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Abstract: Deterministic air quality forecasting models play a key role for regional and local authorities,
being key tools to ensure that timely information about actual or near future exceedances of pollutant
threshold values are provided to the public, as stated by the EU directive (2008/50/EC). One of
the main problems of these models is that they usually underestimate some important pollutants,
like PM10, especially in high-concentration areas. For this reason, the forecast of critical episodes
(i.e., exceedance of 50 µg/m3 for PM10 concentration daily threshold) has low accuracy. To overcome
this issue, several computationally fast techniques have been implemented in the last decade. In this
work, two computational fast techniques are introduced, implemented and evaluated. The techniques
are based on the off-line correction of the chemical transport model output in the forecasting window,
estimated by means of the measurement data up to the beginning of the forecast. In particular,
the techniques are based on the estimation of the correction performed as a linear combination of
the corrections computed for the days when the measurements are available. The resulting system
has been applied to the Lombardy region case (Northern Italy) for daily PM10 forecasting with
good results.
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1. Introduction

According to the 2018 Lancet Commission on Pollution and Health report [1], air pollution caused
16% of the deaths due to non-natural causes (around 9 million people) worldwide in 2015. In particular,
particulate matter (PM) exposure strongly affects human health, because high PM levels are linked
to premature mortality, through pulmonary and cardio-vascular diseases [2,3]. In order to limit the
population health risks, the European Commission in the Directive (2008/50/EC) recommends the
member states to promptly give the population the information about expected PM exceedances. In the
last decades, a number of decision-support systems has been developed [4] in order to help regional
and local authorities to reach this objective. Even if in literature there is plenty of support systems
developed to define long term plans for the pollutant exposure reduction [5–8], the formalization and
implementation of decision support systems to develop short term plan is still in its infancy. The core of
these systems formalization and development is the air quality forecasting model, needed to accurately
reproduce the dynamics of the phenomena related to the formation, accumulation and removal of
pollutants in the atmosphere. Air quality forecasting systems can be classified in (1) data-driven
models and (2) deterministic chemical and transport models [9].

Data-driven air quality models are more related to system identification theory than air quality
physics. In particular, they are implemented defining a general family of mathematical relationships
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among causes and effects calibrated from tuples of input and output data. The causes, for example,
can be the level of emissions of a set of pollutant precursors inside and outside the investigated domain,
meteorology data in a certain area, concentrations of a group of pollutants in previous temporal steps;
the considered effects are usually the forecasted concentration of a pollutant (or many pollutants).
The main advantage of these models is that they require limited computing resources and are easier to
be implemented [10]. In [11] the use of multiple linear regression models combining information of the
present-day about PM10 concentration and meteorological forecasts of wind speed and precipitation
rate is presented. They evaluate the daily PM10 concentrations forecasting during a winter period in
three cities in the western Alpe–Adria region. Data-driven air quality models include feedforward
neural networks (FFNNs): they have been used to predict ozone and PM10 over the urban area
of Milan, comparing the prediction performances to other two approaches derived from machine
learning, pruned neural networks and lazy learning [12]. FFNNs were also used in a Northern Italy
domain, in combination with a co-kriging technique allowing to improve the spatial interpolation
where no dense data are available [13]. In [14] data-driven air quality models based on FFNNs are used
to forecast hourly PM10 concentrations at 4 measurement locations in Athens using meteorological
inputs and PM10 concentrations in previous temporal steps.

On the other hand, chemical and transport models (CTMs) are extremely complex systems
considering explicitly the chemical and physical aspects of the problem. CTMs require many inputs:
meteorology, temporally and chemically speciated emissions, land cover and boundary conditions
and they are computationally very expensive [15]. A number of models have been set up for the
forecasting application: MM5-CMAQ-EMIMO (OPANA V4) modeling system has been implemented
in experimental mode to produce daily European Air Quality Forecasts for Europe with 50 km
spatial resolution [16]; the PREV’AIR system provides real-time information about air pollutant
concentrations, as well as long term trends, throughout Europe using the CTMs CHIMERE and
MOCAGE. The PREV’AIR project introduced also the assimilation of ground in-situ observation
data in the system [17]. LOTOS-EUROS has been applied by [18] to forecast PM10 concentration
in the Netherlands with a 25 km resolution, performances were evaluated considering observation
data and forecast provided by PROPART, the Dutch operational statistical model. More recently,
MACC-I/MACC-II/MACC-III projects (Monitoring Atmospheric Composition and Climate) were
developed. The air quality system integrates and analyses seven state-of-art regional CTMs and
provides 96 hours forecasts of the main pollutants over the European continent [19]. For many decades
data assimilation has been used to improve weather forecast in dynamic meteorology [20], since the
late 1990s data assimilation was used also in air quality to generate air pollutants concentrations
maps, define boundary conditions and model parameters. CTMs do not require the integration
with measurements, but since the 2000s, integration techniques have been applied to atmospheric
chemistry too, in order to reach better performances [21]. [22] compared the performances of two data
assimilation techniques (optimal interpolation and Kalman filtering) to assess exceedances of the daily
and annual mean limit values for PM10 computed with the already mentioned LOTOS-EUROS model.

CTMs data assimilation techniques can be classified in:

1. Off-line re-analysis techniques, performing an ex-post integration of the measurements with
the model results, once they are computed. Off-line techniques usually include statistical
methodologies: optimal interpolation methods [23], kriging and cokriging techniques [24,25].
These techniques allow, for example, the computing of reanalyzed spatial concentration fields
or, in the forecasting applications, the best known estimate of the initial condition for the next
day/hour [26]. In [27] a bias correction technique is presented showing a good increase in the
forecasting performances for PM, ozone and nitrogen oxides.

2. On-line data assimilation techniques fully integrate the impact of the measurements directly
inside the model during the simulation. They can include variational methods (2D-, 3D, 4D-var)
aimed at minimizing the distance between estimated concentration and observed data ([28]) or
ensemble methodologies mainly applied for ozone or nitrogen dioxide concentrations [29,30].
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The main drawback of these approaches is that their implementation usually needs strong
changes in the core model code [21].

This work is focused on the use of an optimal interpolation-based data fusion technique to
perform the re-analysis of the Comprehensive Air Quality Model with eXtensions (CAMx), [31], results
for the forecast of PM10 daily average concentrations. The presented technique is relatively simple to
implement and does not require changes to be made in the CTM code. The methodology is applied in
the Lombardy region, Italy.

2. Materials and Methods

Figure 1 presents the implemented methodology components and their relationship. At time t,
the system computes the forecasting of PM10 concentration ̂PM10R(t+ 1, ..., t+ n) at time t+ 1, ..., t+ n
using the results of a re-analysis phase that integrates the output of the CAMx model (PM10G(t)) and
the measurements (PM10(t)) available at the beginning of the forecast. The methodology has three
main scopes:

1. setup of the best initial condition (PM10R(t)) for the forecast;
2. estimation of the correction (∆̂) for the forecasting steps t + 1, ..., t + n;
3. application of estimated correction ∆̂ to the forecast computed by CAMx model

PM10G(t + 1, ..., t + n).

In the next subsections, the main components of the system will be presented: the Chemical
Transport Model, CAMx, the re-analysis technique and the two different correction estimation ∆̂
methodologies, namely a weighted mean approach and a least-square error approach.

Figure 1. Diagram of the implemented system.

2.1. CAMx Model

The Comprehensive Air quality Model with extensions [31] is an open-source state-of-the-science
multi-scale photochemical model for gas and particulate air pollution based on Fortran source code.
CAMx simulates the emission, dispersion, chemical reaction and removal of pollutants by solving the
Eulerian continuity equations forward in time for each chemical species [32,33]. CAMx needs detailed
input related to:
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• gridded and point source emission data;
• meteorology defined through the use of prognostic meteorological models (for example WRF [34]);
• photolysis rates for the photochemical mechanism;
• land cover information;
• boundary conditions are available from global models.

Figure 2 [31] presents all the modules, processors and interface between the CAMx and the
different information sources used to produce its input.

Figure 2. Schematic diagram of the Comprehensive Air Quality Model with eXtensions (CAMx)
modelling system.

2.1.1. Re-analysis Phase

The re-analysis phase has been implemented following an Optimal Interpolation approach [35].
This state-of-the-art method allows the merging of available observations with the simulation results
of a model, taking into account the relayability of both the model and the measurements [36]. More
information about the theoretical background related to the optimal interpolation can be found in [35],
while information about the application of this method to air quality can be found in [37]. As stated
at the beginning of Section 2, once the last available measurement has been used to re-analyze
the model output in order to obtain the best possible initial condition for the forecasting phase,
the re-analyzed field is used to compute the correction bias to be applied to the forecasted fields.
In the following, let PM10G(t) be the PM10 concentration computed through the CTM model at time t
and PM10R(t) = PM10G(t) + ∆(t) the estimated PM10 concentration after the correction ∆(t) due
to the optimal interpolation technique. Moreover, let ∆̂(t + 1, ..., t + n) be the estimated value of the
correction ∆ at time t + 1, ..., t + n to be used during the forecasting horizon.
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2.1.2. Optimal Interpolation

The Optimal Interpolation technique is a Best Linear Unbiased Estimator (BLUE) estimator of the
true state of a system. In particular, the re-analyzed field PM10R(t) describing the PM10 concentrations
over a certain grid at time t can be computed as:

PM10R(t) = PM10(t) + K(t) · (PM10(t)− H · PM10G(t)), (1)

where:

• PM10R(t) is the re-analyzed PM10 fields at time t;
• PM10G(t) is the background field at time t, i.e., the output of CAMx model before integration

with the measurements;
• PM10(t) are the (pointwise) measurements of PM10 at monitoring station locations;
• H is a mathematical operator allowing to extract the background concentrations at the

monitoring locations.
• K(t) is a matrix gain, often called Kalman gain, computed in order to minimize the variance of

the errors.

It can be proved ([35]) that:

K = P · HT(·H · P · HT + R)−1, (2)

where P and R are the covariance matrix of the background and measurement errors, respectively.
One of the main points affecting the value of K is the definition of the values of P and R. Matrix P is
usually estimated following a Gaussian approach as:

P = [pi,j] = exp(−d(i, j)2

2 · L2
h
) · v = D(i, j) · v, (3)

where D = d(i, j) is a matrix defining the decreasing of the variance with respect to the distance
between the center of the cells i and j, Lh is a parameter defining the decay of covariance with
respect to the distance, and v is the model error variance estimate, computed on the basis of previous
simulation results.

Usually, R is a diagonal matrix, as the instruments errors are independent. Moreover, if the used
instruments are similar, all the monitoring stations can be considered having the same error variance
of r, leading to R = rI, where I is the identity matrix.

With this assumption, Equation (2) can be written as:

K = DHT · v(v · (HDHT +
r
v
· I))−1 = DHT(HDHT + σ · I)−1, (4)

where σ = r/v can be seen as a measure of the goodness of the measurements with respect to the
model and it is the only degree of freedom to be selected.

Once that the value of K and subsequently PM10R(t) have been found, the value of ∆(t) at time t
can be expressed as:

∆(t) = PM10R(t)− PM10G(t). (5)

It can be noticed that (1) mathematically, ∆(t) has the same dimension of PM10G(t)
(and PM10R(t)), equal to the number of grid cells; (2) since it is an a posteriori technique,
this procedure clearly works only if the measurement PM10(t) are known. For these reasons some
adaptations/additions have to be performed in order to solve the forecasting problem.
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2.1.3. Weighted Mean Approach

In this approach, the correction for the next n times is computed as the weighted mean of the two
last available corrections ∆(t) and ∆(t − 1) (Equation (7)):

∆̂(t + n) = α∆(t) + (1 − α)∆(t − 1). (6)

This very simple approach is based on the assumption that the value of the error on the results of
the CTM at time t is strongly related to the errors at previous times. It can be easily noticed that for
α = 1, the value of the estimated correction at time t + n is equal to the correction at time t (persistent
model) and for α = 0.5 the estimation is the arithmetic mean of the two last corrections. The crucial
aspects of this approach are related to the choice of the parameter α.

2.1.4. Least-square Error Approach

In this approach, the correction is computed applying the least-square error technique to the last
available corrections:

∆̂(t + n) = α0 +
m

∑
i=1

αi∆(t − i), (7)

where αi, i = 0, ..., m are computed applying the least-square errore technique to the correction at time
t (dependent variable) and the m previous corrections at time t − i (independent variables). The value
m is called order (or memory) of the model.

More in details, let t be the last day the system is able to perform the re-analysis using the
measurements (i.e., the last day when the measurements are available). The estimation of the parameter
vector α of a m order model for the computation of ∆(t + n) is performed through the following steps:

1. Collecting all the ∆(t), t = t − m − n..., t;
2. Defining the output matrix YLS including the values of ∆ for each cell of the domain at time t

(last ∆ available);
3. Defining the input matrix ILS including for the first m columns the value of ∆ for each cell of

the domain at time t = t − m − n...t − 1 − n, and as a last column a vector of value equal to 1,
in order to compute the depolarization term (α0).

4. Applying the least square Equation ((8)) for linear parameter models:

α = (IT
LS · ILS)

−1 · ILS · YLS. (8)

3. Case Study

The methodology has been evaluated for the daily PM10 forecast on a Lombardy region
(Northern Italy) domain (Figure 3), an area often characterized by high PM10 concentration levels
leading to critical episodes (daily mean concentration higher than 50 µg/m3). In particular, the system
has been run for the entire 2011 year and the forecast up to 3 days in advance has been computed.
The selected domain covers a 540 × 360 km2 area with a 6 × 6 km2 spatial resolution. Emission input is
provided by the INEMAR and EMEP [38] emission inventories. Table 1 presents total annual emission
for each macro-sector for the year on the domain under study. The data include VOC, CO, NOx,
NH3, SO2, PM10 and PM2.5 annual emissions for each cell of the domain. Monthly, daily and hourly
pollutant specific temporal profiles are applied for different emission sources, seasons of the year and
types of days (weekdays, days before holiday and holidays). Chemical characterization of VOC and
physicochemical characterization of PM is performed using chemical and granulometric speciation
profiles dependent on the emission activity. Meteorological input has been computed starting from
the results of the WRF model. The 70 PM10 stations of the Lombardy region monitoring network
were used for the integration of the CAMx results with the measurements. Fourteen tests have been
performed grouped as:
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1. a test (CAMx) with only measurement data used to correct the initial condition of the forecast;
2. 11 tests computed applying the methods in Section 2.1.3 with α ranging from 0 to 1 with a step

of 0.1;
3. two tests with integration performed following the least-square error approach (Section 2.1.4)

with m=2 (LS2) and m=3 (LS3).

Following the idea presented in [36], in order to correctly evaluate the performance and
uncertainty of the methodology, a Monte Carlo approach has been followed. In particular, 100 tests
have been performed, randomly selecting 20% of the stations for the validation phase and using
the remaining 80% for the optimal interpolation. The performances have been evaluated comparing
the daily PM10 measured by the monitoring stations with the results of the system. The validation
has been performed in two phases. In the first one, the forecasts have been evaluated using two
different statistical indexes, namely the correlation coefficient and the normalized mean absolute error
(NMAE). During the second phase, the capability of the model to correctly reproduce the critical
events, expressed in terms of concentrations higher than the 50µg/m3 threshold, has been evaluated.
Figures 4–6 present the boxplot of correlation coefficient for the different performed tests. It can be
easily seen that for the one-step-ahead forecast, the integration techniques ensures better results with
respect to the “standard” case (CAMx). In general, the values of the coefficient is higher for the LS test,
but the use of a memory m = 3 did not grant an increase in performances. Moreover, the values of
the index computed for the least square approach are comparable to those of the best weighted mean
approach model, obtained for α = 1 (persistent model). All the cases show a limited variability of
the performances for the different tests, as highlighted by the boxes tops (1st and 3rd quartile) close
to the median. Increasing the forecasting horizon to 2 and 3 steps causes a general worsening of the
performances, in particular for lower value of α. In fact for α < 0.3 the worsening is so high that the
CAMx case shows better or comparable performances. The least-square error approach shows lower
sensitivity to the forecasting horizon, presenting a median that in these cases are consistently higher
than the one of all the other tests (Figures 5 and 6). The performances in terms of normalized mean
absolute error (NMAE, Figures 7–9) shows a bigger impact of the presented integration procedures.
In this case, the value of the index computed for α and LS tests is always better than that granted by
CAMx even when the forecasting horizon increases. This can be explained by the fact that almost
all the techniques are able to compensate for the underestimation of the PM10 concentrations typical
of the models. The second part of the validation is more related to the objective of the forecasting
system. It is a matter of fact that Local Authorities need a forecasting system able to reproduce the
critical situation. For what concerns PM10, the critical situations are related to the exceedances of the
concentration of 50 µg/m3 as a daily mean. In order to evaluate the capability of the model to correctly
reproduce these events, the Critical Success Index (CSI) also known as Threat Score has been computed
for all the performed tests. The CSI can be computed starting from the contingecy table in Table 2 as:

CSI = YY/(YY + NY + YN). (9)

The values of the index range from 0 (worst case) to 1 (perfect case). In particular, this index
expresses the capability of the system to correctly reproduce the critical events and include a penalty
due to the false alarms. Figures 10–12 presents the results for this index. The increasing in the
performances with respect to the case without assimilation is very high for all the performed tests.
Still, the LS techniques ensure better performances with respect to all the other tests. Increasing the
forecasting horizon, the performances get worse quickly for all the tests and a slight increase in the
distance of the values between weighted mean case and LS case can be seen even if no differences in
the performances can be noticed between the LS2 and LS3 cases, suggesting that an increase in the
memory of the system would not ensure better results. Finally, an example of the technical performance
is reported in Figure 13, where the CAMx and LS3 t+1 yearly mean PM10 concentrations forecast are
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shown and compared to the values measured by the regional monitoring networks. The impact of the
performances is clearly visible.

Table 1. Total annual emission [t/yr] over the CAMx domain for each pollutant and core inventory air
emissions (CORINAIR) macrosectors for the year 2011.

CORINAIR Macrosector VOC NH3 NOx PM10 PM2.5 SO2

Combustion in energy and transformation industries 3015 59 33,595 942 826 9641
Non-industrial combustion plants 73,197 1090 46,267 44,064 43,248 622
Combustion in manufacturing industry 8233 778 72,022 4934 3435 29730
Production processes 40,056 1212 12,950 4425 2408 16,440
Fossil fuel and geothermal energy distribution 28,187 0 358 82 74 1257
Solvent and other product use 232,831 103 680 1072 853 13
Road transport 68,706 4831 260,829 21,930 16,479 644
Other mobile sources and machinery 15,329 15 65,095 6297 5004 4446
Waste treatment and disposal 3376 2708 6348 1153 1057 1185
Agriculture 153,400 304,835 6513 7521 2957 222
Biogenic 205,606 42 12,798 10,142 6173 234
TOTAL 831,936 315,673 517,455 102,562 82,514 64,434

Table 2. Contingecy table.

Forecasted Observed Total
Yes No

Yes Hits (YY) False Alarm (YN) YY+YN
No Missess (NY) Correctly Rejected (NN) NY+NN

Total YY+NY YN+NN YY+YN+NY+NN

Figure 3. CAMx computational domain (blue rectangle) with PM10 measuring station of the
Lombardy region monitoring network (blue dots) and re-analysis and forecasting techniques computing
domain (yellow).
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Figure 4. Correlation for the one-step-forward forecast.

Figure 5. Correlation for the two-step-forward forecast.

Figure 6. Correlation for the three-step-forward forecast.
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Figure 7. NMAE for the one-step-forward forecast.

Figure 8. NMAE for the two-step-forward forecast.

Figure 9. NMAE for the three-step-forward forecast.
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Figure 10. SI for the one-step-forward forecast.

Figure 11. SI for the two-step-forward forecast.

Figure 12. SI for the three-step-forward forecast.
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Figure 13. PM10 daily average concentration maps (µg/m3) for CAMx and LS3 t + 1 forecasting.
The dots represents the PM10 concentration values measured by the monitoring network.

4. Conclusions

The paper presents two techniques allowing integration between model results and measurement
data for forecasting applications. The techniques are based on the estimation of the correction to be
added to CTM results in the forecasting horizon on the basis of the results of the optimal interpolation
computed between measurements and models up to the beginning of the forecast. Two different
approaches have been tested: (i) a simple, weighted mean approach based on the last two computed
corrections and (ii) a more complex least-square error approach based on the estimation of the linear
regression coefficient linking the last correction occurrences. In both of these cases, the computation is
fast and does not need any change in the CTM model code. The methodology has been integrated on
a CAMx based system for the computation of PM10 concentration and the overall system has been
applied to a domain placed in Northern Italy and including the whole Lombardy region. The selection
of the model and the domain is driven by the need to use a state-of-the-art system in a really challenging
domain. As a matter of fact, Eulearian chemical transport models heavily underestimate PM10
concentrations in this area, making them difficult to use for the forecast of the PM10 critical levels
and in particular of the exceedances days. The integration of the two techniques led to significantly
increased skill of the forecast with the correlation coefficient exceeding 0.75 and success index close
to 0.8. Those indexes showed a significant improvement in all the tests with respect to the chemical
transport model forecast. The sensitivity analysis of the forecast skill with respect to the forecasting
horizon has been performed indicating the performance of the integrated system deteriorating slightly
faster with respect to the chemical transport model most likely due to not considering meteorological
data forecast. Nevertheless, the performances of the integrated systems always remain higher than the
chemical transport model one. The uncertainty in the results has been assessed using a Montecarlo
approach. The assessment shows the robustness of the methodology with respect to the selection
of the available measurement station locations. For these reasons and in the light of the obtained
performances, the presented integration methodology seems to lead to an overall system that can be
used by the Local Authorities to perform the forecasting of critical events of PM10. The methodology is
applicable to other primary and secondary pollutants like ozone and nitrogen oxides at different scales
and in different domains, even if some peculiarity of the considered pollutants have to be considered,
in particular, the impact of very localised emissions of nitrogen oxides. Our future efforts will focus on
detailed evaluation of the impact of the number of stations used and the sensitivity analysis of the
parameter sigma value in Equation (4).
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Abbreviations

The following abbreviations and notations are used in this manuscript:

CAMx Comprehensive Air quality Model with extension
CMAQ Community Multiscale Air Quality model
CO Carbon monoxide
CORINAIR Core inventory air emissions
CTM Chemical Transport Model
DSS Decision Support System
EMEP European Monitoring and Evaluation Programme
EMIMO Emission Model
FFNs Feedforward Neural Networks
LOTOS-EUROS Long Term Ozone Simulation-European Operational Smog
MACC Monitoring Atmospheric Composition and Climate
MM5 Fifth-Generation Mesoscale Model
NH3 Ammonia
NOx Nitrogen oxides
PM Particulate Matter
PM10 Particulate Matter with diameter lower than 10 µm
PREV’AIR Previsions et Observations de la Qualite de l’Air en France et en Europe
PROPART Dutch PM forecast statistical model
SO2 Sulphur dioxide
WRF Weather Research and Forecasting model̂PM10R(t) PM10 Estimated re-analyzed field forecasted at time t (output of the system)
PM10R(t) PM10 computed re-analyzed field at time t (computed on the basis of measurement)
PM10(t) PM10 measurements vector at time t
PM10G(t) PM10 background field at time t (output of CAMx model)
VOC Volatile Organic Compounds
∆(t) Correction computed on the basis of the available measurement at time t
∆̂(t) Correction estimated at time t
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