Supplementary Materials:

Martina Ristorini ^{1,2}, Maria Luisa Astolfi ³, Maria Agostina Frezzini ³, Silvia Canepari ³ and Lorenzo Massimi ^{3,*}

Table S1.1. Limits of detection (LODs) of the concentrations (μ g/L) detected in river water samples of the analyzed elements, set at 3 times the standard deviation (SD) of 10 replicate blank determinations.

	UoM	LODs
Ba	μg/L	1.6
Cd	μg/L	0.0088
Cr	μg/L	0.24
Cs	μg/L	0.0095
Cu	μg/L	0.15
Fe	μg/L	1.8
Li	μg/L	0.011
Mn	μg/L	0.11
Мо	μg/L	0.99
Ni	μg/L	0.14
Pb	µg/L	0.02
Rb	μg/L	0.026
Sb	μg/L	0.0094
Sn	µg/L	0.043
Sr	μg/L	0.7
Ti	μg/L	0.079

Table S1.2. Limits of detection (LODs) of the concentrations (μ g/L) detected in PM₁₀ samples, of the water-soluble and insoluble fraction of the analyzed elements, set at 3 times the standard deviation (SD) of 10 replicate blank determinations.

	UoM	LODs Water-soluble Fraction	LODs Insoluble Fraction
Ba	μg/L	3.7	0.44
Cd	μg/L	0.0038	0.0031
Cr	μg/L	0.081	0.86
Cs	μg/L	0.0033	0.0017
Cu	μg/L	0.2	0.24
Fe	μg/L	3	9.6
Li	μg/L	0.0063	0.004
Mn	μg/L	0.17	0.17
Mo	μg/L	0.049	0.012
Ni	μg/L	0.35	0.17
Pb	μg/L	0.1	0.15
Rb	μg/L	0.031	0.023
Sb	μg/L	0.0094	0.0094
Sn	μg/L	0.013	0.027
Sr	μg/L	0.2	0.57
Ti	μg/L	0.15	0.4

Table S1.3. Limits of detection (LODs) of the concentrations (μ g/L) detected in washed and unwashed *A. donax* leaves of the analyzed elements, set at 3 times the standard deviation (SD) of 10 replicate blank determinations.

	UoM	LODs A. donax leaves
Ba	μg/L	6.7
Cd	μg/L	0.33
Cr	μg/L	0.22
Cs	μg/L	0.0021
Cu	μg/L	0.12
Fe	μg/L	30

Li	μg/L	0.014
Mn	μg/L	1.1
Mo	μg/L	0.13
Ni	μg/L	0.18
Pb	μg/L	0.059
Rb	μg/L	0.028
Sb	μg/L	0.011
Sn	μg/L	0.019
Sr	μg/L	0.63
Ti	μg/L	0.47

Table S2.1. Average mean (AM) values and standard deviations of element concentrations detected in unwashed *A. donax* leaves at the six monitoring sites.

			A	. donax	unwash	ed leave	es eleme	nt conce	entratio	ns			
		T	E1	T	E 2	T	E 3	T	E 4	T	E5	T	E6
	- UoM	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
Ba	ng/mg	13	3.3	5	1.9	16	4.2	16	4.3	32	8.6	47	15
Cd	ng/mg	0.26	0.1	1.6	0.53	3.4	0.94	1.6	0.47	3.9	1.4	0.26	0.069
Cr	ng/mg	1.2	0.38	1.6	0.42	1.6	0.4	2.2	0.47	6.2	2.1	6.6	1.8
Cs	ng/mg	0.18	0.061	0.23	0.074	0.2	0.063	0.078	0.028	0.071	0.023	0.031	0.011
Cu	ng/mg	5.7	1.3	6.6	1.4	5.2	1.2	5.1	1.3	8.9	2.2	11	2.5
Fe	ng/mg	125	20	117	11	133	15	110	11	271	28	269	15
Li	ng/mg	0.037	0.011	0.047	0.018	0.053	0.018	0.036	0.008 4	0.055	0.014	0.086	0.02
Mn	ng/mg	36	10	26	6.0	15	5.6	51	16	31	11	128	43
Mo	ng/mg	1.2	0.29	0.87	0.14	1.3	0.28	0.94	0.18	3.9	0.41	5.7	0.64
Ni	ng/mg	1.1	0.43	1.8	0.42	1.9	0.63	1.3	0.23	3.4	0.37	4.1	0.81
Pb	ng/mg	0.2	0.063	0.15	0.048	0.18	0.052	0.35	0.12	0.3	0.072	0.33	0.14
Rb	ng/mg	30	8.6	36	11	33	9.2	31	8.8	25	7.2	26	9.5
Sb	ng/mg	0.021	0.006 9	0.009	0.003	0.039	0.017	0.01	0.002 5	0.009	0.002 3	0.024	0.009
Sn	ng/mg	0.053	0.015	0.055	0.018	0.051	0.015	0.06	0.019	0.055	0.015	0.058	0.021
Sr	ng/mg	17	3.5	22	5.0	23	5.0	32	7.4	28	6.7	53	13
Ti	ng/mg	1.8	0.44	1.6	0.34	1.5	0.4	1.7	0.75	2.7	0.58	3.8	0.4

Table S2.2. Average mean (AM) values and standard deviations (SD) of element concentrations detected in washed *A. donax* leaves at the 6 monitoring sites.

				A. dona:	x washe	d leaves	elemen	t concer	itration	s			
		T	E1	T	E 2	T	E3	T	E4	T	E5	T	E6
	- UoM	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
Ba	ng/mg	5.3	1.4	5.4	1.8	5.3	1.4	16	4.2	31	8.3	46	15
Cd	ng/mg	0.26	0.1	1.1	0.39	3.3	0.92	1.6	0.46	3.8	1.4	0.26	0.068
Cr	ng/mg	0.75	0.23	0.92	0.24	0.84	0.21	1.4	0.31	2.3	0.59	1.7	0.49
Cs	ng/mg	0.16	0.055	0.21	0.069	0.16	0.051	0.078	0.027	0.069	0.023	0.022	0.007 5
Cu	ng/mg	5.2	1.2	6.5	1.4	5.1	1.2	4.5	1.2	7.4	1.8	8.7	1.9
Fe	ng/mg	109	27	100	18	74	8	103	20	199	20	188	20
Li	ng/mg	0.026	0.007 9	0.029	0.011	0.03	0.01	0.033	0.007 7	0.045	0.012	0.062	0.014
Mn	ng/mg	35	10	24	5.6	14	5	48	15	27	9.1	121	40
Mo	ng/mg	1.2	0.27	0.74	0.12	1.2	0.27	0.88	0.17	3.1	0.67	5.6	0.59
Ni	ng/mg	1.1	0.4	1.6	0.38	1.8	0.58	1.2	0.22	2.5	0.27	2.1	0.33
Pb	ng/mg	0.14	0.043	0.047	0.015	0.18	0.051	0.13	0.048	0.29	0.071	0.25	0.1
Rb	ng/mg	29	8.4	36	11	34	9	30	8.6	25	7.1	25	9.3
Sb	ng/mg	0.02	0.006 7	0.009	0.003	0.008 9	0.003 9	0.009	0.002 4	0.009 2	0.002	0.008 9	0.003 4

Sn	ng/mg	0.016	0.004 3	0.015	0.004 8	0.017	0.004 4	0.048	0.015	0.017	0.004 3	0.016	0.005 5
Sr	ng/mg	16	3.2	18	4.2	15	3.3	31	7.2	27	6.5	52	13
Ti	ng/mg	1	0.25	1.2	0.26	0.87	0.23	1.5	0.67	1.2	0.17	1.6	0.18

Table S2.3. Average mean (AM) values and standard deviations of element concentrations detected in river water samples at the six monitoring sites.

				Riv	er wate	er elemo	ent con	centrati	ions				
		T	E1	T	E 2	Т	E3	T	E 4	T	E5	T	E6
	UoM	Mea	Std	Mea	Std	Mea	Std	Mea	Std	Mea	Std	Mea	Std
	UOM	n	Dev	n	Dev	n	Dev	n	Dev	n	Dev	n	Dev
Ba	μg/l	96	11,2	66	5,3	71	6,0	60	4,3	95	11	86	9,0
Cd	µg/l	0,012	0,000 57	0,013	0,000 65	0,019	0,001 4	0,033	0,004 2	0,036	0,005 0	0,034	0,004 4
Cr	µg/l	0,84	0,022	1,56	0,077	1,61	0,082	0,53	0,008 9	28	5,4	0,30	0,002 8
Cs	µg/l	0,15	0,016	0,14	0,014	0,20	0,028	0,10	0,006 8	0,24	0,038	0,11	0,007 7
Cu	μg/l	1,4	0,19	0,84	0,065	1,4	0,18	0,93	0,079	2,15	0,42	1,28	0,15
Fe	μg/l	1,2	0,068	1,9	0,16	1,9	0,16	1,9	0,17	16	2,8	1,9	0,17
Li	μg/l	6,3	1,1	4,9	0,65	7,2	1,4	5,4	0,79	7,9	0,87	4,7	0,6
Mn	µg/l	0,12	0,014	0,13	0,014	0,13	0,014	0,057	0,002 8	0,14	0,016	0,12	0,013
Mo	μg/l	5,2	0,59	5,2	0,59	7,8	1,3	3,6	0,28	39	4,6	2,0	0,087
Ni	μg/l	7,1	0,83	5,2	0,45	9,4	1,5	4,2	0,29	23	4,2	4,9	0,39
Pb	µg/l	0,14	0,017	0,035	0,002 9	0,053	0,006 6	0,037	0,003 2	0,029	0,001 9	0,037	0,003 2
Rb	μg/l	3,3	0,56	1,7	0,15	2,3	0,27	1,8	0,16	2,6	0,35	2,0	0,20
Sb	µg/l	0,094	0,016	0,055	0,005 4	0,091	0,015	0,051	0,004 7	0,19	0,026	0,055	0,005 5
Sn	µg/l	0,20	0,028	0,23	0,030	0,009 4	0,000 20	0,012	0,000 35	0,024	0,001 3	0,053	0,006 4
Sr	μg/l	978	172	859	133	1084	211	904	147	986	175	900	146
Ti	μg/l	1,8	0,22	1,6	0,15	1,9	0,22	1,5	0,15	3,2	0,32	1,5	0,15

Table	S2.4.	OK	(ordinary	kriging)	interpolated	concentrations	of	water-soluble	fraction	of
atmosp	oheric	eleme	ents at the s	six monito	ring sites.					

Water	-soluble i	interpola	ated atm	ospheric	element	concent	rations
	UoM	TE1	TE2	TE3	TE4	TE5	TE6
Ba	ng/m ³	6.1	4.7	4.1	4.7	5.3	4.8
Cd	ng/m ³	0.03	0.047	0.052	0.032	0.039	0.05
Cr	ng/m ³	0.88	1.3	2	1.1	1.9	1.9
Cs	ng/m ³	0.012	0.017	0.017	0.015	0.015	0.016
Cu	ng/m ³	2.5	2.6	2.7	1.5	2.5	1.9
Fe	ng/m ³	9.8	11	10	7.5	9.9	12
Li	ng/m ³	0.059	0.088	0.12	0.085	0.11	0.12
Mn	ng/m ³	4.2	4.3	2.6	3.8	4.8	5.6
Mo	ng/m ³	2.3	3.0	2.4	4.8	14	11
Ni	ng/m ³	0.92	0.81	1.2	0.68	1.1	1.7
Pb	ng/m ³	0.32	0.41	0.42	0.4	0.29	0.36
Rb	ng/m ³	0.34	0.43	0.4	0.3	0.36	0.37
Sb	ng/m ³	0.45	0.35	0.26	0.51	0.31	0.29
Sn	ng/m ³	0.25	0.16	0.18	0.15	0.16	0.17
Sr	ng/m ³	1.7	2.1	1.4	1.7	1.9	1.8
Ti	ng/m ³	0.08	0.091	0.12	0.089	0.1	0.13

	Insoluble	interpola	ted atmos	pheric ele	ment conc	entration	S
	– UoM	TE1	TE2	TE3	TE4	TE5	TE6
Ba	ng/m ³	7.3	6.9	4.9	6.2	6.5	4
Cd	ng/m ³	0.006	0.022	0.016	0.021	0.025	0.026
Cr	ng/m ³	13	14	30	12	45	48
Cs	ng/m ³	0.021	0.03	0.035	0.025	0.031	0.032
Cu	ng/m ³	8.9	7.3	9.3	4.7	11	6.6
Fe	ng/m ³	351	344	577	218	332	504
Li	ng/m ³	0.12	0.1	0.15	0.087	0.15	0.1
Mn	ng/m ³	6.3	7.1	3.5	5.3	11	14
Мо	ng/m ³	0.8	1.3	1.4	0.96	2.1	4.1
Ni	ng/m ³	4.8	6.3	4.3	3.4	19	23
Pb	ng/m ³	3	3.3	4.6	3	4.5	3.4
Rb	ng/m ³	0.45	0.32	0.43	0.16	0.44	0.3
Sb	ng/m ³	0.66	0.4	0.3	0.64	0.73	0.25
Sn	ng/m ³	2	1.7	2.1	0.85	2.3	1
Sr	ng/m ³	1.2	1.4	1	2.4	2.3	1.3
Ti	ng/m ³	4.5	4.3	7.1	3.6	7.1	8

Table S2.5. OK (ordinary kriging) interpolated concentrations of insoluble fraction of atmospheric elements at the six monitoring sites.

Table S2.6. Mean values and standard deviations calculated between monthly values of interpolated concentrations of the total fraction of PM₁₀ elements at the six monitoring sites.

	Total interpolated PM ₁₀ element concentrations												
		T	E1	T	E2	T	E3	T	E4	T	E5	T	E6
	UaM	Mea	Std	Mea	Std	Mea	Std	Mea	Std	Mea	Std	Mea	Std
	UOM	n	Dev	n	Dev	n	Dev	n	Dev	n	Dev	n	Dev
Ba	ng/m ³	13	0.87	12	1.2	9.0	1.3	11	0.90	12	0.82	8.8	1.1
Cd	ng/m ³	0.036	0.002 9	0.069	0.007 3	0.068	0.004 1	0.054	0.002 1	0.063	0.005 5	0.076	0.006 5
Cr	ng/m ³	14	0.45	15	1.1	32	0.98	13	2.1	47	4.0	49	4.4
Cs	ng/m ³	0.033	0.006 5	0.047	0.010	0.052	0.009 0	0.041	0.011	0.046	0.009 3	0.048	0.011
Cu	ng/m ³	11	0.74	9.9	0.18	12	0.093 002	6.1	0.25	13	0.39	8.5	0.41
Fe	ng/m ³	361	14	355	24	588	19	226	31	343	47	514	62
Li	ng/m ³	0.18	0.009 9	0.19	0.022	0.27	0.015 001	0.17	0.036	0.26	0.034	0.23	0.047
Mn	ng/m ³	11	0.25	11	0.63	6.1	0.076	9.1	1.0	16	1.3	20	1.1
Mo	ng/m ³	3.1	0.11	4.3	0.14	3.8	0.34	5.8	1.2	15	1.5	16	1.1
Ni	ng/m ³	5.7	0.45	7.1	0.57	5.5	0.24	4.1	1.3	20	1.2	24	2.5
Pb	ng/m ³	3.3	0.16	3.7	0.12	5.1	0.093	3.4	0.37	4.8	0.27	3.9	0.59
Rb	ng/m ³	0.79	0.074	0.76	0.082	0.83	0.045	0.46	0.070	0.80	0.056	0.67	0.084
Sb	ng/m ³	1.1	0.014	0.75	0.004 2	0.57	0.005 7	1.2	0.070	1.0	0.044	0.54	0.062
Sn	ng/m ³	2.3	0.082	1.8	0.14	2.3	0.14	1.0	0.085	2.4	0.094	1.2	0.12
Sr	ng/m ³	2.9	0.28	3.5	0.47	2.4	0.19	4.1	0.44	4.2	0.51	3.1	0.44
Ti	ng/m ³	4.6	0.12	4.4	0.48	7.2	0.44	3.7	0.41	7.2	0.41	8.1	0.72

Apple leaves SRM 1515					
		Certified		Accuracy	
		value		obtained	
	UoM	Mean	Std Dev	Mean	Std Dev
Ba	ng/mg	49	2	41	0.98
Cd	ng/mg	0.013	0.002	0.014	0.001
Cr	ng/mg	0.3*	-	0.36	0.07
Cu	ng/mg	5.6	0.24	5.8	0.25
Fe	ng/mg	83	5	99	0.4
Mn	ng/mg	54	3	57	0.83
Мо	ng/mg	0.095^{*}	-	0.11	0.03
Ni	ng/mg	0.91	0.12	1.2	0.3
Pb	ng/mg	0.47	0.024	0.51	0.08
Rb	ng/mg	10	0.82	9.3	0.21
Sb	ng/mg	0.013*	-	0.016	0.003
Sn	ng/mg	0.2^{*}	-	0.32	0.04
Sr	ng/mg	25	3	28.7	0.2

Table S3. Certified values for the SRM 1515 (apple leaves) used and accuracy obtained by SRM (ng mg⁻¹).

* = values of these elements have to be considered as informative concentrations.

Figure S1. SEM micrograph (a) and respective EDX spectrum (b) of a steel particle (Fe, Ni and Cu) sampled near the steel plant.

Table S1.1: limits of detection (LODs) of the concentrations (μ g/L) detected in river water samples of the analyzed elements, set at 3 times the standard deviation (SD) of 10 replicate blank determinations, Table S1.2: limits of detection (LODs) of the concentrations (μ g/L) detected in PM₁₀ samples, of the water-soluble and insoluble fraction of the analyzed elements, set at 3 times the standard deviation (SD) of 10 replicate blank determinations, Table S1.3: limits of detection (LODs) of the concentrations (μ g/L) detected in washed and unwashed *A. donax* leaves of the analyzed elements, set at 3 times the standard deviation (SD) of 10 replicate blank determinations, Table S1.3: limits of detection (LODs) of the concentrations (μ g/L) detected in washed and unwashed *A. donax* leaves of the analyzed elements, set at 3 times the standard deviation (SD) of 10 replicate blank determinations, Table S2.1: mean values and standard deviations calculated between monthly values of element concentrations detected in unwashed *A. donax* leaves at the six monitoring sites, Table S2.2: mean values and standard deviations calculated between monthly values of element concentrations detected in washed *A. donax* leaves at the 6 monitoring sites, Table S2.3: mean values and standard deviations calculated between monthly values of element concentrations detected in river water samples at the six monitoring sites, Table S2.4: mean values and standard deviations calculated between monthly values of element concentrations detected in river water samples at the six monitoring sites, Table S2.4: mean values and standard deviations calculated between monthly values of element concentrations detected in river water samples at the six monitoring sites, Table S2.4: mean values and standard deviations calculated between monthly values of interpolated concentrations of water-soluble fraction

Atmosphere 2020, 11, 226

of PM₁₀ elements at the six monitoring sites, Table S2.5: mean values and standard deviations calculated between monthly values of interpolated concentrations of insoluble fraction of PM₁₀ elements at the six monitoring sites, Table S2.6: mean values and standard deviations calculated between monthly values of interpolated concentrations of the total fraction of PM₁₀ elements at the six monitoring sites, Table S3: Certified values for the SRM 1515 (apple leaves) used and accuracy obtained by SRM (ng mg⁻¹). Figure S1: SEM micrograph (a) and respective EDX spectrum (b) of a steel particle (Fe, Ni and Cu) sampled near the steel plant.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).