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Abstract: Over the past few decades, concentrations of carbon dioxide (CO2), a key greenhouse gas,
have risen at a global rate of approximately 2 ppm/a. China is the largest CO2 emitter and is the
principle contributor to the increase in global CO2 levels. Based on a satellite-retrieved atmospheric
carbon dioxide column average dry air mixing ratio (XCO2) dataset, derived from the greenhouse
gas observation satellite (GOSAT), this paper evaluates the spatial and temporal variations of XCO2

characteristics in China during 2009–2016. Moreover, the factors influencing changes in XCO2 were
investigated. Results showed XCO2 concentrations in China increased at an average rate of 2.28 ppm/a,
with significant annual seasonal variations of 6.78 ppm. The rate of change of XCO2 was greater in
south China compared to other regions across China, with clear differences in seasonality. Seasonal
variations in XCO2 concentrations across China were generally controlled by vegetation dynamics,
characterized by the Normalized Difference Vegetation Index (NDVI). However, driving factors
exhibited spatial variations. In particular, a distinct belt (northeast–southwest) with a significant
negative correlation (r < −0.75) between XCO2 and NDVI was observed. Furthermore, in north China,
human emissions were identified as the dominant influencing factor of total XCO2 variations (r > 0.65),
with forest fires taking first place in southwest China (r > 0.47). Our results in this study can provide
us with a potential way to better understand the spatiotemporal changes of CO2 concentration in
China with NDVI, human activity and biomass burning, and could have an enlightening effect on
slowing the growth of CO2 concentration in China.
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1. Introduction

Atmospheric carbon dioxide (CO2) is an important element of the global carbon cycle and a
major greenhouse gas due to its extensive contributes to global warming. CO2 concentrations have
increased by more than 40% since the Industrial Revolution [1]. In addition, a warmer climate with
adverse consequences, such as rising sea levels and an increase in extreme weather conditions, mean
that further increases in CO2 levels are expected [2]. More specifically, according to the National
Oceanic and Atmospheric Administration (NOAA), the global CO2 concentration increased from
368.84 ppm in 2000 to 402.86 ppm in 2016, with an average growth rate of 2.06 ppm/a [3]. Since
2006, China has been the world’s largest emitter of CO2 [4,5]. The annual growth rate of atmospheric
XCO2 concentration reached 2.16 ppm/a in China, and the monthly average concentration of CO2

exceeded the global average by 1.63 ppm during 2006–2016. For example, in 2016, China released
approximately 1.02 × 104 Mt CO2 into the atmosphere, contributing to 28% of total global carbon
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emissions [6]. Furthermore, CO2 emissions in China exceeded the total emissions of the United States,
the European Union and Japan in 2016 [6]. Therefore, the CO2 emissions in China have a significant
impact on global atmospheric CO2 concentrations.

Traditionally, the monitoring of atmospheric CO2 concentrations generally relies on measurements
from ground stations distributed across the globe [7–9]. However, the development of satellite
remote sensing technology allows for the real-time observation and mapping of the spatial and
temporal distribution of global atmospheric CO2 concentrations [10,11]. For example, the widely used
SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) datasets,
developed by the European Space Agency (ESA), provide global spatial and temporal distributions of
atmospheric trace gas concentrations, and are commonly used in global carbon source/sink simulations
and atmospheric transport models [12–14]. Satellite observations effectively increase the breadth of
observation data and save time costs. Therefore, satellite remote sensing inversion has become the
dominant quantitative observation approach for atmospheric greenhouse gases [15–18].

The world’s first greenhouse gas observation satellite (GOSAT), launched in 2009 by the Japan
Aerospace Exploration Agency (JAXA), the National Institute for Environmental Studies (NIES) and
the Ministry of the Environment (MOE), is specifically designed to record atmospheric greenhouse
gas column average dry air mixing ratios (XCO2 and XCH4) [19–21]. The GOSAT satellite uses
solar radiation in the near-infrared/shortwave-infrared (NIR/SWIR) regions and variations in the
thermal infrared (TIR) bands [22,23] to determine the target mixing ratios. In particular, SWIR
observations are sensitive to the CO2 abundance from the surface to the top of the troposphere, while
TIR observations are sensitive to CO2 in the upper and middle troposphere, particularly the CO2

concentration profile [24,25]. GOSAT provides global coverage and multi-year datasets that have
been used in multiple applications, including atmospheric simulations, ecosystem flux retrievals and
regional environmental quality assessments [26–29]. Furthermore, GOSAT provides a large number of
atmospheric data products, including XCO2 concentration data, which allows for the determination
of spatial and temporal trends in global atmospheric XCO2 concentrations, as well as atmospheric
XCO2 concentration variations and potential carbon source–sink distributions [30–32]. Some scholars
have done meaningful related research in this regard [25,29,33]. However, the study periods or spatial
scales are limited [34,35]. In addition, most scholars focus their research on accuracy/uncertainty
analysis [5,36,37], and some studies compared the difference of CO2 concentration in the same area from
different satellites [31,37] or investigated the effect of a single carbon source/sink on the concentration
of CO2; for example, the studies of CO2 emissions from anthropogenic activities [32,38], the impact of
vegetable absorption [14,39] and the estimated CO2 emissions from forest fires [10,40]. However, these
studies lack comprehensive consideration of multiple factors.

As a major greenhouse gas emitter, long-term serial observations of atmospheric CO2

concentrations in China have become very important. Spatial and temporal distribution differences
based on long-term sequence changes can help us to understand the underlying characteristics of
atmospheric XCO2 concentration changes in China. In this study, we interpolated GOSAT Level-2 CO2

data from 2009 to 2016 to obtain a monthly CO2 concentration dataset in China. Then, based on the
results of its changing characteristics, the three main influencing factors of vegetation, anthropogenic
activities and biomass burning are combined to explain the changing characteristics of atmospheric
CO2 concentration in mainland China. The current study aims to investigate the spatial and temporal
characteristics of XCO2 concentrations and the influencing factors of XCO2 variations in China during
2009–2016. Our results in this study can provide us with a potential way to better understand how
the spatiotemporal changes of CO2 concentration in China with NDVI, human activity and biomass
burning. It could also have an enlightening effect on slowing the growth of CO2 concentration in China.
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2. Data and Methods

2.1. Data

2.1.1. CO2 Data

The GOSAT satellite was successfully launched by JAXA with a sun-synchronous orbit in Japan
2009. It has a spatial resolution of 10.5 km × 10.5 km, transits at 13:00 local time and has a replay
period of 3 days [41,42]. There are two main sensors in the GOSAT, the Fourier Transform Spectrometer
(FTS) and the Cloud Aerosol Imager (CAI), measuring atmospheric greenhouse gases, clouds and
radiation, respectively. The FTS sensor can observe the average column concentration distribution of
CO2 and CH4 by analyzing the atmospheric gas composition derived from spectral information of
the atmosphere. GOSAT data products are widely used in the detection of fire emissions and human
activity [43–45].

We selected monthly data from TANSO FTS SWIR based on the NIES Level-2 V02.72 algorithm
during April 2009 to December 2016. However, due to the observation orbit of GOSAT, data was
unavailable for each pan-winter (November to March), resulting in a large number of missing values
for high latitudes across the globe. Therefore, we analyzed two conditions of the whole year, as well
as the vegetation growing season during 2009–2016. Furthermore, we compared the corresponding
satellite data with site observation datasets from atmospheric background stations (Mt. Waliguan
(WLG) Station (100.9◦ N, 36.28◦ E) and Mt. Lulin (LL) Station (23.47◦ N,120.84◦ E)) in China, in order to
verify the accuracy of the GOSAT data. The site observation datasets were obtained from the National
Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) in the
World Greenhouse Gas Data Center (WDCGG) from 2009 to 2016.

2.1.2. Ancillary Data

(1) Normalized Difference Vegetation Index (NDVI).

NDVI quantifies vegetation by measuring the difference between the near-infrared and red
regions of the electromagnetic spectrum, which can indicate the state of vegetation growth and
dynamics over time. Vegetation is able to reduce atmospheric CO2 concentrations via photosynthesis.
NDVI values close to 1 (0) denote vigorous (sparse) vegetation growth. Hence, NDVI indirectly
indicates the photosynthetic capacity of vegetation, which has a strong impact on atmospheric CO2

concentrations [43,46]. Therefore, we used monthly Moderate-resolution Imaging Spectroradiometer
(MODIS) NDVI Level-3 data from EOS (NASA) to represent the carbon sink.

(2) Open-Source Data Inventory for Anthropogenic CO2 (ODIAC).

ODIAC is a 1× 1 km monthly global high-resolution gridded fossil fuel CO2 emissions data
product (unit: g CO2/m2/d) [47]. It can effectively represent the amount of CO2 emitted by human
activity to the atmosphere on a monthly basis and includes emissions from thermal power generation
and cement manufacturing. Fossil fuel CO2 emission datasets from 2000 to 2017 was selected in
this study.

(3) Global Fire Emissions Database v4.1s (GFEDv4.1s).

GFED quantifies global trace gases and aerosol emissions from global biomass burning [48].
The CO2 emissions from biomass burning are determined via satellite-retrieved burned area,
biogeochemical model-simulated fuel loads, moisture-regulated combustion factors, and land
cover-based emission factors (unit: g CO2/m2/month) [49]. The latest version of GFED (v4.1s)
includes small fire emissions that were missed in previous datasets, as well as daily resolution updates.
In the current study, we derived the monthly fire CO2 emissions from different types of biomass
burning with a 0.25◦ ×0.25◦ grid size from 2009 to 2016. These were subsequently linearly resampled
to a 0.1◦×0.1◦ grid size for consistency with the above datasets.
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2.2. Statistical Analysis Methods

2.2.1. Standard Deviation Ellipse Analysis

Standard deviation ellipse (SDE) analysis is commonly used to analyze spatial distribution
directional characteristics with time. The size of the ellipse reflects the concentration of the overall
elements of the spatial pattern, while the declination (long semi-axis) reflects the dominant direction
of the spatial pattern. Using years of standard deviation statistics enables us to understand average
center, major/minor axes and azimuths trends of the discrete point set in time series [50,51]. Therefore,
the standard deviation ellipse can express the main distribution direction of a set of points and the
degree of dispersion in all directions. These two factors are usually used to describe the overall
characteristics of a geospatial distribution [51]. In the current study, we applied SDE analysis results of
the annual mean XCO2 concentrations in China from 2009 to 2016. By plotting the abstract images
of the elliptical motion trajectories of China’s annual average XCO2 concentration, the dynamic
changes of these ellipses over time are obtained, which cannot be demonstrated using a pixel-level
analysis. Therefore, we used an SDE analysis of the annual mean XCO2 concentrations in China from
2009 to 2016.

2.2.2. Pixel-Based Time Series Analysis

In order to investigate the interannual variability of the local spatial non-stationarity of atmospheric
XCO2 concentrations over 2009–2016, we used the linear long-term trend (LLT) to quantitatively
analyze long-sequence XCO2 concentration images during the growing season. By using LLT, we can
comprehensively understand the spatial and temporal changes in atmospheric XCO2 concentrations.
The time series of monthly atmospheric XCO2 concentration data was fitted by pixel-by-pixel linear
regression. The LLT slope represents XCO2 concentration change trends (k), as it embodies the direction
and magnitude of XCO2 changes across time. More specifically, positive (negative) slopes denote
increases (decreases) in the XCO2 concentration in the specific pixel, while for slopes close to zero,
the pixel is identified as “stable”. The LLT slope was calculated as follows:

k =
n×

∑n
i=1(i×XCO2i) −

(∑n
i=1 i

)(∑n
i=1 XCO2i

)
n×

∑n
i=1 i2 −

(∑n
i=1 i

)2 (1)

where XCO2 is the grid unit XCO2 concentration, n is the time span and i is the time unit.

3. Results

Figure 1 presents the derived multi-year average atmospheric XCO2 concentrations in most part
of China, with high latitudes masked due to absent values in winter. Spatial variations were observed
in the eastern and western regions of China, with concentrations gradually decreasing from east to
west. The maximum concentration (395.50 ppm) was observed in Shanghai, located in the coastal area
of east China, with the lower atmospheric XCO2 concentrations (less than 393.00 ppm) observed over
the Tibetan Plateau.
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Figure 1. Average concentrations of atmospheric XCO2 (ppm) during 2009–2016.

3.1. Validation of XCO2 Concentrations via in situ Data

In order to assess the accuracy of GOSAT data, we compared the satellite-derived XCO2 data
with that measured from the WLG and LL stations (Figure 2). The atmospheric environment and
components of the WLG station were relatively stable, due to its distance from built-up areas. There
was a good agreement between the two datasets, (r = 0.94, RMSE = 2.2 ppm). Similarly, to the WLG
station, the LL station is located in the mountains, yet it is influenced by a tropical–subtropical monsoon
climate and marine atmospheric environment. The measured CO2 variation range of the LL station is
larger than that of the WLG station during 2009–2016 (r = 0.95, RMSE = 2.5 ppm).
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Furthermore, based on the derived statistics of each site, the XCO2 concentrations were lower
than those from the measured ground data by 0.88% (WLG) and 0.05% (LL), respectively (Table 1).
In addition, the WLG station showed more accurate verification results, followed by the LL station.
This is attributed to the different measurement scales. More specifically, the station-measured dataset
is made up of surface point data, while the GOSAT XCO2 data compromises regional tropospheric
column averages at a spatial resolution of 10.5 km × 10.5 km. This observation is similar to Guo et al.
(2015), who used MODIS and GOSAT L2 data to model XCO2 concentrations during the 2012–2013
growing seasons and determined an average bias of 2.25 ppm [33]. This indicates that the monthly
XCO2 data obtained by interpolation is relatively reliable and can be used for subsequent analysis.

Table 1. Comparison between GOSAT satellite observations and ground measurements.

Stations Sample Number
Mean(ppm) Std(ppm)

Correlation Coefficient RMSE (ppm)
Measured GOSAT Measured GOSAT

Mt. WLG 92 395.9 392.4 6.4 5.5 0.94 2.2
Mt. Lulin 90 395.3 395.1 7.8 5.7 0.95 2.5

3.2. Seasonal XCO2 Variations

The temporal characteristics of atmospheric tropospheric XCO2 concentrations in China exhibited
strong seasonal variations and rising trends (Figure 3). The XCO2 concentrations rose from 387.24 ppm
in April 2009 to 404.09 ppm in April 2016, while interannual variations exhibited an increasing trend
of 2.28 ppm/a (Figure 3). The gray regions in Figure 3a represents the data unavailability in high
latitudes during parts of the winter period. We de-trended the monthly average XCO2 concentrations
in order to investigate monthly variations in XCO2 in China (Figure 3b). During the study period,
XCO2 concentrations reached a maximum in spring (Apr–May) and minimum in summer (Jul–Aug),
with the average changes of XCO2 amplitude reaching 6.78 ppm/a.
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Figure 4 illustrates the spatial characteristics of XCO2 seasonal variation in China during 2009–2016.
Maximum XCO2 concentrations were observed in MAM (spring), while minimum values were detected
for JJA (summer). More specifically, the derived XCO2 concentrations from low to high were as follows:
JJA (389.53 ppm) < SON (391.71 ppm) < DJF (394.37 ppm) < MAM (396.44 ppm). In particular,
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the spatial distribution of atmospheric XCO2 concentrations was observed to have drastically changed
during summer, with concentrations decreasing rapidly with increasing latitude. China’s low latitude
coastal areas were associated with higher concentrations, while regions close to Mohe, Heilongjiang
Province, exhibited low concentrations (only 387.00 ppm). In autumn, concentrations began to increase
and the variance in spatial distribution was reduced. However, atmospheric XCO2 concentrations in
the densely populated areas of the North China Plain increased rapidly. In winter, atmospheric XCO2

concentrations in eastern China continued to increase, widening the gap between the east and the
west. The maximum concentration was observed close to the Henan and Shandong Provinces, while
concentrations in the Ngari Prefecture and Qinghai–Tibet Plateaus were similar to those in spring
(approximately 394.00 ppm).
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In terms of spatial distribution, atmospheric XCO2 concentrations dropped drastically from spring
to summer, particularly in the three northeastern provinces, falling to −8.0 ppm (Figure 4). In addition,
from summer to autumn, the concentrations in northeast and north China were observed to rise rapidly,
with an increase of approximately 4.0 ppm. There was a slight increasing trend in concentrations in the
western high latitude, while other parts of China exhibited relatively stable values. From autumn to
winter, there was a visible growth in XCO2 concentrations in China, particularly in the intersection
of Shandong and Henan Provinces in the central and eastern parts of China, as well as in Chengdu
and Chongqing. The growth rate of atmospheric XCO2 slowed down from winter to spring, with
most of China exhibiting a relatively stable trend. However, an increase of 1–2 ppm was observed in
most parts of China. In addition, during this period, the concentration of atmosphere XCO2 reached a
maximum, with a multi-year average of 396.44 ppm.

3.3. Interannual Variations in XCO2

Due to the temporal coverage of the GOSAT observation data, we focused on atmospheric XCO2

concentrations during the vegetation growing season (GS, April–October each year). The area was
divided into seven sub-regions based on seasonal variation characteristics (Figure 5), as also indicated
by Wang et al. (2015) [14]. The sub-regions are as follows: (a) Northeast China (NEC), (b) North China
(NC), (c) East China (EC), (d) Central China (CC), (e) South China (SC), (f) Northwest China (NWC)
and (g) Southwest China (SWC). During the period from 2009 to 2016, the average XCO2 concentrations
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in sub-regions varied significantly (Table 2). Overall, the multi-year average concentration of XCO2 in
growing season reached 392.28 ppm in China.
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Table 2. Atmospheric XCO2 concentrations (ppm) in the sub-regions during the 2009–2016 growing season.

2009 2010 2011 2012 2013 2014 2015 2016 Mean

NEC 382.65 386.95 388.38 390.59 393.32 394.52 396.32 399.82 391.57
NC 383.71 387.43 388.72 391.35 394.66 395.59 397.85 400.95 392.53
CC 385.30 388.38 389.33 391.84 395.92 396.25 398.70 401.85 393.45
EC 385.36 388.26 389.48 391.91 395.90 396.48 399.03 402.04 393.56
SC 385.50 388.11 389.59 391.69 395.40 396.83 398.73 402.39 393.53

NWC 382.95 386.51 388.36 390.48 393.62 395.39 397.32 400.01 391.83
SWC 383.97 386.95 388.82 391.02 394.20 396.13 398.01 401.13 392.53
Mean 383.60 387.05 388.68 390.91 394.14 395.61 397.60 400.65 392.28
Var. − 3.45 1.63 2.23 3.23 1.47 1.99 3.05 2.44

Figure 5 presents the general spatial pattern variations in annual XCO2 concentrations for China in
the growing seasons during 2009–2016 based on SDE analysis. The standard deviation ellipse represents
the spatial distribution of most XCO2 concentration in China. In particular, the major-axis indicates
the extension direction of regions that exhibit high atmospheric XCO2 concentrations. The minor-axis
represents the distribution range of the high atmospheric XCO2 concentration zone. In the growing
seasons of 2009–2016; the major and minor axes of the ellipses covered regions from 19.31◦ to 20.13◦

and 9.96◦ to 10.10◦, respectively. The ratios of the long semi-axis to the short half-axis were determined
as 1.9239, 1.8831, 1.9998, 1.9785, 1.9686, 1.9950, 1.9958 and 1.9475, respectively. This indicates that
the high concentration regions of atmospheric XCO2 were generally located in east China, while the
annual directions were relatively consistent and covered a stable range.
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The median center represents the annual average center position of the entire atmospheric XCO2

concentrations across China. The multi-year median centers of the atmospheric XCO2 concentrations
were observed to be evenly distributed to the left and right of the Hu line (red line in Figure 5).
The average center of atmospheric XCO2 concentrations in China is observed to have shifted north
since the beginning of the study period. More specifically, between 2009 and 2016, the median center
of atmospheric XCO2 concentrations changed from 2009 (106.15◦ N, 33.27◦ E) to the easternmost point
of 2010 (108.47◦ N, 33.50◦ E), and subsequently moved to the northernmost point of 2011 (105.59◦ N,
34.13◦ E). In 2011, the median center then began to slightly move to the 2009 median center. During
2011–2013, the 3-year average distance was determined as 83.43 km, with the 2014 median center
located at the western zone of the country (103.93◦ N, 33.42◦ E). Finally, the median center moved east
at a rate of approximately 69.09 km/a and ultimately returned to the 2009 location. The change in the
median center indicates that the atmospheric XCO2 concentration in China has a tendency to shift
toward the northwestern part of China, except for special changes such as 2010.

However, the dispersion of atmospheric XCO2 concentrations increased dramatically in 2010.
This indicates that the proportion of atmospheric XCO2 concentrations located in the northeastern
direction of China suddenly increased significantly in 2010, with subsequent rates slowing from
2011 to 2013. In 2014, annual average concentrations in the southwestern region suddenly increased,
dragging the median center to the southwest. Following this, concentrations slowed down in 2015 and
2016. Although two abnormal changes in atmospheric XCO2 concentrations were observed across
China in recent years, variations in concentrations remained relatively stable over the study period.
In addition, the average center generally moved gradually to the northwest during the growing seasons
of 2009–2016. Note that the average center extreme values of atmospheric XCO2 concentrations in the
northwest of Shaanxi Province in 2010 and in the southwest of Gansu Province in 2014 were 216.93 km
away from the median center in 2009 and 245.49 km away from the median center in 2013, respectively.
In addition, the azimuth angle of the standard deviation ellipse deflected 2.25◦ anticlockwise and 2.2◦

clockwise, respectively.
During the growing season, large differences were detected between the XCO2 variations (∆XCO2)

in sub-regions per year (Table 2). In China, the ∆XCO2 values exhibited a gradual downward trend
(y = −0.04x + 2.61) during the growing seasons of 2009–2016 (Figure 6). However, at high latitudes,
the average ∆XCO2 rates in NWC and NEC was rapidly reduced (−0.1 ppm/a). The second is North
China, where the average ∆XCO2 decreased at a rate of −0.05 ppm/a. Furthermore, ∆XCO2 values in
SWC were observed to fluctuate by 2–3 ppm/a, with relatively stable growth rates. However, in CC and
EC, atmospheric XCO2 levels exhibited a small upward trend (+0.04 ppm/a). The fastest annual growth
trend was observed in SC, with the average ∆XCO2 rate reaching + 0.19 ppm/a and concentrations
exhibiting an accelerated upward trend.

In 2010, variations in XCO2 concentrations across China reached 3.45 ppm. However, east of Inner
Mongolia, Heilongjiang Province, Jilin Province and Liaoning Province, values reached 4.22 ppm,
4.54 ppm, 4.63 ppm and 4.22 ppm, respectively. In particular, the increase of XCO2 concentration
in the Jilin Province was 142.9% of the national average. Furthermore, the average increase in NC
also reached 3.7 ppm in 2010. In March 2010, the most severe continuous low temperature hazard
since 1977 took place in northeastern China [52]. As a result, vegetation growth was slow in the
spring of March–April, and thus NDVI values were only 59% of the multi-year average. This, in turn,
affected atmospheric XCO2 concentrations. Essentially, the large-scale and long-term persistence of
low temperatures had a serious negative impact on the growth of vegetation in spring 2010, leading
to restrictions in the ability of vegetation to absorb CO2 from the atmosphere. Therefore, in 2010,
the median center of China’s atmospheric XCO2 concentrations shifted in the northeast.
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In September 2013, China issued an action plan for the prevention and control of atmospheric
pollution, which effectively controlled the production of high-energy consumption, high polluting
and high emission enterprises in the Beijing–Tianjin–Hebei (BTH), Yangtze River Delta (YRD) and
Pearl River Delta (PRD) regions. This was also an effective mitigation of atmospheric CO2 emissions.
According to the ODIAC CO2 emissions dataset, fossil fuel combustion from human activities prior
to 2013 exhibited a significant period of rapid growth (+0.13 g CO2/m2/d), while the growth rate
decreased significantly (+0.04 g CO2/m2/d) following 2013. Furthermore, the most severe El Niño
event since 2000 occurred in 2014–2016, which impacted precipitation and average temperatures in
southeastern China. In particular, in 2015, precipitation in north China was reduced, with other parts
of China experiencing severe drought. During the 2015/16 winter, average precipitation levels in
south China (Guangdong, Guangxi and Hainan Provinces) reached historic values, exceeding those
in perennial years by more than 1.6 times [53]. At the same time, the El Niño phenomenon also had
a large impact on the variability of the atmosphere [54–56]. Thus, a series of related issues resulting
from policy regulation and the El Niño phenomenon moved the median center of atmospheric XCO2

concentrations to the east of China.

4. Discussion

4.1. Major Influencing Factors of XCO2 in China

NDVI was generally observed as an important carbon sink affecting the long-term spatial
distribution of atmospheric XCO2 in China (r = −0.83, p < 0.05). This is consistent with results derived
from SCIAMACHY data in China during 2003–2011 [14]. There was an obvious negative correlation
belt from northeast to southwest China (r < −0.75), particularly in northeast China (Figure 7). This
can control the absorption of carbon dioxide in the atmosphere through the photosynthesis of green
vegetation [57,58]. Our results indicate that variations in atmospheric XCO2 concentration were mainly
affected by changes in vegetation cover. However, the effect of NDVI on XCO2 concentrations varied
spatially. In addition, a weak correlation (r < 0.2) was observed in the low latitudes of SWC and some
areas of EC. Due to the low latitudes of Yunnan Province in the subtropical region, vegetation cover is
present all year round. Consequently, the annual average NDVI was observed as 0.69; 176.9% of the
national average. In eastern China, the vegetation growth was severely disturbed by anthropogenic
activities. The majority of the agricultural waste formed by winter crops is incinerated in the open,
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resulting in June NDVI values of only 57% of those in May and July. NWC compromises a large area
of bare land with a monthly average NDVI of less than 0.25. Thus, in this region, the influence of
vegetation on atmospheric XCO2 concentrations is limited.
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Emissions from human activity are the main contributors to CO2 emissions [47,58]. As demonstrated
in Figure 7 (ODIAC), most regions in China exhibited a highly positive correlation with the changes of
XCO2, particularly in the BTH, YRD, PRD and Sichuan–Chongqing economically developed areas.
This shows that the intensity of human activity has an important impact on the spatial and temporal
variation of XCO2 concentrations. However, the correlation between the XCO2 and Shandong and
Henan Provinces, which have high population densities, were weak, whilst other regions in these two
provinces exhibited negative correlations (Figure 7). This may be a result of the industrial structure and
economic level of these regions. The CO2 emissions from fossil fuel combustion in these two provinces
(81.39 g CO2/m2/day) was only 19.45% of those in Shanghai (418.38 g CO2/m2/day).

Biomass burning emissions are a key source of atmospheric CO2 [45,59]. Based on the biomass
burning emission inventory (GFEDv4.1s) and derived CO2 emissions in China (Figure 7), the annual
average CO2 emissions from biomass burning in China was determined as 76.9 Tg, with emissions
distributed in Heilongjiang Province (14.4 Tg/a) and the three provinces along the southeastern coast
(13.8 Tg/a). Yunnan Province in SWC (7.78 Tg/a) exhibited strong correlations with forest fires (55%)
and the burning of savanna, grassland and shrublands (36.7%). The correlations of Heilongjiang
Province in northeast China were slightly weak, yet the largest annual average emissions in China were
associated with this region, and among them, agricultural straw waste burning was the main source of
emissions (76.3% of total biomass burning emissions). In the eastern coastal areas, biomass combustion
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emissions were more evident, and the main combustion type was agricultural waste combustion
(51.5%). However, the correlation between biomass burning emission of this region with variations in
atmospheric XCO2 concentration was low (r = 0.13). In particular, in the eastern part of China, several
areas exhibit negative correlations (Figure 7, GFED2009–2016). In addition, it has been observed that
this area is also an area of high human activity (Figure 7, ODIAC). The same situation also occurred in
the Pearl River Delta region, where human activity is strong in low and middle latitudes. Biomass
burning emissions were greatly affected by human activity, and mainly occurred during spring. This
spatial distribution trend determined here is similar to Qiu et al. [48].

The partial correlation and regression coefficients of the standardized multiple regression equations
reveal the influence of the NDVI, ODIAC and GFED on atmospheric XCO2 concentrations across
different regions (Figure 8). NDVI (vegetation photosynthesis) had the greatest influence on the
spatial pattern of atmospheric XCO2 concentrations. Although photosynthesis plays a key role in
various regions of China, its inhibition of XCO2 concentrations is limited. Fossil fuel combustion,
considered as the leading cause of the rapid growth in atmospheric XCO2 concentrations in China,
was the main carbon source of CO2, particularly in medium and large cities (Figure 7). The regression
coefficients almost reached 0.9 in sub-regions, with that of EC almost reaching 1.0. Biomass burning
also contributed to XCO2 concentrations in China, with contributions exhibiting significant regional
heterogeneity, particularly in Yunnan Province in the southwest and Heilongjiang Province in the
northeast (Figure 8b).
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4.2. Contribution of XCO2 in China

In summary, we used NDVI to represent carbon sinks, and human activities and fire emissions to
represent carbon sources. We then quantified the effects of the fires, human activity and NDVI on the
temporal changes in XCO2 concentration per pixel during 2009–2016 (Figure 9). We found that NDVI
dominated the whole study area, denoted by temporal XCO2 variations, particularly in southwest
and northwest China. A strong correlation was observed between NDVI and XCO2, indicating that
NDVI was the major influencing factor among the three factors in most parts of southwestern and
northwestern China. However, the contribution rate of the three influencing factors in the other five
regions exhibit significant seasonal variations, particularly in the east of Hu-line (red line in Figure 5).
More specifically, the distribution of human activity and fire emissions were evaluated over the entire
growing season. The areas where human activity (e.g., fossil fuel combustion) affected atmospheric
XCO2 concentrations were generally located in Shandong, Jiangsu and Henan Provinces, followed by
Xi’an, Chengdu and Kunming. In the southeastern coastal areas and main inland urban areas, although
fire emissions were high and human activity was intense, they were not focal influencing factors in
these areas. Fire emissions predominantly occurred in Yunnan Province, and were also detected close
to Henan Province and Chengdu.
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The contribution of each factor varied across seasons. In spring, where vegetation respiration is
stronger than photosynthesis, human activity and fire emissions contributed more to the atmospheric
XCO2 concentration, particularly in north and northeast China. In addition, fire emissions were
principally detected in southeastern China, where a large continuous fire occurred in the north of
eastern China, and a large number of sporadic fire spots appeared in southern China. In summer,
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photosynthesis began to reach its maximum, and the impact of NDVI thus peaked. As a result,
the atmospheric CO2 concentration in China rapidly decreased to the lowest value, with an average of
389.53 ppm in this study period. These three main influencing factors did not show a clear dominant
role in Yunnan Province and central East China. However, human activity still played an important in
major urban areas, particularly in the south-central region of China. In autumn, the impact of emissions
from human activity was more evident, while the proportion of fire emissions in southeastern China
also begun to increase rapidly. Our results demonstrate that in east China, there was a large area
affected by the three major driving factors. The shape of this area is similar to the equivalent area in
spring and is also one of the most densely populated areas in China.

The contribution rate of each influencing factor experienced seasonal changes throughout
2009–2016. Throughout the study period, NDVI was a key factor in controlling atmospheric CO2

concentration levels. The XCO2 concentration in most areas of Henan Province, Chengdu and
Kunming were affected by human activity; biomass burning emissions have a significant impact on
CO2 concentration levels in Yunnan Province. In terms of seasonal changes, the impact of human
activity in spring at low latitudes rapidly increased, and the range of effects of biomass combustion
on XCO2 concentration increased. Furthermore, the contribution of biomass burning increased in
southern China. In the winter, the impact of NDVI was further weakened. The emissions from
biomass burning were concentrated in low latitudes below 25◦N, particularly in Guangdong Province
and Fujian Province. In addition to the impacts of NDVI, atmospheric XCO2 concentrations were
significantly affected by human activity. Fire emissions were observed to contribute to atmospheric
XCO2 concentrations, yet there were significant seasonal differences in the spatial distribution of
its impacts.

5. Conclusions

In the current study, the seasonal cycle and inter-annual variations of XCO2 over China based on a
long-term (2009–2016) GOSAT dataset were analyzed. The main results can be summarized as follows.

(1) Atmospheric XCO2 concentrations exhibited clear seasonal changes, with the highest
concentrations observed in spring and the lowest in summer; (2) during 2009–2016, the average
growth rate of XCO2 concentration over China reached 2.28 ppm/a, and the average amplitude of
seasonal variation was 6.78 ppm/a. In the growing season, the average XCO2 concentration was
determined as 392.28 ppm; (3) the regions with high XCO2 concentrations were mostly distributed in
southeast coastal areas, particularly the Yangtze River Delta region. In addition, low concentrations of
XCO2 were mainly observed in northern China; and (4) the contribution of each of the three driving
factors exhibited significant spatial and temporal distribution heterogeneity. Atmospheric XCO2

concentrations over China were mainly controlled by NDVI across time, with a significant negative
correlation belt (r < −0.75) from northeast to southwest China. In addition, human activity was the
main source of CO2 emissions, and the biomass burning emissions also show an important impact
on changes in atmospheric XCO2 concentrations in northeast China in autumn and southwest China
in spring.

The results of this study can provide us with a potential way to better understand the spatiotemporal
changes of CO2 concentration in China with NDVI, human activity and biomass burning, and could
also have an enlightening effect on slowing the growth of CO2 concentration in China. However,
our study determined the relative contribution rates of the main influencing factors of CO2, without
quantifying the individual contributions of each factor. Therefore, a further study will focus on
quantitatively attributing the effects of these factors, including the effects of atmospheric transport at
various scales as well.
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