature and dew point 

temperature (Td). Moisture and heat advections in the PAFOG simulation were updated every hour 

to the governing equations of Ta and Td from the WRF model. Additional sensitivity experiments 

were performed, by using the observation data at the BSWO for initial and boundary conditions, and 

also by considering the impact of realistic boundary condition change by using the nudging 

technique (called Newtonian relaxation) (Figure 3). All the data observed at 10 different altitudes of 

the 300 m meteorological tower were nudged because it was found that using only the lower altitude 

data caused instability in model calculations. Moreover, during the nudging procedure, spatio-

temporal weightings were applied for stable model integration without the discontinuity of model 

height and time (Figure 3). The weights increase toward the surface. This is reasonable because fog 

is mostly affected by the surface fluxes of moisture and heat and radiation budget at the surface and 

therefore the meteorological conditions at lower altitudes affect more on fog occurrence (Remy and 

Bergot, 2009 [41]). Details of all different numerical simulation settings are described in Table 3. For 

all fog cases, the model simulation started one day before the fog occurrence day and the total 

simulation time was 3 days (72 h). The first 24 h was considered to be a spin-up time for fog 

simulation. 

Table 3. Description of different numerical simulation settings. 

Abbreviation 
Number of 

Simulations
Description 

WRF 22 Single WRF simulations with the experimental design in Table 1 

WP 22 The coupled model (WRF + PAFOG) simulation  

WPI 22 
Same as WP except that the tower observed meteorological data is 

utilized for initial conditions 

WPN 22 

Same as WP except that the tower observed meteorological data are 

utilized as initial conditions and periodically nudged into the coupled 

model 

WPS 22 
Same as WPI except that observed soil moisture content information 

is utilized as initial condition 

WPNS 22 
Same as WPN except that observed soil moisture content information 

is also utilized as initial condition  

WPN_R 13 WPN but only for the radiation fog events  

WPN_P 9 WPN but only for the fog events with prior precipitation 

WPNS_P 9 
WPNS except that during the time of prior precipitation soil moisture 

content value is replaced by the value from KMA data assimilation  

3.3. Model Evaluation 

To evaluate the performance of fog simulation, three statistical metrics were calculated: hit rate 

(HR), critical success index (CSI) and false alarm rate (FAR). HR is a measure of the model 

performance in simulating the observed fog and is estimated as:  

HR =
a

a + c
 (1) 

FAR is a measure of the falsely simulating a fog and is estimated as:  

FAR =
b

a + b
 (2) 

CSI is a measure of the fraction of forecast events that are correctly predicted and is estimated as:  



Atmosphere 2019, 11, 311 8 of 18 

 

CSI =
a

a + b + c
 (3) 

The symbols “a”, “b” and “c” indicate the correct hits, false hits and false rejections, respectively. 

The values of HR and CSI are unity and FAR is zero for a perfect model and there is a large difference 

between HR and CSI in case of a false fog alert when FAR is large (Wilks 2011 [42]). For the calculation 

of these indexes, existence or non-existence of fog was assessed hourly for the observation and model 

results. If fog existed at a particular one-hour interval in observation and the model also produced 

fog at that hour, it was considered to be a hit for that particular hour. Such hourly evaluation was 

made for an entire fog simulation time to calculate HR, FAR and CSI for that fog case. 

4. Results and Discussion 

4.1. Impact of the Observation Data on Fog Predictability 

Previous studies reported that 3D atmospheric model itself did not reproduce the formation 

(onset) and dissipation times of fog mainly because of coarse horizontal and vertical resolutions 

(Boutle et al., 2015; Philip et al., 2016; Kim et al., 2019c [40,43,44]) or inappropriate turbulent cooling 

near the cold sea surface (Kim et al., 2019c [40]). Our 3D WRF simulations also did not capture the 

onset and dissipation times of fog events well as described in Table 4, where the performance 

statistics for various model settings are listed. Moreover, unlike some previous studies that had 

reported improvement of fog simulation in the coupled modeling system (e.g., Shi et al., 2011 (MM5 

+ PAFOG); Kim et al., 2019c (WRF + PAFOG) [10,40]), the coupled modeling system based on 1D 

PAFOG and 3D WRF models (WP) produced only slightly better HR (0.27 ± 0.30) and no substantial 

improvement of CSI (0.14 ± 0.18). The main cause of meager improvement was because fog 

dissipation time was not simulated well despite some improvement in fog onset time simulation. In 

addition, the large standard deviation of WP also indicates that HR values varied so much from case 

to case: HR ranged from 0.07 to 0.89. 

Table 4. Model performance statistics for different numerical simulation settings. Shown are average 

and standard deviation of hit rate (HR), critical success index (CSI) and false alarm rate (FAR). 

Numerical Simulation Setting HR CSI FAR 

WRF 0.15 ± 0.12 0.11 ± 0.23 0.05 ± 0.04 

WP 0.27 ± 0.30 0.14 ± 0.18 0.21 ± 0.22 

WPI 0.60 ± 0.48 0.23 ± 0.18 0.49 ± 0.41 

WPN 0.81 ± 0.21 0.45 ± 0.22 0.39 ± 0.22 

WPS 0.53 ± 0.35 0.27 ± 0.19 0.33 ± 0.28 

WPNS 0.89 ± 0.07 0.64 ± 0.13 0.25 ± 0.10 

WPN_R 0.93 ± 0.16 0.65 ± 0.24 0.28 ± 0.25 

WPN_P 0.68 ± 0.24 0.26 ± 0.13 0.52 ± 0.18 

WPNS_P 0.82 ± 0.48 0.50 ± 0.08 0.34 ± 0.44 

There was dramatic increase of HR to 0.60 ± 0.48 when the observed meteorological data were 

used for the initial condition of the coupled model simulations (WPI). FAR rapidly increased in WPI 

experiments. Meanwhile, the improvement was even more impressive (HR = 0.81 ± 0.21) when these 

data were also nudged into the model (WPN). With decreases in FAR, CSI values also increased to 

0.23 ± 0.18 and 0.45 ± 0.22 in the WPI and WPN simulations, respectively. Our findings suggest that 

it has substantial benefit to use the observation data in the coupled model for improving accuracy of 

fog simulation. These results are consistent with the results of previous studies that utilized 
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observational data (e.g., Bergot et al. 2005; Roquelaure and Bergot 2007; Bari 2019 [27–29]). To note is 

that such improvement stemmed mostly from the simulations of radiation fog events (WPN_R). 

4.2. Impact of Precipitation and Soil Moisture 

The coupled model with the nudging technique did not produce significantly better fog 

simulations for the cases in which precipitation occurred prior to the onset of fog (WPN_P), unlike 

its impressive improvement in radiation fog simulations (Table 4). Such unimpressive performance 

was suspected to be related to errors in soil moisture condition, which was directly related to 

precipitation. Since PAFOG is a fog model, precipitation cannot be simulated and the effect of 

precipitation on soil moisture content also cannot be considered. The impact of such precipitation 

bias on fog simulation were examined by analyzing the fog cases that had precipitation prior to the 

onset of fog. Figure 4 shows an example of such fog cases on 21 January 2015 (Case 11 in Table 1). 

Precipitation started at 04 UTC (13 LST) and lasted for 4 hours to 08 UTC (17 LST) with simultaneous 

increases of atmospheric humidity. The model did not capture the observed increase of Td during the 

precipitation because of precipitation bias and consequently fog formation was not simulated in the 

model (Figure 4b,d). In fact, the simulated soil moisture content value in the coupled model was 

lower than the value obtained from the 4D-Var data assimilation by the Korean Meteorological 

Administration (KMA) at the hours of precipitation. Notably, the sensitivity experiment with the 

replacement of soil moisture content to 0.316 m3 m−3 (from the KMA data assimilation system) for the 

time of precipitation showed better agreement with the observed fog formation (Figure 4c). With 

proper increase in soil moisture content, Td increased by about 0.7 °C (−2.2 °C to −1.7 °C) and the 

coupled model successfully captured the subsequent fog generation (Figure 4c,e).
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Figure 4. (a) Time variation of T and Td measured at BSWO for the highlighted fog case (January 21, 2015; Case 11 in Table 1); (b) time variations of T, Td, RH and Ts, and 

(d) liquid water mixing ratio from the coupled model simulation with no consideration of the precipitation effect on soil moisture; and (c), (e) with such consideration. The 

observed fog (21/14 UTC–21/18 UTC) and precipitation (21/04 UTC–21/08 UTC) times are shaded yellow and brown, respectively. The simulation started at 00 UTC January 

20 and lasted 72 h. 
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Additional sensitivity experiments have been performed to illustrate the impact of reliable initial 

soil moisture information on fog simulation (Figure 5). For the two fog events where the observed 

soil moisture contents were the highest (Case 15 in Table 1, 0.394 m3 m−3) and the lowest (Case 22 in 

Table 1, 0.266 m3 m−3), we applied the opposite soil moisture content values and ran the coupled 

model simulations (Figure 5a,b). For Case 15, with the much smaller initial soil moisture content 

value than observation, the model failed to generate fog as evidenced by relative humidity (RH) 

lower than 100% (Figure 5a). For Case 22, with the much larger initial soil moisture content than 

observation, the model did not capture the fog dissipation time correctly, simulating longer than the 

observed duration of the fog event (Figure 5b). With the actual observed soil moisture content values 

as the initial condition, the model succeeded in generating fog (for Case 15, Figure 5c) and the fog 

dissipation time in the simulation almost exactly matched with the observation (for Case 22, Figure 

5d). These results indicated that proper values of soil moisture content were critical for better fog 

simulation, along with nudging of the observation data. 
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Figure 5. Time variations of T, Td, RH and Ts from the simulations for the maximum and minimum soil moisture cases (a), (b) when the opposite soil moisture content 

values were applied and (c), (d) when the actual soil moisture content values were applied. The observed time of fog is shaded yellow. The orange arrow in (b) and (d) 

indicates fog dissipation time in each simulation. 
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4.3. Case Study: Radiation Fog Generation Mechanism 

Our study demonstrated that fog simulation could be improved by nudging the observation 

data and applying proper soil moisture content values. With such confidence, we highlighted a 

coastal radiation fog event with prior precipitation (Case 11 in Table 1) in more detail to understand 

better the controlling factors of such fog event in this region. As shown in Figure 4, the coupled model 

reproduced the observed fog formation and dissipation very well with observation data nudging and 

reliable soil moisture input. It rained for 4 h from 04 UTC (13 LST) and a strong inversion layer was 

developed around 10 UTC (19 LST). Figure 6a illustrates that as the night fell, radiative cooling rate 

(negative value of heating rate) near the surface (5 m altitude) became larger than that at 50 m altitude 

and at 10 UTC (green dashed vertical line) the difference became so significant to produce a surface 

inversion later as shown in Figure 6b. With weak turbulent mixing in the inversion layer, latent heat 

flux was nearly zero above the inversion layer and consequently water vapor evaporated from the 

surface was confined below the inversion layer (see the vapor flux profile in Figure 6b).  

 

Figure 6. (a) Time variation of radiative heating rates at 5 m and 50 m and (b) vertical profiles of 

temperature and vapor flux at relevant times for the fog case depicted in Figure 4. Precipitation period 

is marked with red vertical bar and observed fog period is shaded yellow. The vertical dash green 

line refers to 10 UTC. 

Such environment of radiative cooling and confined water vapor in the shallow inversion layer 

provided favorable conditions for fog formation several hours later (15 UTC) and the fog became 

thicker with time (Figure 7a). At 15 UTC, the heating rate was negative (meaning cooling) (Figure 7b) 

but the net moistening rate in the fog layer was negative (meaning drying) (Figure 7c). However, the 

main cause of drying was condensation in the fog and it was even more active above the fog top (see 

cyan line in Figure 7c), indicating that the fog top was rising. As the fog layer deepened, radiative 

cooling at the fog top and temperature increase in the fog layer largely due to condensational latent 

heating and warm advection weakened the inversion strength (see the temperature profiles up to the 

time of 17:30 UTC in Figure 8a).  
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Figure 7. (a) Vertical profiles of temperature at earlier times (15 UTC and 16 UTC) of fog development 

in the coupled model simulation of the fog case depicted in Figure 4; and vertical profiles of various 

components of (b) heating rates and (c) moistening rates. The shading indicates the fog layer at 15 

UTC (green) and 16 UTC (brown). 

Then all of a sudden the fog top rose as the temperature reduced abruptly in the fog layer (see 

17:40 UTC in Figure 8a). However, moistening rate was not strong enough to maintain the whole fog 

layer and evaporation started to occur near the surface at 17:40 UTC (see that the net moistening rate 

was negative near the surface and the moistening rate due to condensation was positive in Figure 8c). 

With continued evaporation of fog drops and turbulent loss of moisture, fog started to dissipate near 

the surface to become a very shallow cloud, and then eventually dissipated completely (18:00 UTC). 

The evolution of the fog layer is clearly shown in Figure 4e. 
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Figure 8. Same as Figure 7 except (a) the vertical profiles of temperature at later times and vertical 

profile of (b) heating rates and (c) moistening rates at 17:40 UTC. The blue shading indicates the fog 

layer. 

Notable is that the nudging effect that seemed critical in the generation of the fog highlighted 

here. Earlier in the life cycle of the fog, the nudging effect was to cool the fog layer and also above the 

fog layer to reduce excessive heating (Figure 7b) and to remedy weak moistening in the fog layer and 

excessive moistening above the fog layer, which seemed to be caused mainly by excessive moisture 

advection (Figure 7c). However, the nudging effects were generally reduced in the later stage of the 

fog (Figure 8b,c), indicating that adjustment of the model results was not much necessary at this 

point. Without the nudging effects, fog might not have been generated for this fog case, although soil 

moisture adjustment due to prior precipitation was also critical as explained above. 

5. Discussions and Conclusions 

Fog simulation accuracy was investigated for the fogs occurred on the south coast of the Korean 

Peninsula using the WRF (3D) and PAFOG (1D) coupled model. For this purpose, we simulated 22 

selected fog cases identified based on visibility measurements at BSWO, and the accuracy was 

examined based on CSI, HR and FAR. The low accuracy of fog simulation using the single WRF 

model was consistent with those demonstrated in previous studies (e.g., Boutle et al., 2015; Philip et 

al., 2016; Pu et al., 2016; Kim et al., 2019a; Kim et al., 2019c [11,23,40,43,44]). Improvement in the 

performance of the WRF and PAFOG coupled model over the single WRF model was also consistent 

with previous studies (e.g., Kim and Yum, 2012, 2013 [26,45]). However, such improvement of the 

coupled model was not very impressive. When the data from a 300 m meteorological tower at BSWO 

was not only used for the initial conditions but also nudged during the simulation, the accuracy of 
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the coupled model for fog simulation was significantly improved. Further improvement was 

achieved when observed soil moisture content information was utilized as initial condition, instead 

of using the values prescribed by the soil type of BSWO as initial condition. Nevertheless, such 

improvement was not visible for the fog cases with prior precipitation, apparently because the model 

could not consider the soil moisture change caused by precipitation. When the soil moisture condition 

for the time of precipitation was adjusted to the values obtained from data assimilation for that time, 

accuracy of fog simulation became much better.  

With confidence on the coupled model performance, we examined a coastal radiation fog event 

with prior precipitation in more detail to understand better the controlling factors of such fog event 

in this region. Radiative cooling at the surface was critical to form a surface inversion layer as the 

night fell. Then the vapor flux from the surface was confined within the inversion layer to form fog. 

With fog top radiative cooling, inversion strength weakened but with continued vapor flux from the 

surface, eventually the fog top rose abruptly. However, moisture supply from the surface became not 

strong enough to maintain the whole fog layer and the fog started to dissipate near the surface to 

become a shallow cloud before it dissipated completely. Such evolution of the fog layer (i.e., onset 

and dissipation times) in the model simulation were well matched by the observation (Figure 4e). 

Numerical fog simulation has been known to be notoriously difficult, but we demonstrated in 

this study that very realistic fog simulation was possible with concerted effort to utilize available 

observational data that are relevant to fog such as temperature and humidity profiles and soil 

moisture. We insist that the coupled model system with nudging introduced in this study can be used 

for more detailed study of fog formation and dissipation mechanisms. Perhaps a tall meteorological 

tower data may not be available in most places despite the critical improvement of fog simulation by 

nudging the tower data. One of the main purposes of doing fog simulation studies is to apply what 

we learn from such studies to the improvement of operational fog forecasting. However, nudging 

technique itself is not applicable when it comes to operational fog forecasting. In that sense, a proper 

prescription of soil moisture in the model based on observations, if readily available, could be a cost-

effective method for improving operational fog forecasting. The improvement of WPS is significant 

when compared to WRF or WP in Table 4. The numerical simulation setting of WPS would be 

practically applicable to operational fog forecasting and therefore is recommended for operational 

fog forecasting. 
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