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Abstract: A wide range of wave energy applications relies on the accurate estimation of extreme wave
conditions, while some of them are frequently affected by directionality. For example, attenuators
and terminators are the most common types of wave energy converters whose performance is highly
influenced by their orientation with respect to the prevailing wave direction. In this work, four
locations in the eastern Mediterranean Sea are selected with relatively high wave energy flux values
and extreme wave heights are examined with wave direction as a covariate. The Generalized Pareto
distribution is used to model the extreme values of wave height over a pre-defined threshold, with
its parameters being expressed as a function of wave direction through Fourier series expansion. In
order to be consistent with the analysis obtained from the independent fits for directional sectors,
the estimation of parameters is based on a penalized maximum likelihood criterion that ensures
a good agreement between the two approaches. The obtained results validate the integration of
directionality in extreme value models for the examined locations and design values of significant
wave height are provided with respect to direction for the 50- and 100-year return period with
bootstrap confidence intervals.

Keywords: wave height; wave direction; extremes; penalized likelihood; uncertainties;
Mediterranean Sea

1. Introduction

The design of offshore and marine structures, such as wind turbines and wave energy devices,
requires the accurate knowledge of extreme metocean conditions for reliability, viability and safety
purposes, since the corresponding variables (e.g., wind speed, significant wave height, current speed)
characterize the immediate environment. Most of the relevant studies focus on the estimation of the
n—year design values (return levels), for n = 10, 20, . . . , 100 years, since extreme wave conditions are
the most important parameter with respect to safety and reliability of such structures (e.g., Naess [1];
Caires and Sterl [2]; Soukissian and Kalantzi [3]; Caires [4]; Wang [5]). One of the methods that are
used for this purpose is the so-called Peaks over Threshold (POT). The POT method is based on the
Generalized Pareto (GP) distribution, with which the exceedances of the variable of interest over an
appropriately selected high threshold u are modelled under specific assumptions. More details can be
found in the reference books of Coles [6] and Leadbetter et al. [7].

The GP distribution [8,9] is a two-parameter distribution, specified by the scale and the shape
parameters, σ and ξ, respectively. It has been widely used by many scientists, especially for engineering
and environmental studies and hydrology; see, for example, Vanmontfort and Witter [10], Rosbjerg et
al. [11], Vogel, et al. [12], Katz, et al. [13], Prudhomme, et al. [14]. The most common methods to estimate
the unknown parameters of the GP distribution are the following: (i) the maximum likelihood (ML)
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method [15]; (ii) the method of moments [16]; (iii) the method of probability weighted moments [17];
(iv) the least squares (LS) method [18]; (v) the elemental percentile method [19] and (vi); the Bayesian
technique, proposed by Castellanos and Cabras [20]. Bermudez and Kotz [21] made a review of the
above-mentioned estimation methods. The selection of threshold is critical for the accurate estimation
of the parameters of the GP distribution and in turn, return levels. When the threshold value is reduced,
the asymptotic arguments, which are important when selecting an extreme value distribution, might
be invalid. On the other hand, a high enough threshold may lead to high variance of the estimator by
reducing the sample size. However, since there is not a generally accepted method for the selection
of the most appropriate threshold, a plethora of methods can be applied for threshold selection; see
the recent reviews of Scarrott and MacDonald [22] and Langousis et al. [23] on this issue. One of the
main categories for threshold selection belong to the graphical methods (e.g., Drees, et al. [24]), while
methods based on the goodness-of-fit of the GP distribution are also popular (e.g., Choulakian and
Stephens [25]; Northrop and Coleman [26]), for which the lowest threshold is selected so that the
corresponding exceedances can adequately described by the GP distribution.

Another issue that needs attention is the validity of the independence assumption as regards the
exceedances. The POT method assumes that exceedances are mutually independent and identically
distributed. However, threshold exceedances of significant wave height Hs tend to occur in groups
with a strong correlation of wave conditions in time, hence violating the assumption of independence.
In order to ensure that the threshold exceedances are approximately independent so that they can be
used to apply the GP distribution model, declustering of exceedances takes place; see, for example,
Leadbetter, et al. [7]. This technique stipulates that the exceedances that are separated by fewer
than r non-exceeding observations, with r an auxiliary parameter denoting the run length (minimum
separation), form a single cluster. Then, the GP fitting is performed only for the largest exceedances
from each cluster instead of all the observations exceeding the threshold.

In the context of ocean energy technology and monitoring systems (e.g., oceanographic buoys),
the knowledge about the extreme behavior of wind and wave characteristics including directional
dependence is crucial. For instance, most of the support structures for offshore wind turbines,
either fixed or floating, are non-axisymmetric (apart from monopile foundations) leading to different
operational response and capacity as regards loading intensity from metocean characteristics and
fatigue performance. Analogously, there are wave energy converters (WECs), deployed either offshore
or nearshore, whose performance is highly affected by their orientation with respect to the prevailing
sea state direction. Specifically, attenuators are elongated floating devices that are oriented parallel
to the wave direction, with a horizontal extent comparable to the wavelength, while terminators are
oriented perpendicular to the predominant wave direction. The fact that the overall cost of energy
can be lowered through the continuous development of design of such structures and improved
risk assessment techniques render directionality an integral part of design optimization, reliability
and safety maximization. On top of that, current regulations and standards from well-established
organizations related to engineering design principles for structures at sea, such as the American
Bureau of Shipping (ABS) and the Det Norske Veritas (DNV), recommend as well the consideration of
directionality to ensure proper structural safety; see, for example, ABS [27] and DNV [28].

At a given location the long-term variability of a parameter under investigation depends inter alia
on the component of direction. For instance, extreme values of Hs are usually observed for specific
directional sectors depending on the particular characteristics of the location examined (e.g., fetch
length, bathymetry). In the context of describing the extremal properties of wave parameters, it is
common practice to work with hindcast data sets beside the fact that wave measurements are limited
in time (and in space) rendering them inappropriate for extrapolation purposes. Hindcast products
have the full information as regards wave conditions, hence mean wave direction can be taken into
account and treated as a covariate in order to obtain an integrated and more accurate model for the
estimation of the corresponding design values. The significance of directional behavior in works related
to offshore/coastal structures for harvesting marine resources has been highlighted by many authors;
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see, for example, Soukissian [29]; Wei et al. [30]; Soukissian and Karathanasi [31]. Nevertheless, the
involvement of directionality, along with other covariates such as space, in extreme value analysis has
gained ground mainly the past 15 years, with some sporadic works in the meantime dating back to the
early 80′s.

Specifically, Moriarty and Templeton [32] estimated extreme wind gusts for six directional sectors
by fitting a Generalized Extreme Value distribution in the design of large buildings. Maximum wind
speed as a function of direction has also been modelled by Coles and Walshaw [33], considering a
dependence structure across directions, because their a priori division leads to correlated directional
sectors and adapting techniques developed for spatial extremes. Similar approaches for modelling
extreme wind speed with a directional dependence structure have been presented by for example, Simiu
et al. [34] and Solari and Losada [35]. A methodology for the appropriate selection of uncorrelated
directional sectors has been proposed by Folgueras et al. [36], which reduces also the uncertainty in
the estimation of design values of wind speed. Sea currents have been investigated in the work of
Robinson and Tawn [37] by means of a parametric model for extreme current data by handling not
only directionality but temporal dependence and non-stationarity as well.

In a series of papers, Ewans and Jonathan [38], Ewans and Jonathan [39], Jonathan and Ewans [40]
and Jonathan et al. [41] have highlighted the importance of including directionality and seasonality
when studying extreme wave design criteria especially in storm-dominated regions. In the above
studies, extreme value modelling of storm peak significant wave height was based on GP distribution
with its unknown parameters expressed as a function of direction, while a risk-cost approach was
proposed for the construction of directional design criteria.

A common approach for the estimation of the design values is to bin the Hs values above the
defined threshold into directional sectors (either fixed or arbitrarily), perform extreme analysis in each
sector and then specify design values for a given return period for each sector. However, as stated
explicitly by Forristall [42], this sectoring approach leads to inconsistencies with the omni-directional
case in terms of design values while it is insufficient at locations where directionality is limited to
specific directional sectors. Following the rationale proposed by Robinson and Tawn [37] and Jonathan
and Ewans [40], the directional effects vary smoothly so that wave data and their actual behavior in
the marine environment are better represented by means of a smooth periodic function.

One of the objectives of this paper is to propose a penalized likelihood criterion for the estimation
of the unknown parameters of the directional extreme value model, which seems to be numerically
stable for optimization. The unknown parameters are expressed by means of a Fourier series expansion
and even for higher-order expressions the solution seems to be stable, when the penalty term is
considered. Moreover, a thorough analysis is performed as regards the methods of threshold selection
and declustering in order to obtain a better understanding of the effects of the different combinations
on the estimation of the GP parameters and the design values of Hs taking into account directionality
effects. In this context, three methods as regards threshold selection that are widely used in the relevant
literature are examined, namely mean excess function, threshold stability and percentiles, along with
two common declustering methods, that is, intervals and runs declustering methods. An additional
method for declustering extreme data proposed by Soukissian and Kalantzi [43] is also assessed.

The paper is structured as follows. In Section 2, the parameters of the GP distribution are expressed
through the standard directional extreme value model and a synopsis for the estimation parameters
using ML is presented. The inclusion of a penalty term in ML is also proposed in order to obtain
a more stable and reliable solution in the estimation of parameters. Moreover, an outline for the
estimation of the Hs design values is provided. The key features of the most frequently used threshold
selection and declustering methods are briefly described along with the DeCA declustering method,
which is physically consistent with the wave phenomenon. Section 3 deals with the estimation of the
uncertainties of parameters and design values focusing on the bias-corrected and accelerated bootstrap
method. In Section 4, the hindcast wave data are presented and statistically analyzed, with respect
to Hs and mean sea state direction θw, for four locations in the eastern Mediterranean Sea. Section 5
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includes some preliminary results regarding the determination of the proposed directional model
by considering all the combinations of the methods presented in Section 2, while the final results of
parameter estimates and design values along with their uncertainties is presented for a particular
combination (based on the maximum number of exceedances) for all locations. The last section includes
the concluding remarks of this analysis and suggestions for further research directions.

2. Directional Extreme Value Model

Let assume that there is a linear random variable X and a corresponding sample {xi}
n
i=1, along

with the sample {θi}
n
i=1 for the associated directional random variable, say Θ. Assuming that the GP

distribution describes the extreme observations above a threshold u, which is considered independent
of the directional variable Θ, the cumulative distribution function (cdf) of Y j = X( j) − u, j = 1, . . . , nu,
with X( j) denoting the observations that exceed the threshold u, is given by

GY j |θ j.u(y; σu, ξ) = 1−

1 +
ξ
(
θ j

)
y

σu
(
θ j

) 
−1/ξ(θ j)

, y > 0; σu > 0, (1)

for 1 + ξ
(
θ j

)
y/σu

(
θ j

)
> 0, where ξ is the shape parameter and σu > 0 is the scale parameter, both

expressed as functions of θ j, with
{
θ j

}nu

j=1
.

In the context of estimating the unknown parameters, as noted by Robinson and Tawn [37], it
is expected that they vary smoothly with direction. Thus, a Fourier series expansion is used for the
description of this (angular) dependence, which assures a periodic behavior of the estimates in terms
of the direction. In this respect, the general form of the Fourier series is for ξ and σu∑p

k=0

∑2

b=1
Abktb(kθ) and

∑p

k=0

∑2

b=1
Bbktb(kθ), (2)

respectively, where p denotes the order of the Fourier model, t1, t2 is the cosine and sine function,
respectively. Abk, Bbk are the unknown parameters for ξ and σu, respectively. For example, the first
order Fourier model results in the following relationships:

ξ(θ) = A10 + A11 cos(θ) + A21 sin(θ) and σ(θ) = B10 + B11 cos(θ) + B21 sin(θ). (3)

As noted by Jonathan and Ewans [40], the proper order of the model is determined by the
directional dependence of the data sample in hand; the more complex the directional dependence that
characterize the data, the higher the model order is.

2.1. Parameter Estimation

The unknown parameters Abk and Bbk, b = 1, 2, k = 0, . . . , p, are estimated by applying ML
estimation. The likelihood of the corresponding data sample

{
Y j

}nu

j=1
is obtained by

L
(
{Abk}, {Bbk};

{
Y j

}nu

j=1

)
=

nu∏
j=1

1

σu
(
θ j

) 1 +
ξ
(
θ j

)
σu

(
θ j

)Y j


−(1/ξ(θ j))−1

, (4)

and the negative log-likelihood (for ξ
(
θ j

)
, 0) by

` =
nu∑

i=1

[
log σu(θi) +

(
1 +

1
ξ(θi)

)
log

(
1 +

ξ(θi)

σu(θi)
Yi

)]
. (5)



Atmosphere 2020, 11, 274 5 of 26

ML estimates can be determined by setting the partial derivatives of ` with respect to Abk and Bbk,
b = 1, 2, k = 0, . . . , p, equal to zero, that is:

∂`
∂Abk

=

nu∑
j=1


− 1[

ξ
(
θ j

)]2

log

1 +
ξ
(
θ j

)
σu

(
θ j

)Y j

− (
1 + ξ

(
θ j

)) ξ
(
θ j

)
Y j

σu
(
θ j

)
+ ξ

(
θ j

)
Y j



tb

(
kθ j

) = 0 (6)

and
∂`
∂Bbk

=

nu∑
j=1

 1

σu
(
θ j

)  σu
(
θ j

)
−Y j

σu
(
θ j

)
+ ξ

(
θ j

)
Y j

tb
(
kθ j

) = 0, (7)

respectively. For large samples, the restriction for the ML estimator for the GP distribution to ensure
consistency, asymptotical normality and asymptotical efficiency is that ξ > −0.5, referred to as the
regular case [16]. For ξ ≥ 0.5, we have the non-regular case and for ξ > 1, ML estimators do not exist.

In this work, a penalty criterion is recommended for the extreme value estimates to ensure that
the directional dependence of ξ and σu is sufficiently described and that the solution is stable even if
either the order of the Fourier model is high or the weighting constant of the penalty term is small, as is
presented in Section 5. This penalty term is based on the absolute difference between the estimates
and the initial values of the parameters obtained from the independent fits calculated using data from
successive directional sectors of, say, 45-degree width so that ξ(θ) and σu(θ) are consistent with ξ
and σu obtained from the independent fits of each directional sector. As discussed in Section 5, the
minimum number of the 45-degree width sectors with sufficient amount of data should be set. This
number depends on the order of the Fourier model, along with the amount of data of each sector per
se. With the inclusion of the penalty term in the model fitting, the terms that are not consistent are
penalized appropriately. In this case, the negative log-likelihood with the penalty term takes the form

`P = `+ w
2(1+2p)∑

i=1

∣∣∣ϑi − ϑ̂i
∣∣∣, (8)

where w is a constant that gives the appropriate weight for the penalty term in model fitting and ϑi, ϑ̂i
denote the initial and final values of the unknown parameters, respectively, with p indicating the order
of the model. In Ewans and Jonathan [39], a roughness penalty, selected using the cross-validation
criterion, was adopted in order to obtain as smooth as possible estimates. In Figure 1, a preliminary
result is presented for a particular location (further analyzed in Sections 4 and 5), which shows the
instability of a high order Fourier model. The solid lines denote the form of the estimated parameters
ξ and σu obtained from the standard ML and the dashed lines denote the penalized version of ML
with w = 1. This result clearly shows the instability of the standard ML method when the order of
the Fourier model is high. For this particular order, the Fourier model has a better fit compared with
the independent fits with data from eight consecutive sectors of 45-degree width, while the standard
directional model shows a rather oscillatory behavior with a poor performance.

The directional extreme value model can be determined if the order of the model p is specified and
the constant w is selected. In order to justify whether the inclusion of the directional covariates into
the model is significant and judge which order of the Fourier model is the most adaptable in terms of
capturing directional dependence, the likelihood-ratio (LR) test can be applied [6,44]. This test is widely
used when nested models are compared. Suppose that the basic model M0 is nested within model M1,
which is more complex (e.g., the zeroth- and first-order directional models, respectively) with values of
the negative log-likelihood `0 and `1, respectively. The LR test statistic is then expressed as

TLR = −2(`0(M0) − `1(M1)). (9)
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Figure 1. Estimated parameters ξ and σu for a 5th order Fourier model with the consideration of
the penalty term (dashed line) and without (solid line). Circles represent the estimates from the
independent fits of the 45-degree sectors.

Under the null hypothesis that model M0 is the true model, the distribution of TLR is evaluated by
assessing whether the additional complexity of model M1 leads to a better improvement in terms of
performance compared to model M0. The asymptotic distribution of TLR under the null model is a
χ2

k distribution with k denoting the degrees of freedom equal to the difference among the number of
the models parameters. As long as the sample size is reasonably large, it is common to assume that
this distribution is valid for finite samples as well. Consequently, the null hypothesis is rejected at the
α level of significance if TLR exceeds the (1− α) quantile of the χ2

k distribution. Hence, model M1 is
selected in favour of model M0.

Given the order of the Fourier model for ξ(θ) and σu(θ), the constant w has to be set. This
selection is based on the minimization of the distance between the values of the estimated parameters
ξ and σu from the independent fits and the corresponding ones from the directional model. The
statistical metric that was selected due to the fair treatment of positive and negative differences is the
mean absolute error that is defined as follows:

MAE =
1

NS

p∑
i=1

∣∣∣ϑ̂i − ϑi
∣∣∣, (10)

where ϑ denotes the parameters ξ and σu estimated from the independent fits, ϑ̂ the corresponding
parameters estimated from the directional model and NS is the number of directional sectors. The
optimum value for w is selected when the metric is minimized for both parameters simultaneously.

2.2. Design Values for Directional Extreme model

Supposing that the GP distribution is suitable for modelling the exceedances and having estimated
its unknown parameters by the proposed method, we easily obtain the following result

P[X > x] = pu

[
1 + ξ̂(θ)

(
x− u
σ̂u(θ)

)]−1/ξ̂(θ)

, (11)
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where pu = P[X > u], that is, the probability of threshold exceedance. Introducing the term ‘mean
exceedance rate,’ which is the average number of observations above the threshold u per year, an
estimate of pu can be given by the empirical distribution function

p̂u =
nu

n
, (12)

where nu is the number of observations exceeding the threshold u. Let it be noted that p̂u is also the ML
estimate of pu, since the number of threshold exceedances follow the binomial distribution Bin(n, pu).

Now, assuming that n measurements X1, . . . , Xn were taken during ny observation years then it is
implied that during T years there are nT/ny observations. Thus, the xT− return level (that is exceeded
on average once in T years) is obtained by rearranging Equation (8) and using Equation (9). The return
level (design value) xT for a given return period T can be estimated by

xT =


u +

σ̂u(θ)

ξ̂(θ)

(nuT
ny

)ξ̂(θ)
− 1

, ξ̂(θ) , 0

u + σ̂u(θ)ln
(

nuT
ny

)
, ξ̂(θ) = 0,

(13)

2.3. Methods for Threshold Selection

The a priori selection of a suitable threshold implies the existence of an additional unknown
parameter for the GP distribution, which may affect the validity of the estimates and is still an open
issue with no established commonly accepted approach. This selection is a trade-off between bias and
variance. A low threshold will result in large bias and low variance leading to incorrect results for
the obtained estimates since less representative extreme data are taken into account whereas a high
threshold will result in small bias and large variance in the estimation of the parameters, leading to
unreliable results due to the smaller sample size.

A plethora of statistical techniques has been proposed for the determination of the appropriate
threshold. According to the work of Langousis et al. [23], these methods can be roughly categorized as
follows: (i) graphical methods where one searches for linear behavior of the GP parameters (or related
metrics) within a range of thresholds, such as mean residual life plot and parameter stability plot; (ii)
goodness-of-fit-tests that detect the lowest threshold for which the GP distribution is suitable either by
minimizing the asymptotic mean square error of the estimators or quantifying the deviations between
the theoretical distribution and the empirical cdf, and; (iii) non-parametric methods that determine the
appropriate starting point of the extreme region of the data record. Since each method leads to different
threshold choices, the sensitivity of the inferences (as regards parameter estimation) is evaluated as
well. Thus, in the subsequent sections, a summary of the most widely used approaches that will be
used in this work is presented.

2.3.1. Mean Excess Plot

Following the threshold stability property of the GP distribution (i.e., shape and modified scale
parameters remain constant for higher value of the threshold) and supposing that the excesses over
a threshold u∗ follow this distribution, Davison and Smith [45] suggested using the mean of the
GP distribution

E[X − u∗|X >u∗] =
σu∗

1− ξ
, (14)

for ξ < 1, which is called mean excess (or mean residual life) function of X. For any threshold u > u∗,
the above expectation takes the form

E[X − u|X >u] =
σu

1− ξ
=
σu∗ + ξu

1− ξ
, (15)
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which is linear in u with slope ξ/(1− ξ).
Given an independent and identically distributed (iid) sample X1, . . . , Xn, an estimator of

Equation (12), say ê(u), is the empirical mean excess function defined as:

ê(u) =

∑nu
i=1(Xi − u)I{Xi>u}∑nu

i=1 I{Xi>u}
, (16)

where I{Xi>u} = 1 if X > u and 0 otherwise, meaning that it is estimated as the ratio of the sum of
the exceedances over the threshold and the total number of observations exceeding the threshold.
The properties of mean excess function are described in Hall and Weller [46]. A proper threshold can be
obtained by plotting ê(u) as a function of the threshold u and identifying the lowest value of threshold
above which ê(u) increases approximately linearly. This plot has been implemented in practice by
Hogg and Klugman [47], Begueria [48], Sanchez-Arcilla et al. [49], among others.

2.3.2. Threshold Stability Plot

An alternative graphic technique focuses on the stability of parameter estimates for a range of
threshold values u; see Section 4.3.4 of Coles [6]. If a GP model is acceptable for fitting the excesses
over a threshold u∗, then for increased thresholds, for example, u > u∗, the excesses should also follow
a GP distribution with the same shape parameter at threshold u∗ and a new scale parameter. The scale
parameter σu is estimated by σu = σu∗ + ξ(u− u∗). The modified scale parameter can be reparametrized
as σu − ξu, which is constant with respect to u. Consequently, the estimates of the shape and modified
scale parameters remain constant above u∗, if excesses follow the GP distribution with u∗ being a
valid threshold.

Estimates of the shape and the modified scale parameters are plotted against u and the appropriate
threshold corresponds to the lowest threshold value for which these estimates are nearly constant.
Mean excess and threshold stability plots can be applied simultaneously to obtain the optimum
threshold. The main drawbacks of the above graphic approaches as a method of threshold selection is
that they require expertise from the analyst for the interpretation of these diagnostics and they can be
quite subjective. In addition, as a non-automated method, it is not suggested when multiple locations
need to be examined in the context of extreme value analysis.

2.3.3. Percentiles

Among the most common rules of thumb used to derive threshold values is the percentiles (or
quantile method). After specifying the appropriate percentile value, the threshold is selected so that it
corresponds to the percentile of the time series in hand. For example, the 95% percentile represents the
value of the significant wave height that exceeds the 95% of the corresponding ordered sample and this
value is selected as threshold. Despite its simplicity, the main drawback is the subjectivity involved.
In the relevant literature, a range of percentiles has been proposed. For instance, Dumouchel [50]
suggested the upper threshold of 10% but with inadequate theoretical justification, while Eastoe and
Tawn [51] used the 95% percentile for river flow data. Grabemann and Weisse [52] chose to represent
extreme conditions of wind speed and significant wave height by applying the 99th percentile, while
in Arns et al. [53], percentiles varying between the 97.5th and the 99.7th percentile were examined in
order to derive the most appropriate threshold for water level data from tide gauge records in various
locations; the 99.7th percentile was identified as the most appropriate for the examined study areas.

2.4. Methods for Declustering

Regarding the extreme values of metocean parameters, it is valid that if the time step of the series is
smaller than a typical duration of an extreme event (i.e., storm) then they occur in clusters, implying that
there is temporal correlation between sequential values. However, in order to apply the POT method,
it is essential to ensure that there is mutual independence between extreme events. The prerequisite
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of independence is achieved by means of declustering, a method that takes out the dependent
observations from a correlated series of extreme events so that independent threshold exceedances are
extracted reasonably. An alternative term for this method, usually adopted in hydrological studies,
is ‘meteorological independence criterion’ [54,55]. This approach was implicitly applied first by
Davenport [56] and its main principle is to select the maximum value between consecutive up- and
down-crossings of the mean. Several declustering techniques have been developed in the context of
extreme value analysis and the outline of this procedure is summarized below:

1. Define clusters of observations in case of consecutive exceedances based on an empirical criterion
or parametric models (e.g., Markov chain models, Bartlett-Lewis process).

2. Identify the highest value in each cluster, called declustered peaks.
3. Assume the declustered peaks are independent and fit GP distribution to these peaks.

It is evident that the definition of the cluster entails some degree of subjectivity or arbitrariness,
especially when empirical rules are applied, affecting in turn the results. On the other hand, in Davison
and Smith [45] it was stated that if a reasonable selection is made as regards the average number of
clusters per unit time for the identification of clusters then the results seem to be insensitive to this
precise value. A brief overview of the most commonly used declustering methods for POT models is
provided below.

2.4.1. Runs Declustering Method

Runs declustering method, described by Smith and Weissman [57], assumes that successive
threshold exceedances form a separate cluster as long as their duration does not surpass a set run
length, that is, a predefined minimum interval between two successive peaks indicating the termination
of a cluster. As in the case of the threshold selection u, there is no formal procedure for the selection
of run length; thus, in order to avoid improper choices of run length, which may lead to bias or
high variance, the choice of the run length relies on the commonsense experience and the physical
background that governs the variable of interest. For instance, when studying ocean waves variables,
the run length should be large enough so that the entire duration of fully developed sea states is
included. In the relevant literature, a run length of 30h to 96h is chosen to ensure independence
between the declustered peaks [58–63].

2.4.2. Intervals Declustering Method

A more sophisticated and automatic declustering scheme was developed by Ferro and Segers [64]
with the aim of determining the run length directly from the data. It is based on the a priori estimation
of the extremal index θu, θu ∈ [0, 1], which measures the degree of the extreme events to cluster in a
stationary process, with θu = 1 denoting independent extreme data. The extremal index has a direct
physical meaning since the inverse of θu roughly corresponds to the mean cluster size. A review of
estimation methods for the extremal index can be found in Ferreira [65] and Moloney et al. [66].

The main difference with runs declustering method is that it does not involve any arbitrary
choice in the process of obtaining independent clusters of exceedances and that the automation of the
technique lies in the interconnection of threshold selection and declustering, meaning that a different
extremal index is chosen with changes in the POT threshold. This approach has been applied by Acero
et al. [67] Cebrian and Abaurrea [68] and Della-Marta et al. [69], among others.

2.4.3. Declustering Algorithm (DeCA)

In the context of acquiring statistically independent values of significant wave height, a declustering
method was developed by Soukissian and Kalantzi [43] that detects sequences of almost independent
maxima from the initial time series in hand based on the physical features of a sea-state system.
Specifically, large wave energy reductions between local maximum and subsequent minimum values
of significant wave height imply the transition to a different sea-state system and hence leads to the
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identification of clusters of extreme events from the data series that are ”physically” independent.
After a filtering procedure of the initial time series using monotonicity for the detection and removal
of stationary sequences, the local maxima and minima are identified and then the corresponding
wave energy differences are calculated. If the wave energy reduction is lower than a predefined
percentage, then it is considered that the examined sea-state system has ended, forming thus a separate
independent cluster. Again, the maximum value within each cluster is extracted to fit the GP model. A
rational selection of energy reduction percentage is over 80% that was also adopted in that work. The
use of this declustering technique can be also found in Soukissian and Arapi [70].

3. Uncertainty Quantification

The estimation of the uncertainties of the extreme values parameters and the design values were
based on the bootstrapping technique, introduced by Efron [71], and it was used due to its generality
and its automatic implementation. Various bootstrap methods have been reviewed by Tajvidi [72]
for the construction of confidence intervals for the GP distribution parameters and quantiles and it
was concluded that for small sample sizes none of the bootstrap methods gives satisfactory results.
Moreover, Coles and Simiu [73] proposed an empirical correction of the bootstrap estimates, based
on a bias correction to the bootstrap parameter estimates, since there is a tendency of the bootstrap
procedure to provide generally shorter tails than the one from the original time series. In this respect,
the bias-corrected and accelerated (BCA) bootstrap method, developed by Efron [74], is applied in this
work since it attempts to correct for both bias and skewness in the distribution of bootstrap estimates;
for more details, see Efron and Tibshirani [75].

Suppose that h is the parameter of interest and let denote by ĥ∗ a bootstrap replication of ĥ obtained
by resampling with replacement from the original data sample. The underlying assumption of BCA
method is that a monotone transformation φ = m(h) exists such that φ̂ ∼ N

(
φ− z0(1 + aφ), (1 + aφ)2

)
,

where z0 and a are the bias-correction and acceleration constants, respectively. The former constant is
related to the proportion of bootstrap estimates that are less than the corresponding estimate of the
original sample and its estimate can be provided by

ẑ0 = Φ−1

 #̂h
∗
(r) < ĥ
R

, (17)

with Φ denoting the standard normal cumulative distribution function and r = 1, 2, . . . , R denoting
each bootstrap sample with total number of bootstrap samples R. The latter correction is proportional
to the skewness of the bootstrap distribution and can obtained by the jackknife method. Let ĥ(i),
i = 1, . . . , n, denote the value of the estimate based on the entire original data sample apart from the
i−th observation. An estimate of the acceleration constant is given by

â =

∑n
i=1

(
ĥ(·) − ĥ(i)

)3

6
[∑n

i=1

(
ĥ(·) − ĥ(i)

)2
]1.5

, (18)

where ĥ(·) = n−1 ∑n
i=1 ĥ(i).

Having the values of ẑ0 and â, the interval of BCA method is given by
(
ĥ(α1), ĥ(α2)

)
, where

α1 = Φ
(
ẑ0 +

ẑ0+z(α)

1−â(ẑ0+z(α))

)
and α2 = Φ

(
ẑ0 +

ẑ0+z(1−α)

1−â(ẑ0+z(1−α))

)
with z(α) the 100α−th percentile point of a

standard normal distribution.
Given the original (random) sample of pairs of one linear and one directional variable (x,θ), say

{si}
n
i=1, the procedure of the adopted bootstrapping is summarized in the following steps for estimating

the confidence intervals of the extreme value parameters:



Atmosphere 2020, 11, 274 11 of 26

• Step 1: Estimate the unknown parameters
(
σ̂u, ξ̂

)
of the GP distribution (as functions of θ) from

the initial sample using the ML method described above.

• Step 2: Create r (random) samples
{
s(r)i

}n

i=1
, r = 1, . . . , R, by random resampling with replacement

from the initial sample and obtain the estimates
(
σ̂∗u, ξ̂∗

)
.

• Step 3: Repeat step 2 for a large number R. The minimum number of bootstrap sample R for the
calculation of reliable confidence intervals is 1000, as is suggested by various studies that address
modelling of extremes of environmental parameters; see, for example, Kysely [76], Panagoulia, et
al. [77] and Soukissian and Tsalis [78].

• Step 4: Estimate the two constants of BCA bootstrap method, ẑ0 and â for each unknown parameter.

Then estimate the lower and upper limits σ̂(α1)
u , ξ̂(α1) and σ̂(α2)

u , ξ̂(α2), respectively.

4. Description of Wave Data

Reanalysis wave data from the ERA-Interim database for four grid points located in the Eastern
Mediterranean Sea were used. The wave parameters that were obtained for the purposes of this work
were the significant wave height HS and the mean wave direction θW . The geographical coordinates,
the measurement period and the sample size of each grid point are listed in Table 1; see also Figure 2.
The three areas (Aegean Sea, Otranto Strait and Sicily Strait) were selected as indicative locations
with high wave energy flux and relatively low variability in the Mediterranean Sea; see, for example,
Besio et al. [79]. On the contrary, Ligurian Sea is one of the most active areas of cyclogenesis in
the Mediterranean. Moreover, this area is characterized by very strong and rapid variability of
meteorological conditions [80].

Table 1. Area names, geographical locations, recording periods and sample sizes of wave data sets.

Area Latitude, Longitude (◦) Period Sample Size

Aegean Sea 37.75◦ N, 25.25◦ E

1979–2014 52,596Ligurian Sea 43.25◦ N, 9.75◦ E
Otranto Strait 40.25◦ N, 19.00◦ E

Sicily Strait 37.75◦ N, 12.25◦ E

Atmosphere 2020, 11, 274 11 of 26 

 

Given the original (random) sample of pairs of one linear and one directional variable (𝑥𝑥,𝜃𝜃), say 
{𝒔𝒔𝒊𝒊}𝑖𝑖=1𝑛𝑛 , the procedure of the adopted bootstrapping is summarized in the following steps for 
estimating the confidence intervals of the extreme value parameters: 

• Step 1: Estimate the unknown parameters �𝜎𝜎�𝑢𝑢, 𝜉𝜉� of the GP distribution (as functions of 𝜃𝜃) from 
the initial sample using the ML method described above. 

• Step 2: Create 𝑟𝑟  (random) samples �𝒔𝒔𝒊𝒊
(𝒓𝒓)�

𝑖𝑖=1

𝑛𝑛
, 𝑟𝑟 = 1, … ,𝑅𝑅 , by random resampling with 

replacement from the initial sample and obtain the estimates �𝜎𝜎�𝑢𝑢∗, 𝜉𝜉∗�.  
• Step 3: Repeat step 2 for a large number 𝑅𝑅. The minimum number of bootstrap sample 𝑅𝑅 for 

the calculation of reliable confidence intervals is 1000, as is suggested by various studies that 
address modelling of extremes of environmental parameters; see, for example, Kysely [76], 
Panagoulia, et al. [77] and Soukissian and Tsalis [78]. 

• Step 4: Estimate the two constants of BCA bootstrap method, �̂�𝑧0  and 𝑎𝑎�  for each unknown 
parameter. Then estimate the lower and upper limits 𝜎𝜎�𝑢𝑢

(𝛼𝛼1), 𝜉𝜉(𝛼𝛼1) and 𝜎𝜎�𝑢𝑢
(𝛼𝛼2), 𝜉𝜉(𝛼𝛼2), respectively. 

4. Description of Wave Data 

Reanalysis wave data from the ERA-Interim database for four grid points located in the Eastern 
Mediterranean Sea were used. The wave parameters that were obtained for the purposes of this work 
were the significant wave height 𝐻𝐻𝑆𝑆 and the mean wave direction 𝜃𝜃𝑊𝑊. The geographical coordinates, 
the measurement period and the sample size of each grid point are listed in Table 1; see also Figure 
2. The three areas (Aegean Sea, Otranto Strait and Sicily Strait) were selected as indicative locations 
with high wave energy flux and relatively low variability in the Mediterranean Sea; see, for example, 
Besio et al. [79]. On the contrary, Ligurian Sea is one of the most active areas of cyclogenesis in the 
Mediterranean. Moreover, this area is characterized by very strong and rapid variability of 
meteorological conditions [80]. 

Table 1. Area names, geographical locations, recording periods and sample sizes of wave data sets. 

Area  Latitude, Longitude (°) Period Sample size  
Aegean Sea 37.75° N, 25.25° E 

1979–2014 52,596 
Ligurian Sea 43.25° N, 9.75° E 
Otranto Strait 40.25° N, 19.00° E 

Sicily Strait 37.75° N, 12.25° E 

 

Figure 2. Location and name of the examined grid points. 

The statistical parameters that are examined for 𝐻𝐻𝑆𝑆 are the mean value 𝑚𝑚𝐻𝐻𝑆𝑆, median 𝑚𝑚𝑒𝑒𝑚𝑚𝐻𝐻𝑆𝑆, 
minimum min𝐻𝐻𝑆𝑆  and maximum max𝐻𝐻𝑆𝑆  values, standard deviation 𝑠𝑠𝐻𝐻𝑆𝑆 , coefficient of variation 
𝐶𝐶𝐶𝐶𝐻𝐻𝑆𝑆, skewness 𝑆𝑆𝑘𝑘𝐻𝐻𝑆𝑆 and kurtosis 𝐾𝐾𝑢𝑢𝐻𝐻𝑆𝑆. The results for all these parameters are presented in Table 
2. The locations Aegean Sea and Sicily Strait are characterized by the highest mean and median values 

Figure 2. Location and name of the examined grid points.

The statistical parameters that are examined for HS are the mean value mHS , median medHS ,
minimum minHS and maximum maxHS values, standard deviation sHS , coefficient of variation CVHS ,
skewness SkHS and kurtosis KuHS . The results for all these parameters are presented in Table 2. The
locations Aegean Sea and Sicily Strait are characterized by the highest mean and median values of HS
(1 m and 0.8 m, respectively), while in the latter location the maximum value of HS is encountered
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(6.4 m). On the other hand, the location Otranto Strait presents the highest values of SkHS and KuHS ,
denoting a highly right skewed distribution of HS and rather heavy tails.

Table 2. Basic (linear) statistics of significant wave height at the examined locations.

Locations mHS

(m)
medHS

(m)
minHS

(m)
maxHS

(m)
sHS

(m)
CVHS

(%) SkHS KuHS

Aegean Sea 1.0 0.8 0.1 5.4 0.7 69.5 1.3 5.3
Ligurian Sea 0.6 0.5 0.1 5.4 0.5 80 1.8 7.6

Otranto
Strait 0.5 0.3 0.0 3.8 0.4 85.5 1.9 7.7

Sicily Strait 1.0 0.8 0.1 6.4 0.7 74.4 1.7 7.1

In Table 3, the values of some basic circular (statistical) parameters (i.e., mean direction mθW , mean
resultant length RθW , circular variance VθW , circular standard deviation sθW , skewness SkθW , kurtosis
KuθW ) as regards wave direction are presented. The definitions of the above parameters can be found
in Fisher [81]. It is noticed that the mean wave direction at Ligurian Sea and Sicily Strait (both located
western of Italy) is coming from the western sector, while at Aegean Sea and Otranto Strait the mean
direction of wave propagation is from the northern and south-eastern, respectively. Moreover, Aegean
Sea has the highest value of RθW (0.42) and the lowest value of VθW (0.58), respectively, denoting quite
concentrated data at a particular directional sector. The lowest absolute values for SkθW (0.18) and KuθW

(0.20) are encountered at Ligurian Sea and Sicily Strait, respectively, implying that the corresponding
dataset is rather multimodal.

Table 3. Basic (circular) statistics of mean wave direction at the examined locations.

Locations mθW

(rad)
¯
RθW

VθW sθW SkθW KuθW

Aegean Sea 353.47 0.42 0.58 1.08 0.38 0.51
Ligurian Sea 272.26 0.31 0.69 1.18 −0.18 0.22
Otranto Strait 240.07 0.17 0.83 1.29 −0.29 −0.32

Sicily Strait 287.50 0.39 0.61 1.11 0.28 0.20

In Figure 3, the bivariate histograms of HS and θW are provided for each location. From these
histograms it is clear that there is a strong dependence between the two wave characteristics, especially
for particular directional sectors. For instance, for all locations, except for Ligurian Sea, the northern
sector is highly associated with low (for Otranto Strait) to medium values of HS (for Aegean Sea and
Sicily Strait), while Otranto Strait and Sicily Strait present moderate dependence of HS with other
directional sectors as well.
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Figure 3. Bivariate histograms of significant wave height 𝐻𝐻𝑆𝑆 and mean wave direction 𝜃𝜃𝑊𝑊  for (a) 
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and for 𝜃𝜃𝑊𝑊 is 15°. 
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Figure 3. Bivariate histograms of significant wave height HS and mean wave direction θW for (a)
Aegean Sea, (b) Ligurian Sea, (c) Otranto Strait and (d) Sicily Strait. The bin width for HS is 0.5m and
for θW is 15◦.

5. Numerical Results

5.1. Preliminary Results

For each examined location, seven different combinations of the methods for threshold selection
and declustering are performed. Each of the threshold selection methods (i.e., mean excess function,
threshold stability plot, percentile) is combined with runs and intervals declustering methods along
with DeCA declustering method. For the latter method, the threshold is obtained as the median of
the declustered values. Firstly, the threshold values of HS are estimated irrespective of θW . After a
sensitivity analysis, the 95th percentile was used to derive threshold values, since higher percentiles
provided a smaller sample of extreme data that result in large variance [82]. As regards threshold
values from mean excess and threshold stability plots, the packages ‘evmix v2.11′ and ‘extRemes
v2.0.10′ in R were used, respectively; the corresponding graphs are provided in Figure 4. In Table 4,
the threshold values of HS for each location and method are summarized. The maximum threshold
values are systematically provided by the DeCA method, while the minimum ones from the mean
excess. It is obvious from the mean excess plots of all locations that the decreasing behavior of the
mean excess function shows that the higher we go in the sample data, the lower the excess values are,
indicating a thin-tailed behavior of the distribution.

Table 4. Threshold values of significant wave height (in m) by threshold selection method for the
examined locations.

Threshold Selection Method Aegean Sea Ligurian Sea Otranto Strait Sicily Strait

95th percentile 2.32 1.62 1.24 2.47
Mean excess function 1.90 1.30 0.96 2.00

Threshold stability 2.10 1.50 1.00 2.10
DeCA 2.61 1.89 1.25 2.66
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Fourier model that sufficiently describes the variability of the extreme value parameters for each 
location. As shown in Table 6, the majority of the considered combinations of methods for threshold 
selection and declustering for the examined locations concerns the first order Fourier model apart 
from Otranto Strait, where the higher order model indicates its directional complexity (see also 
Section 4). Let it be noted that the initial values for the ML approach are obtained by estimating the 
parameters of the Fourier model from the independent fits by least squares method, which implies a 
sufficient number of equations according to the number of the unknown parameters (i.e., the order 
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abovementioned methods, when the number of the 45-degree width sectors with sufficient number 
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In Table 5, the number of exceedances for HS after implementing the declustering methods
for each threshold selection method is provided for the examined locations. These HS exceedances
along with the corresponding values of θW are used for fitting the directional extreme value model
described in Section 2. Let it be noted that for runs declustering, a run length of 36h was chosen
as the most representative for the examined locations, providing sufficient data for the subsequent
analysis. Mean excess function and intervals declustering method provide systematically the largest
number of exceedances for all locations. On the other hand, DeCA provides the smallest one, rendering
its position disadvantageous in the directional extreme value analysis, since a sufficient number of
exceedances (>20 (HS, θW) pairs of extreme values) is preferred for each 45-degree sector in order to
obtain reliable results from the GP distribution fit.

Table 5. Number of exceedances of significant wave height for each combination of methods and for
all locations.

Threshold Selection Method Declustering Method Aegean Sea Ligurian Sea Otranto Strait Sicily Strait

95th percentile Runs 323 340 297 288
Intervals 671 830 782 669

Mean excess function
Runs 383 374 326 328

Intervals 1234 1303 1229 1064

Threshold stability Runs 365 359 325 322
Intervals 939 991 1165 963

DeCA DeCA 197 285 308 233

With the final exceedances in hand, the LR test was performed to determine the order of the
Fourier model that sufficiently describes the variability of the extreme value parameters for each
location. As shown in Table 6, the majority of the considered combinations of methods for threshold
selection and declustering for the examined locations concerns the first order Fourier model apart from
Otranto Strait, where the higher order model indicates its directional complexity (see also Section 4).
Let it be noted that the initial values for the ML approach are obtained by estimating the parameters
of the Fourier model from the independent fits by least squares method, which implies a sufficient
number of equations according to the number of the unknown parameters (i.e., the order of the Fourier
model). Thus, in order to ensure a fair comparison between the combinations of the abovementioned
methods, when the number of the 45-degree width sectors with sufficient number of exceedances (>20)
was less than three (out of eight) for the first order Fourier model, the corresponding combination of
methods was omitted from the analysis. The restriction for the second and third order models is five
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and seven sectors, respectively. The results of Table 6 in italics denote the combinations of methods
that satisfy these two restrictions. DeCA method is not included henceforth because even for the first
order model, the sectors satisfying the above conditions was less than three.

Table 6. Order of the Fourier model and value of the weighting constant w (within parenthesis) for
each combination of methods and for all locations.

Threshold Selection Method Declustering Method Aegean Sea Ligurian Sea Otranto Strait Sicily Strait

95th percentile Runs 1 (0.20) 3 (0.24) 1 (0.13) 1 (0.06)
Intervals 1 (0.03) 3 (0.18) 1 (0.12) 1 (0.01)

Mean excess function
Runs 1 (0.31) 2 (0.42) 1 (0.22) 1 (0.10)

Intervals 2 (0.09) 1 (0.17) 3 (0.03) 1 (0.02)

Threshold stability Runs 1 (0.17) 3 (0.42) 1 (0.17) 1 (0.29)
Intervals 1 (0.02) 1 (0.30) 1 (0.03) 3 (0.03)

DeCA DeCA 1 (0.20) 3 (0.24) 1 (0.13) 1 (0.06)

In the estimation of parameters with the penalized ML, an additional constant w needs to be
determined. This constant is estimated based on the minimum value of mean absolute error between
the estimated parameters from the directional extreme model and the ones obtained by the independent
fits from the successive directional sectors of 45-degree width, provided simultaneously for both
extreme parameters ξ and σu. The obtained results are shown within the parenthesis in Table 6.

In Figure 5, the proposed directional extreme value model (dashed line) is provided along with
the standard directional model (solid line), which does not consider the penalty term for the estimation
of parameters (i.e., w = 0), for Aegean Sea and Otranto Strait locations. From Figure 5, it is shown that
the estimates obtained from the proposed model provide better results than the standard directional
model, when compared with the estimates derived from the independent fits of successive sectors with
width 45◦ (indicated by circles), even for a small weighting constant. Note these two examples consider
different order for the Fourier model and different weighting constants w. From these preliminary
results at the selected locations, it is evident that both the use of the directional extreme value model
and the inclusion of the penalty term in ML method are important for the reliable estimation of the
design values of HS and the confidence intervals.
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Figure 5. Estimated parameters 𝜉𝜉 and 𝜎𝜎𝑢𝑢 of the directional extreme value model obtained with the 
consideration of the penalty term (dashed line) and without (solid line) for (a) Aegean Sea and (b) 
Otranto Strait. Circles represent the estimates from the independent fits of the 45-degree sectors. 

Figure 5. Estimated parameters ξ and σu of the directional extreme value model obtained with the
consideration of the penalty term (dashed line) and without (solid line) for (a) Aegean Sea and (b)
Otranto Strait. Circles represent the estimates from the independent fits of the 45-degree sectors.

In Figure 6, the cdfs obtained from the directional extreme value model with and without the
inclusion of the penalty term along with the empirical cdf are presented for Aegean Sea and Otranto
Strait locations. For the latter location, both cdfs have a similar behavior while for the former one, the
cdf with the penalty term overestimates the empirical one.
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5.2. Final Results

In this section, we focus on the estimation of the design values of HS for 50- and 100-year return
period for the combination of methods that provide the largest sample size of exceedances, that is, the
mean excess function for threshold selection and the intervals declustering method. In Tables 7–10, the
values of the estimates and the corresponding 97.5% confidence intervals using the BCA bootstrap
method, with 2000 bootstrap resamples, are given for all locations. As was concluded by Coles and
Simiu [73], bootstrapping can provide reliable and realistic estimates for uncertainties in extreme value
analysis if carefully implemented.

Table 7. Point and interval estimates of the directional model for Aegean Sea.

Parameter Estimate Bootstrap 97.5% CIs

A10 −0.17 [−0.59, −0.04]
A11 0.10 [−0.31, 0.20]
A21 −0.20 [−0.54, −0.06]
A12 0.14 [−0.09, 0.22]
A22 0.06 [−0.46, 0.32]
B10 0.66 [0.36, 0.79]
B11 −0.02 [−0.28, 0.10]
B21 0.35 [−0.16, 0.52]
B12 −0.13 [−0.42, −0.05]
B22 0.00 [−0.64, 0.18]

Table 8. Point and interval estimates of the directional model for Ligurian Sea.

Parameter Estimate Bootstrap 97.5% CIs

A10 −0.07 [−0.29, −0.02]
A11 −0.02 [−0.20, 0.05]
A21 0.07 [−0.17, 0.16]
B10 0.54 [0.46, 0.57]
B11 0.16 [0.01, 0.21]
B21 −0.08 [−0.20, −0.01]
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Table 9. Point and interval estimates of the directional model for Otranto Strait.

Parameter Estimate Bootstrap 97.5% CIs

A10 −0.24 [−0.87, −0.11]
A11 0.00 [−0.31, 0.09]
A21 0.15 [−0.44, 0.31]
A12 0.16 [−0.64, 0.28]
A22 0.16 [−0.24, 0.30]
A13 0.15 [−0.43, 0.32]
A23 −0.07 [−0.26, 0.00]
B10 0.51 [0.23, 0.54]
B11 −0.14 [−0.35, −0.09]
B21 0.00 [−0.20, 0.10]
B12 −0.01 [−0.23, 0.07]
B22 −0.15 [−0.33, −0.06]
B13 −0.03 [−0.27, 0.05]
B23 0.09 [−0.08, 0.15]

Table 10. Point and interval estimates of the directional model for Sicily Strait.

Parameter Estimate Bootstrap 97.5% CIs

A10 0.00 [−0.52, 0.08]
A11 −0.16 [−1.05, −0.04]
A21 −0.02 [−0.71, 0.13]
B10 0.71 [0.27, 0.76]
B11 0.37 [−0.45, 0.47]
B21 −0.09 [−0.96, 0.01]

Figure 7 shows HS design values with direction for the 50-year return period by considering three
different approaches; the blue solid line represents the estimates from the proposed directional model,
the green dashed line represents the estimate obtained by the GP distribution without the consideration
of the directional complexity of its parameters (omni-directional case) and the red circles represent the
estimates from the independent fits of the eight consecutive directional sectors. These results along
with the 97.5% confidence intervals are also depicted in Figures 8b, 9b, 10b and 11b. Note that in order
to assure consistency between the results from the omni-directional case and the indep8endent fits
from each directional sector, the return period is multiplied by the number of sectors as was suggested
by Forristall [42]. In this way, the product of the probabilities obtained from each sector equals the
probability of non-exceedance from the omni-directional criterion. For all locations, the design value
obtained from the standard GP fit is lower compared to the estimates provided at the peaks of the
directional model. Moreover, the design values estimated by the sectors with the largest number of
observations are always higher than the corresponding design value obtained from the standard GP fit.
The performance of the proposed directional model is apparently very satisfactory for Aegean Sea
and Otranto Strait (Figure 7a,c, respectively), while for the rest of the locations, this model seems to
provide consistently higher design values for HS when compared with the independent fits. A possible
explanation could be the low order of the Fourier model; see also Figures 9b and 11b, where the range
of the lower bounds of confidence intervals is relatively high.
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50-year return period), even though it is the second dominant directional sector for 𝐻𝐻𝑆𝑆, while 
the southern sector, with the least amount of extreme data, provides the lowest values (3.6 m).  

• For Otranto Strait, the two dominant wave directions (in the south and south-eastern sectors) 
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Figure 7. HS design values for the 50-year return period obtained by the proposed directional model
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Otranto Strait and (d) Sicily Strait.
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return period with 97.5% confidence intervals from BCA method for Otranto Strait. 

6. Conclusions 

Estimation of design values of wave parameters by means of directional extreme value models 
can be in favor of extreme value models that ignore direction in wave energy applications, where the 
consideration of directionality is crucial in the design of marine structures. With the increasing 

Figure 9. (a) Wave rose of HS exceedances and HS design values for (b) 50-year and (c) 100-year return
period with 97.5% confidence intervals from BCA method for Ligurian Sea.
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6. Conclusions 

Estimation of design values of wave parameters by means of directional extreme value models 
can be in favor of extreme value models that ignore direction in wave energy applications, where the 
consideration of directionality is crucial in the design of marine structures. With the increasing 

Figure 10. (a) Wave rose of HS exceedances and HS design values for (b) 50-year and (c) 100-year return
period with 97.5% confidence intervals from BCA method for Otranto Strait.
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The proposed method can be transferred to other locations as well, provided that there are 
enough data in each directional sector (at least 20) and the non-empty directional sectors are adequate 
according to the order of the Fourier model. For example, the first order model requires at least three 

Figure 11. (a) Wave rose of HS exceedances and HS design values for (b) 50-year and (c) 100-year return
period with 97.5% confidence intervals from the BCA method for Sicily Strait.

In Figures 8a, 9a, 10a and 11a, the wave rose diagrams of HS and θW representing the exceedances
(as a frequency of occurrence) obtained from the implementation of mean excess function for threshold
selection and the intervals declustering method are presented for all locations. In Figure 8b,c, Figure 9b,c,
Figure 10b,c, and Figure 11b,c. the 50- and 100-year HS design values are shown along the 97.5%
confidence intervals estimated by the BCA method. These levels seem reasonable when considering
that the expected lifetime of WECs is 20–25 years on average [83]. A general remark concerning all
locations is that the range between the HS design value and the upper bounds is much smaller than
the corresponding range with the lower bounds. Another remarkable result is that in two locations it
is not expected to encounter extreme HS values from the dominant directional sector but from the next
one, which may have a more limited amount of data. Since the results of the 50- and 100-year return
period are similar, the following comments can be summarized for both return periods per location:

• For Aegean Sea, the dominant sector for extreme wave heights is the northern one, probably
attributed to the Etesian winds, which gives extreme values up to 7 m at this sector and lower
values characterize the rest directional sectors (e.g., for the sector [50◦, 310◦] the HS value is 4.3
m in the mean) as regards the 50-year return period. Furthermore, the low values of the lower
bound of the 97.5% confidence intervals in the north-western sector can be justified by the lack of
data obtained from the implementation of the specific combination of methods.

• For Ligurian Sea, the north-eastern sector is characterized by high values of HS (5.4 m for the
50-year return period), even though it is the second dominant directional sector for HS, while the
southern sector, with the least amount of extreme data, provides the lowest values (3.6 m).
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• For Otranto Strait, the two dominant wave directions (in the south and south-eastern sectors) are
translated in two consecutive peaks in the HS design value graphs, while the two concave forms
(in the north-eastern and western sectors) correspond to the sectors with the minimum amount of
extreme data. Let note that the form of the lower bounds differs from the HS design value.

• For Sicily Strait, the location with the most intense sea states according to the analyzed hindcast
wave data, the second dominant directional sector for HS (i.e., the western) is characterized by the
highest HS design values (8.4 m for the 50-year return period) and the lowest values are observed
for the south-eastern sector (5.9 m for the 50-year return period). The largest difference between
the lower bounds of the confidence interval and the HS design value is close to 6.3 m for the
50-year return period encountered in the south-western sector.

6. Conclusions

Estimation of design values of wave parameters by means of directional extreme value models
can be in favor of extreme value models that ignore direction in wave energy applications, where
the consideration of directionality is crucial in the design of marine structures. With the increasing
availability of long-term directional metocean data mainly from numerical models, it is strongly
advised to take advantage of directional extreme value models in optimizing the performance and
costs of marine facilities.

In this analysis, long-term wave data from four locations in the eastern Mediterranean Sea
were analyzed. Three threshold selection and two declustering methods were combined to examine
the corresponding effect in the determination of the order of the Fourier model and in turn, in
the parameter estimates and design values and their uncertainties. After selecting the appropriate
threshold for each method for the identification of extreme wave heights and applying the proposed
declustering techniques due to the prerequisite of independence, a Fourier form was used to model the
parameters of the Generalized Pareto distribution as a smooth function of wave direction. A penalized
maximum likelihood was implemented to estimate extreme parameters and ensure consistency with the
directionally independent fits. In the majority of the combinations of methods, the first order Fourier
series model was found to be adequate for the description of extreme wave heights with direction,
while higher order models were necessary particularly for locations with more complex directional
features, like the location in the Ligurian Sea. Directional design values of significant wave height were
provided for the 50- and 100-year period as an objective criterion for design specification purposes
and predict reliable extreme wave conditions during the lifetime of a wave energy facility. Confidence
intervals of 97.5% were also provided by the bias-corrected and accelerated bootstrap method.

The proposed method can be transferred to other locations as well, provided that there are
enough data in each directional sector (at least 20) and the non-empty directional sectors are adequate
according to the order of the Fourier model. For example, the first order model requires at least three
non-empty directional sectors. Therefore, the application of the proposed methodology should be
made with caution in order to satisfy all the above mentioned requirements. Finally, the present
analysis may be useful in other applications related to marine renewable energy sectors, such as
the offshore wind sector and coastal engineering studies (e.g., coastal erosion/accretion studies due
to wave action coming from multiple directions). Interesting future research directions include the
consideration of alternative models to Fourier series expansion for expressing smoothly the periodicity
of the parameters in terms of direction, while a pre-defined threshold that is directionally varying
would also be meaningful. Moreover, the effects of selecting various numbers of sectors, either
equiangular or not, for the independent fits deserve a thorough investigation.
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