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Abstract: In turbulence, for neutral or conducting fluids, a large ratio of scales is excited because of the
possible occurrence of inverse cascades to large, global scales together with direct cascades to small,
dissipative scales, as observed in the atmosphere and oceans, or in the solar environment. In this
context, using direct numerical simulations with forcing, we analyze scale dynamics in the presence
of magnetic fields with a generalized Ohm’s law including a Hall current. The ion inertial length
εH serves as the control parameter at fixed Reynolds number. Both the magnetic and generalized
helicity—invariants in the ideal case—grow linearly with time, as expected from classical arguments.
The cross-correlation between the velocity and magnetic field grows as well, more so in relative
terms for a stronger Hall current. We find that the helical growth rates vary exponentially with εH ,
provided the ion inertial scale resides within the inverse cascade range. These exponential variations
are recovered phenomenologically using simple scaling arguments. They are directly linked to the
wavenumber power-law dependence of generalized and magnetic helicity, ∼ k−2, in their inverse
ranges. This illustrates and confirms the important role of the interplay between large and small
scales in the dynamics of turbulent flows.
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1. Introduction

1.1. The Interactions of Turbulent Eddies and Waves in Atmospheric and Oceanic Flows

Turbulence and nonlinear phenomena are characterized by stochastic behavior, nonlinear waves,
power-law energy spectra, and by intermittent events with non-Gaussian probability distribution
functions [1–6]. They are present in a multitude of geophysical and astrophysical environments
(see, e.g., the recent reviews in the Special Issue of Earth & Space Science (2019) entitled “Nonlinear
Systems in Geophysics: Past Accomplishments and Future Challenges”). More specifically, the role of
turbulence has been advocated, for example, in the process of rain formation [7], because of strong
local accelerations, in the properties of atmospheric aerosols [8], or more recently in the multi-fractality
of temperature distributions [9–11]. Similarly, huge variations of the energy dissipation take place
locally in the ocean [12] in the vicinity of ridges, as well as in space plasmas such as the solar wind and
beyond [13] (see below, Section 1.2). Extreme events are, in general, at small scales, appearing in the
gradients of the velocity, the density, the temperature and the magnetic field, through vorticity, shear
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layers, filaments, or current sheets. They can also be observed at large scales, as for example with the
vertical velocity in the nocturnal, very stable, Planetary Boundary Layer [4,14].

Similarly, the influence of gravity waves over turbulent eddies has been studied over Antarctica
(see, e.g., [15]), and intense gradients are identified as well in that region of the globe [16]. In fact,
strong vertical winds, as well as vertically sheared horizontal winds, can be viewed as common
features of stably stratified turbulence [17], in the presence or not of rotation. Even though such a
behavior takes place in a narrow range of the control parameter [18], it affects measurably the overall
dynamics of the flow, with a slow return to isotropy at small scale [2,19,20], together with strong
localized mixing, dissipation, and intermittency for Richardson numbers close to the threshold of
linear or convective instabilities [20–22]. Furthermore, the trajectories of Lagrangian particles are also
measurably modified in the vicinity of shear layers (see, e.g., [23]). Such a marginal state close to a
threshold almost everywhere can be modeled through simplified dynamical systems following field
gradients [17,18,22,24], in line with classical approaches in turbulence, as reviewed, e.g., in [25].

Finally, in the presence of rotation in a stably stratified fluid, several other phenomena can take
place. The dynamical exchanges between waves and nonlinear eddies lead to a modified distribution
of energy between the kinetic and potential modes, with the dominance of one over the other shifting
at a wavenumber that does not depend on the Reynolds number but rather on the Froude number,
that is, the ratio of the wave period to the eddy turn-over time [26] (see [27] for the case of the inverse
cascade of energy). Furthermore, the existence of bidirectional dual cascades of energy towards large
scales and small scales, both with constant energy fluxes, is a clear mechanism coupling nonlinearly
all scales and affecting the resulting dissipation. Thus, the dynamical interactions between small and
large scales play an essential role in estimating the efficiency of mixing in such flows [28–30], and it is
found to vary linearly with the control parameter, namely, the Froude number [31,32].

1.2. The Case of Space Plasmas

Similar phenomena are observed as well for turbulent flows in the presence of magnetic fields.
Such fields, together with charged particles, are abundant in the cosmos. At large scales, the
magnetohydrodynamic (MHD) approximation, in which the displacement current is neglected in
Maxwell’s equations, is adequate, and observations of the solar wind, dating back to the Voyager
spacecraft, confirmed the physical description of a medium governed by the interactions of turbulent,
nonlinear eddies and Alfvén waves (see, e.g., for recent reviews, [33–36] and references therein).
Turbulence is also found to play a central role in shaping these media [37–39].

However, as the direct turbulent cascade of energy approaches smaller scales, plasma effects
and dispersive waves come into effect, appearing for example through a generalized Ohm’s law
whose expression depends on the degree of ionization of the medium, which itself can differ greatly
from the solar wind to the interstellar gas. Current spacecraft technologies allow for the resolution
of much smaller temporal and spatial scales than what was available previously, and one can now
reach the ion inertial length, εH , and perhaps the electron inertial length (see for definitions the
next section, and, e.g., [40]). Other types of waves, for example, kinetic Alfvén waves or whistler
waves, come into play between the ion and electron scales, and the distribution of energy among
modes is altered from a spectrum close to that of Kolmogorov (1941) to substantially steeper scaling
laws [41], leading to marked anisotropies [42]. Using the magnetospheric multi-scale (MMS) suite of
four satellites, recent observations indicate the presence of Kelvin–Helmoltz instabilities at large scales.
They can drive small-scale turbulence through secondary instabilities (see, e.g., [43]), reconnection,
and dissipative processes in shear layers and current sheets. The signature of Kelvin–Helmoltz
instabilities and intermittency may well persist in the statistics of such flows [44]. At even smaller
scales, Hall-MHD, as well as electron dynamics, are also observed [45–48]. Two-dimensional two-fluid
Hall-MHD simulations have shown recently that there is a sizable proportion of the turbulent transfer,
and therefore of the dissipation, that is, localized in coherent structures such as current sheets which
are thin but have transverse dimensions of the order of the integral scale [49]. Besides losing energy to
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dissipative processes, plasmas also exchange energy with particles through, e.g., ion-cyclotron waves,
as observed recently in the magnetosphere [50].

In the presence of forcing acting only in the momentum equation, and for small initial magnetic
fields, one is faced with the so-called dynamo problem of generation of magnetic fields, as reviewed
extensively, e.g., in [51]. Searching for the effect of plasma waves on the growth of both large-scale
and small-scale magnetic fields, one finds that, for Hall-MHD, the magnetic field grows faster for
intermediate values of the control parameter εH , also with a dependence on the magnetic Reynolds
number, RM = U0L0/η with U0, L0 characteristic velocity and length scales, and η the magnetic
diffusivity. Specifically, the growth rate is larger when the ion length scale εH is close to (but larger
than) the dissipation scale (see, for example, [52,53] and references therein). Both magnetic helicity
and magnetic energy grow, with a flat energy spectrum at large scales and closer to a Kolmogorov
spectrum at small scales. Numerous studies have been devoted to the full dynamics of Hall MHD.
For example, it is shown in [54], using shell models that the energy spectrum changes from a classical
Kolmogorov law for large eddies to a steeper scaling after the ion inertial length, the slope of which
depends on the amount of excess magnetic energy compared to its kinetic counterpart (see also [55]
for a weak turbulence approach).

Small-scale dynamics in Hall MHD, and how its evolution differs from the pure MHD case, is of
prime importance for laboratory and space plasmas, and has been studied extensively. At early times,
like in MHD, vorticity and current sheets form, of thickness the dissipation length scale, called the
Kolmogorov scale in fluid turbulence and with a −3/4 dependence on the kinetic Reynolds number
RV = U0L0/ν with respect to the characteristic length scale of the flow, with ν the kinematic viscosity.
These sheets can roll-up, with a strong local correlation between the velocity, the magnetic field and
the current [56]. However, the dissipative scale for MHD is much smaller, for astrophysical Reynolds
numbers which are very large, than the ion and even the electron inertial scales which are reached
first in the process of transferring the energy to smaller scales. This leads to a second inertial range in
which the nonlinearity associated with the Hall current now prevails giving different scaling laws for
energy spectra. A detailed analysis of dissipative processes in space plasmas can be found in [57,58].
For example, Reynolds numbers for the solar wind, the magnetosheath, and magnetotail can vary from
1011 to 1014. For length scales between a few to a thousand Earth’s radii, this leads to a (Kolmogorov)
dissipation length scale varying from the mm, i.e., comparable to the case of the atmosphere, to the
meter. These scales are much smaller than the ion gyroradius, estimated to be between 70 km and
400 km, or even the electron gyroradius. This results in a substantial change in the dynamics of the
flow at small scales, compared to MHD, giving rise to more complex small-scale structures, enhanced
reconnection, and a steepening of energy spectra, as observed in the solar wind [41], in models [54],
and in numerical simulations [59,60]. We also note that, in the presence of a strong uniform magnetic
field, it is shown in [61] that the magnetic energy and helicity spectra are constrained by a relation
stemming from their conservation, providing a lack of uniqueness in power-law steady-state solutions
(see [62] for the case of the cross-correlation between the velocity and magnetic field in MHD). Finally,
in [63], it was shown that, for the small-scale behavior of Hall MHD in the decaying case, magnetic
energy becomes dominant at sub-ionic scales, with narrow and intense current structures in which one
observes a strong alignment between the current and the magnetic field (leading to force-free fields),
as well as a narrow electric field autocorrelation function.

On the other hand, the large-scale behavior of Hall-MHD, close to the ion inertial scale, has been
much less investigated. Thus, in this paper, we wish to address the specific problem of the possible
occurrence and strength of inverse cascades to large scales in Hall MHD, as we vary the ion inertial
length. The next section discusses equations and parameters, and we analyze our results in Section 3
for temporal data, and in Section 4 for growth rates and spectral data. We recover some of the scaling
results using simple phenomenological arguments in Section 5, and in Section 6 we briefly describe the
effect of varying the ratio of the forcing scale to the ion inertial length. Finally, the last section presents
a short discussion and conclusion.
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2. Problem Set-Up

2.1. Equations and Parameters

For a two-species plasma made of ions and electrons, the usual Ohm’s law relating electric field E
and current density j = ∇× b have to be generalized [64,65], depending on the length scale of the
gradients vis-à-vis the ion inertial length scale εH , and where you could have collisionless dissipation
mechanisms that limit the gradients that are formed even in the quasi-absence of collisions as in space
plasmas (see [66] for the three-fluid case including neutrals). In the Hall MHD model examined here,
with v the velocity field and η the magnetic diffusivity, the generalized Ohm’s law is given by

E = −v× b + εHj× b + ηj . (1)

Small-scale dynamics becomes more complex than in MHD, with the breaking of current sheets beyond
the ion inertial length (see, for example, [67]). In the case of Hall MHD, a large number of studies
have found that the formation of helical coherent structures is enhanced [68], as well as small-scale
filamentation [69]. The Hall current can also affect the rate of growth of the magnetic field and its
saturation level [70,71], as well as the level of backscatter to large scales [72]. Recent high-resolution,
multi-spacecraft measurements from MMS have enabled the direct measurement of generalized Ohm’s
law near small-scale current sheets in greater detail than previously possible [73–75].

In this context, we write the forced incompressible Hall MHD equations, with∇ · v = 0 , ∇ ·b = 0, as

∂v
∂t

= −v · ∇v−∇P + j× b + ν∇2v + fv, (2)

∂b
∂t

= ∇× (v× b)− εH∇× (j× b) + η∇2b + fb. (3)

The energy input in the system, modeled by fv and fb at small (electron) scales, can occur through
reconnection processes which have been observed in the Earth’s magnetotail at these scales [76].
We also note that the magnetic field b is in fact in units of an Alfvén velocity, with b = B/

√
µ0ρ, where

B, ρ0, µ0 are, respectively, the magnetic induction, the density (assumed constant), and the permeability
of vacuum. The velocity v and magnetic field b are adimensionalized by a characteristic velocity
U0; P is the particle pressure, and we take ν = η (unit magnetic Prandtl number). Finally, fv,b are
forcing functions with random phases constrained so as to set the initial relative amount of kinetic and
magnetic helicity—σV and σM—as desired (see Equation (6) below). The initial conditions are identical
to the forcing formulation. We also define the magnetic potential a, as usual, through b = ∇× a.
The Hall term is controlled by the dimensionless parameter εH = di, which is the ion inertial length,
measured in terms of the overall dimension of the flow (see [40] for the role of the ion scale in the
overall dynamics in numerical approaches). The MHD equations are recovered for εH = 0.

The code we use is pseudo-spectral and implements a hybrid methodology for parallelization,
using both MPI and Open-MP [77,78], as well as GPUs [79]. The runs analyzed in this paper, computed
in a cubic box with periodic boundary conditions, are summarized in Table 1. The box is of length 2π,
corresponding to a minimum wavenumber kmin = 1; we use a classical 2/3 de-aliasing rule, and thus
the maximum wavenumber is kmax = Np/3 with Np the number of grid points in each direction. The
amplitude of the forcing is set so that the rms velocity and magnetic fields are of order unity. The time
step for all the runs varies between 5× 10−4 and 5× 10−3.

2.2. The Ideal Case

The ideal invariants in Hall-MHD [80], for ν = η = 0, are the total energy ET = EV + EM =

〈|v|2 + |b|2〉/2, the magnetic helicity HM = 〈a · b〉/2 and the generalized helicity HG defined as

HG =
1
2
〈(a + εHv) · (b + εHω)〉 = HM + 2εH HC + ε2

H HV = HM + εH HX . (4)
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Table 1. List of the runs with their identification ID. Np the numerical resolution; ν the viscosity;
εH the Hall parameter; σM,V,C,G the relative rates, for the forcing, of the magnetic, kinetic, cross,
and generalized helicities, respectively (see Equation (6)). Finally, Re is the Reynolds number, and
kdi

= 1/εH is the ion inertial wavenumber. For these runs, the forcing scale kF is in the range
19 ≤ kF ≤ 21.

ID Np ν εH σM σV σC σG Re kdi

AM1 1283 0.016 0.0 0.65 0.131 −0.027 – 15.1 –
AH2 1283 0.016 0.0667 0.65 0.131 −0.027 0.295 17.2 15
AH3 1283 0.016 0.0833 0.65 0.131 −0.027 0.247 17.6 12
AH4 1283 0.016 0.14 0.65 0.131 −0.027 0.174 18.5 7
AH5 1283 0.016 0.2 0.65 0.131 −0.027 0.15 18.8 5

In Equation (4), ω = ∇× v is the vorticity, HV = 〈v ·ω〉/2 the kinetic helicity (an invariant for ideal
neutral fluids), and HC = 1

2 〈v · b〉 is the cross-correlation between the velocity and magnetic fields.
Note that, because HM is itself invariant, the combination HX = 2HC + εH HV is also invariant. For
εH → 0 corresponding to the MHD case, one thus recovers from the invariance of HX the cross-helicity
invariance which can thus be seen as the equivalent of HX but for MHD. This change of invariants
from the MHD case may imply as well a change in the dynamics of the flow (see, e.g., [81]). Note that
in the expression of HG,M appear polarized waves (right and left, respectively); namely, HG can be
written as HG = Γ ·Ω/2, with Γ = a + εHv, Ω = b + εHω = ∇× Γ [82]; HG is also called ion helicity
in [83].

When MHD flows in the solar wind are strongly correlated, accelerated particles are more
prominent [84]; this is likely due to the role played by HC in the so-called exact laws for MHD [85]
(see [38] for an observation of such laws, and see below, Equation (5) for the helical case in Hall MHD).
It has also been conjectured that HC can be measured in the solar convection zone [86]. Moreover, the
cross-helicity in MHD is known to grow with time [87], and it has been shown to be of different signs
in the large and small scales, with the so-called pinning effect at the dissipation scale [88] (see also [89]).
This dichotomy is also present in the spatial structures of the flow [90], with large one-signed lobes
of high relative correlation separated in the current sheets by fast oscillating structures [91]. In fact,
a recent observation using the Parker Solar Probe has found changes in the sign of the cross-helicity.
These are associated with magnetic switchbacks within small-scale reconnection sites in the inner
heliosphere [92], as already discussed in [88,91]. Thus, HC can affect both the large scales, and therefore
be a factor in the dynamo effect of generation of large-scale magnetic fields [93], as well as play a role
in the small scales modeled through an enhanced magnetic diffusivity, which can be associated with
fast reconnection [94,95]. Whether HG plays corresponding roles for scales smaller than εH has only
been studied recently [96,97]. For example, on the basis of statistical equilibria, it is shown in [96] that
the direction of the cascade for HG is ambiguous, as we also argue below noting its dependence on the
ion inertial length, εH .

Furthermore, the presence of cross-helicity in MHD can lead to different energy spectra, depending
on σC (see Equation (6) below) [88,98]. Today, this remains a disputed issue which may depend on
the model that is used. A unifying framework, for a two-dimensional formulation of reduced MHD
in the presence of a strong uniform magnetic field, from large (MHD) scales to scales below the ion
inertial length, has been proposed in [89], with, in particular, a detailed analysis of the weak (wave)
turbulence regime leading to integro-differential equations with various steady power-law solutions.

Exact scaling laws in terms of structure functions can be derived for Hall MHD. They represent,
in a different form, the conservation of ET , HM and HG [82]. For strong Hall currents, and assuming
homogeneity (but not isotropy in this formulation), these exact laws reduce to

ε̃m = εH [δ[b× j] · δb] , ε̃G = εH [δ[v× b] · δω + δ[v×ω] · δb] + ε2
Hδ[v×ω] · δω , (5)
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where, for any vector F, one defines δF = F(x + r)− F(x), with r in the inertial range(s), and ε̃[m,G] are
the decay rates of H[M,G]. Such exact laws for incompressible Hall MHD, under the further assumptions
of large Reynolds number and stationarity, represent dynamical constraints on the temporal, spatial
and spectral evolution of the flow, that differ from the MHD case, in particular emphasizing a stronger
involvement than in MHD of the small scales, through the kinetic helicity.

Finally, we define relative helicities which correspond to the relative alignment or anti-alignment
of vectors when maximal (±1); they are in fact cosines functions, namely,

σM =
a · b
|a||b| , σC =

v · b
|v||b| , σG =

(a + εHv) · (b + εHω)

|a + εHv||b + εHω| =
Γ ·Ω
|Γ||Ω| , σV =

v ·ω
|v||ω| . (6)

In the linearized case, two types of waves coexist in Hall MHD [99]. Magnetic polarization is
defined as PM = σMσC, computed in Fourier space. It measures the direction of circular polarization
relative to the magnetic field. PM > 0 (vs. PM < 0) corresponds to left (vs. right) circularly polarized
fields [100]. They are called ion-cyclotron and whistler waves, and have different dispersion relations in
terms of wavenumbers, which can affect the destabilization of large-scale magnetic fields, as described
by the so-called alpha-dynamo in MHD. The turbulent diffusivity is affected as well by the Hall current
and can become negative, unlike the MHD case in three dimensions (see [72] and references therein).
The wavenumber-dependent ratio of magnetic to kinetic energy, at each wavenumber k, depends on
εH and k, and the Alfvénic state of equipartition typical of MHD is broken by the Hall current, both at
large scales and at small scales.

The behavior of dissipation-less ideal systems can be obtained from first principles [101–103],
with the long-time energy spectrum scaling corresponding to an equipartition between all individual
Fourier modes in the simplest case. However, it has been conjectured, and it has been shown recently
numerically, that the behavior in the ideal case can be in fact a predictor of their dissipative counterparts,
the small-scale thermalized modes acting as an effective viscosity and resistivity on the large scales [104].
Henceforth, a Kolmogorov spectrum typical of fluid turbulence, and as found in atmospheric flows [105],
including for helicity [106], is observed in ideal systems at intermediate scales and intermediate times
before the system reaches equilibrium. These results have been extended to other systems, as for
example in MHD [107], and they are believed to be universal [108].

It is thus of great interest to study such equilibria, which can, in particular, give indications on
the directions of turbulent cascades to either small or large scales. Statistical equilibria for Hall MHD
with a finite number of modes were derived in [81] (see also [109]), revealing several distinguishing
features of these idealized systems. In particular, there is, as in MHD, a large-scale condensation, here
of generalized helicity HG, as well as of HM, and, to a lesser extent, also present in the magnetic energy.
Furthermore, the equipartition between kinetic and magnetic energy, associated with the presence of
Alfvén waves, is broken in the presence of non-zero HG, at a wavenumber that depends on ε−1/2

H . One
can conjecture that, similarly, the helical equipartition (between kinetic and current helicity) is broken,
when applying a Schwarz inequality. Following up with numerical simulations, these authors also
show that large-scale excitation is weaker in Hall MHD with correspondingly more small-scale energy
available for dissipative processes [81]. Note that in the statistical equilibria solutions, the expressions
for HM and HG are polynomial in εH . One can thus expect, indeed, that there will be different regimes
depending on the generalized temperatures associated with these ideal invariants.

3. Large-Scale Dynamics of Hall MHD: Temporal Data

We now examine the behavior of the runs of Table 1 with small-scale forcing. We first plot,
in Figure 1, the temporal variations of the total energy (Figure 1a) and the total dissipation εT =

εV + εM = ν
〈
|ω|2

〉
+ η

〈
|j|2
〉

(Figure 1b). The different values of εH are given by different colors (see
inset), and the dotted lines represent fits to the growth rates of energy (and of EM/EV). Note that, for
all these runs, the ion inertial length is larger than the forcing scale and thus resides in the inverse
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cascade range. Below these plots are given the temporal evolution of the ratio of magnetic to kinetic
energy (Figure 1d) and
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Figure 1. For runs of Table 1, as a function of time in units of turn-over time τNL = L0/U0: Left: Total
energy ET (a), and ratio of magnetic to kinetic energy, EM/EV (d). Middle: Total dissipation (b), and
ratio of L2 norms of current and vorticity (e). Right: Integral scales built on the kinetic energy (c) and
on the magnetic energy (f). Note the different scaling on the vertical axes. Dotted lines indicate linear
fits for growth rates.

of
〈

j2
〉

/
〈
ω2〉 (1e). Because of the growth of HM and HG (see below, Figure 2), and as by Schwarz

inequality, EM(k) ≥ kHM(k), EM grows as well and thus so does ET , as observed here. The ratio
EM/EV also grows (Figure 1d), although to a lesser extent for the higher εH values, due to the lesser
efficiency of the inverse cascade for strong Hall currents, as well as to the lack of efficient Alfvén waves.
In the small scales, the saturation of dissipation in Hall-MHD is faster than in MHD, occurring at a
much earlier time, and at a higher level, at least for low values of εH . Moreover, the ratio of current to
vorticity, close to unity in MHD, is lower in Hall-MHD, again with a sub-dominance of dissipative
eddies in current structures the stronger the Hall term (see Figure 1e).

For the highest value of εH , the energy ratio EM/EV remains smaller than one at all times.
This corroborates the important point already noted in [81] on the basis of statistical equilibria: the
Alfvén energy equipartition is broken by the Hall term. Indeed, when b = ±αv, as in an Alfvén
wave, with α a pseudo-scalar constant in space, the first term in the generalized Ohm’s law disappears
(see Equation (1)), but the magnetic induction can still evolve through the Hall current. However,
in the momentum equation, the nonlinear terms disappear altogether if as above, ω = αv, σV = ±1.
This will remain true as long as current and induction do not align (we note however that, in MHD,
the alignment between b and j is very efficient [110]). As εH grows, the dominance of vorticity over
current can be attributed as well to the fact that the kinetic helicity term in HG gains in importance,
controlling the correlations between velocity and vorticity and thus, to some extent, the strength of the
vorticity itself. Indeed, it is known that, for neutral fluids, the kinetic helicity follows a k−5/3 law and
the relative kinetic helicity thus decays slowly, as 1/k (for rotating flows, see [111]). The right-most
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Figure 2. Temporal data for the runs of Table 1. Left column: Generalized helicity HG (a) and its
relative counterpart σG (d). Middle: Total magnetic helicity HM (b), and its relative counterpart σM (e).
Right: cross-helicity HC (c), and its relative counterpart σC (f).

plots in Figure 1 give the variations with time of the magnetic (FIgure 1c) and kinetic (Figure 1f)
integral scales, defined classically as:

LV,M(t) =
∫
[EV,M(k, t)/k]dk∫

EV,M(k, t)dk
. (7)

Note the different magnitudes for LV and LM on the vertical axes. As for all other temporal figures, the
time is in units of the turn-over time, τNL = L0/U0. At any given time, the stronger εH , the larger LV
is, and the smaller LM is, although for all times and all εH , LM remains larger than LV . This is again
indicative of a lesser efficiency of the inverse cascade of magnetic helicity as the Hall term becomes
more preponderant. LV has a rapid growth, with a rate which is independent of εH , and it saturates at
relatively early times, but at levels (and times) which depend on εH . On the other hand, LM grows at
rates that differ with εH and continues its growth, except for the pure MHD case. It will likely only
saturate when σM ≈ 1 at k = kmin = 1. Saturation is delayed as εH is increased, a signature of the
slower growth rate for high εH .

In Figure 2, we follow-up with various helical data as a function of time for the runs of Table 1.
Specifically, we display in the top row the generalized helicity (Figure 2a); the magnetic helicity, which
is also an invariant in the ideal case ((Figure 2b); and the cross-helicity ((Figure 2c). Their relative rates
(see Equation (6)) are given in the bottom row of Figure 2. All these helical measures grow, except for
HC in the MHD case. For HM, the stronger growth is for MHD, and with a saturation that is reached
earlier in MHD. The cross-correlation HC grows as well, but with an inversion in the change of rate
of growth with εH : there is no growth in MHD, and the growth rate of HC increases with εH , as its
role in HG becomes more important. Another cross-correlation coefficient can be defined, namely,
σ′C = HC/ET [87]. Its behavior (not shown) is almost identical to what is displayed here, for both sets
of runs, and it will thus not be discussed further.
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As a result, an interesting point may be the following. In MHD, it has never been quite clear
whether the cross-correlation between velocity and magnetic field cascades to small scales (like the
energy), or to large scales, in particular since it is not definite positive; however, its physical dimension
indicates it should follow the energy itself. In the presence of inverse cascades of helicity, and using
Schwarz inequalities, the magnetic energy inevitably follows the magnetic helicity [112], and so does
the kinetic energy, entraining now the cross-helicity to large scales, therefore its growth. This point
deserves further study. We finally note that the resulting polarization Pm = σCσM is positive for all the
Hall-MHD runs of Table 1, corresponding to left-polarized waves for these flows, with an increase
over time from a rather low value ≈ 0.025 to close to 0.14.

The growth of the characteristic scales LV and LM is also noticeable when one visualizes the flow,
as is done in Figure 3, which displays, at the initial and final time of the AH5 run, the relative rate of
magnetic helicity (see also Figure 4 below). The imprint of the forcing scale ≈ 2π/20 is seen in both
plots, but at the later time, larger eddies are also clearly discernible.

4. Large-Scale Dynamics of Hall MHD: Growth Rates in Inverse Cascades and Spectral Data

Magnetic helicity is viewed as a large-scale correlation as it involves the magnetic potential; the
kinetic helicity, on the other hand, favors the small scales as it involves the vorticity, whereas the
cross-correlation is dimensionally comparable to the total energy. In Hall MHD, as in MHD, HM
controls the dynamics of the large scales, but HG is hybrid scale-wise as it depends on the ion inertial
length. For small εH , HG ≈ HM + 2εH HC, and as HM is invariant separately, so is HC, approximately
at least; thus, the inverse cascade of generalized helicity has to be less efficient since the flow dynamics
also has to conserve HC, increasingly so as εH increases. In fact, when εH becomes larger than unity,
the dominant term in HG is now the kinetic helicity which, dimensionally, is bound to have a direct
cascade, as found in numerous studies of fluid turbulence. Thus, we can expect a complex dynamics
of inverse cascades when εH is varied. This leads to a non-monotonic variation of the efficiency of
inverse cascades in Hall MHD, as already argued by several authors, and as shown in Figure 4a in the
variation of the rate of growth of generalized helicity with εH . All plots here are in lin-log coordinates.
The intermediate scales embodied in HC and the small scales embodied in HV come into play as a
constraint on the small-scale and large-scale dynamics as they become progressively relevant in this
generalized helicity invariant.

As the inverse cascade proceeds, characteristic length scales increase as well, at various rates
depending on the strength of the Hall term, as we saw before and as illustrated by the next plot in
Figure 4b giving the variation with εH of the temporal mean of the magnetic integral scale. We also
give in Figure 4 the scaling with the ion inertial length of the growth rate of the generalized helicity
FIgure 4c and of its magnetic counter part Figure 4d. For this range of εH values, these growth rates
both have a monotonic variation with comparable factors in the exponential decrease.

Two fits—one exponential, using a e−bεH , and one of the rational form α/(β+ εH)
γ—are indicated

in the plots with, respectively, black and red dashed lines; 1/b and β, like εH , have the physical
dimensions of a length scale. The coefficients (a, b), (α, β, γ) are given in the insets for each fit. Note
that (i) power-law indices γ are high for the two rates (between 8.8 and 10.); (ii) the fits are comparable,
and in fact very close for LM; and (iii) b ≈ γ, α ≈ 1. This latter result, using a Taylor expansion, is not
unexpected as long as εH remains small. However, we note that the range of values for which such
fits are available is not large, preventing a better estimate of these functional forms. The expression
α′/(β′ − εH)

γ′ was also tried on the data. It does not fit quite as well for the helical rates of growth,
but gives an equivalently good fit for LM; however, note that this expression is singular (here, for
εH ≈ 0.79, not shown). Finally, note that we give in the next section a phenomenological argument for
the exponential form of the fits, using a simple model based on the scaling of the helicity spectra.
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Figure 3. Horizontal cut of the pointwise relative rate of magnetic helicity σM(x) at t = 0 (a) and at
t = 150 (b) for run AH5 of Table 1, with εH = 0.2 and σM = 0.65. The signature of the forcing, at
LF ≈ 2π/20 ≈ 0.16 in units of the size of the box, is visible on both plots, as well as the formation of
large-scale structures at long times.



Atmosphere 2020, 11, 203 11 of 23

0 0.05 0.1 0.15 0.2

H

-5

0

5

10

15

20
S
lo
p
e
o
f
(H

G
(t
)-
H
M
(t
))
/(
2
H
)

10-4

(a)

0 0.05 0.1 0.15 0.2

H

100

101

M
e
a
n
o
f
L
M

Data
3.7exp(-2.7

H
)

3.2/(0.95+
H
)2.8

(b)

0 0.05 0.1 0.15 0.2

H

10-3

10-2

10-1

S
lo
p
e
o
f
H
G
(t
)

Data
0.012exp(-8.891

H
)

0.0091/(0.97+
H
)8.8

(c)

0 0.05 0.1 0.15 0.2

H

10-3

10-2

10-1

S
lo
p
e
o
f
H
M
(t
)

Data
0.012exp(-10.03

H
)

0.012/(1+
H
)10

(d)

Figure 4. For the runs of Table 1, different scaling laws given as a function of εH , in lin-log coordinates.
(a) temporal growth rate of HC + εH HV/2 (see Equation 4). (b) temporal mean of the magnetic integral
scale 〈LM〉t. (c) growth rate of HG. (d) growth rate of HM. When appropriate, least-square fits are done
as indicated with dash lines (see insets). In black is an exponential form a e−bεH , for which a simple
argument is given in Section 5, and in red, a fit to α/(β + εH)

γ.

Examining now spectral information, we observe that the build-up with time of the inverse
cascades towards larger scales is progressive, with quasi-stationarity at intermediate scales once the
inertial-range scaling is reached, as shown in Figure 5a for the generalized helicity Fourier spectrum
for various times for Run AH5 of Table 1 (see insets). The k−2 scaling is that predicted on dimensional
grounds for magnetic helicity [112] (see also next section); a Kolmogorov −5/3 spectrum is indicated
as well, for comparison. The magnetic helicity spectra behave in similar ways (not shown). We also
give in Figure 5b, and for the same times, the spectra for HG − HM = εH HX = εH [2HC + εH HV ], i.e.,
the other formulation of an helical invariant in Hall MHD. A build-up in HX is visible as well, but
with a rather flat spectrum at scales larger than but close to the forcing scale, and with a possible k−2

scaling at the largest scales at the latest times.
Because of a Schwarz inequality, namely, EM(k) ≥ kHM(k), the magnetic energy has to follow

the magnetic helicity to large scales, as shown in Figure 5c. Moreover, we find that EM ∼ k−1, a
scaling corresponding to a fully helical state (|σM| ≈ 1), with stationarity at intermediate scales as the
inverse cascade builds up. Finally, the magnetic to kinetic energy ratio shown in Figure 5d is close to
an equipartition value in the large scales, as in the case of MHD [112]; this large-scale equipartition
builds up with time as the inverse cascades of both HG and HM proceed. On the other hand, in the
small scales, magnetic energy dominates; however, no inertial range is discernible due to the lack of
scale separation between kF ≈ 20 and the wavenumber corresponding to the grid size, kmax ≈ 43.
Small-scale dynamics and its possible influence on the large-scale dynamics for a sufficiently large
Reynolds number will require a separate study.
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5. Exponential Decrease With Hall Parameter of the Growth Rate of HG and HM in
Inverse Cascades

As shown in the preceding sections, there is a clear growth of various physical quantities in these
runs, and their growth rates vary with the magnitude of the Hall term. One striking result of Figure 4
is that we observe an exponential decay with εH of the growth rates of HG and HM.

These exponential scaling laws can in fact be recovered through a simple dimensional argument,
which we now derive. Let us first write the equation for the temporal evolution of the magnetic helicity
HM. Pointwise, starting from Equation (3) in the absence of dissipation and forcing, we have

∂t[a · b](x) = ∂tHM(x) = a · ∇ × [(v− εHj)× b] + b · [∂ta(x)] . (8)

First, we remark that both terms in the time derivative of HM contribute equally upon integration over
space, and performing an integration by part; indeed, with the curl operator, there is no change of
sign, namely,

∫
m · ∇× n d3x = +

∫
n · ∇×m d3x. Therefore, taking for example the Coulomb gauge,

we have DtHM ≡ ε̃m = 0, and the temporal evolution of the total magnetic helicity will stem from a
competition, and an eventual balance, between dissipation and forcing.

The second step is to recall the scaling of the inverse magnetic helicity cascade [112], namely,

HM(k) ∼ ε̃2/3
m k−2, (9)

with ε̃m of physical dimension[L3][T−3] and b having the dimensions of a velocity. This stems from an
analysis under the assumption that the cascade is governed by ε̃m and the wavenumber k, under the
assumption of isotropy. This is not an entirely trivial statement, and in fact it has been proven to be
irrelevant in at least two instances. On the one hand, in the neutral fluid case, the equivalent scaling
based on the injection (and dissipation) rate of kinetic helicity, ε̃v ≡ DHv/Dt, is HV(k) ∼ ε̃2/3

v k−4/3

with EV(k) ∼ ε̃2/3
v k−7/3 [113]. This scaling has never been observed, except possibly in the framework

of rotating stratified turbulence as occurs in the atmosphere [114]. The generic turbulence case for
fluids leads rather to a passively advected kinetic helicity with HV(k) ∼ ε̃vε−1/3

v k−5/3, where now εv

is the injection rate of kinetic energy. This scaling results in a spectral relative helicity σV(k) ∼ 1/k,
corresponding to a relatively slow return to full isotropy with scale.

The second instance where the straightforward dimensional argument for the inverse cascade
of helicity may be failing in some cases takes place for MHD in three dimensions: it has been shown
that other spectra can be observed, differing from the k−2 scaling mentioned above, both at small
scales and at large scales, namely, HM(k) ∼ k−3 or steeper [115,116]. This change in the pure inverse
cascade scaling may stem from non-local interactions between widely separated scales, which are
strong for spectra steeper than k−3. The reason for the existence of such different solutions from what
is advocated in Equation (9) remains unknown at this time, although a general but somewhat ad hoc
argument can be given to justify it on the basis of what the prevailing time-scales could be in the
dynamical evolution of these systems [115,116]. This point will need further investigations.

The generalized helicity HG has the same physical dimensions as HM and thus the same analysis
leads straightforwardly to, with ε̃G = dHG/Dt:

HG(k) ∼ ε̃2/3
G k−2 . (10)

Note that ε̃G and ε̃m are not independent, since ḢG = ḢM + 2εH ḢC + ε2
H ḢV .

The third step in the argument to arrive at an exponential scaling is to write dimensionally, in
symbolic terms, that ε̃m ∼ (a, v, b)/LH − εH(a, j, b)/LH , where LH is a (constant) characteristic length,
and where (A, B, C) = A · [B×C] (together with circular permutations) denotes a vector triple product.
Note that this expression is, of course, compatible with the exact law given in Equation (5). In this
simple formulation, taking the derivative with respect to εH and using the scaling of the magnetic
helicity spectrum given in Equation (9), leads to the following symbolic expression written below:
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Figure 5. Top: Spectra of HG(k) (a) and HG − HM = εH HX = 2εH HC + ε2
H HV (b) Bottom: Spectra

of EM(k) (c) and EM(k)/EV(k) (d) All data is for run AH5 of Table 1 at different times, in units of
turn-over times. Reference power laws are also provided.

Dε̃m

DεH
∼ − (a, j, b)

LH
∼ − b3

LH
∼ − ε̃m

LH
, (11)

with the assumption that the inverse cascade of magnetic helicity is (eventually) fully helical, or
EM(k) ∼ ε̃2/3

m k−1, thus EM ∼ kEM(k) ∼ b2 ∼ ε̃2/3
m , neglecting logarithmic corrections. The data of

Figure 2 seems indeed to indicate that |σM| approaches unity for long times. From Equation (11), one
then immediately obtains, with ε̃m,0 = ε̃m(εH = 0) the rate of growth for MHD:

ε̃m/ε̃m,0 = e−εH/LH , (12)

in agreement with Figure 4. Similarly, one can write

ε̃G/ε̃G,0 = e−εH/LH (13)

for intermediate values of εH when the kinetic helicity component of HG is still negligible. Note that
these exponential behaviors all depend crucially on the scaling relationships of the magnetic and
generalized helicity spectra, and on the fact that such spectra converge and thus one can express these
fields locally in scale. Specifically, magnetic helicity spectra steeper than k−3, as sometimes observed
in MHD [115–117] and as mentioned above, would not allow for this exponential behavior.

What is LH in the above expressions? It is likely proportional to LF, the scale at which kinetic
and magnetic energy and magnetic helicity are being injected, and the only fixed large-scale of the
flow, except for kmin = 1; LF is also the smallest scale in the inertial ranges of the inverse cascades. The
empirical fit to the data (see Figure 4) indicates LH ≈ 0.1, whereas LF = 2π/kF ≈ 0.3. We note that the
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numerical simulations analyzed herein are performed at a constant and rather low Reynolds number,
as it is well-known that the inverse cascade can develop for Reynolds number of order unity, providing
the necessary nonlinearity at least at the forcing scale, and at larger scales of course. However, this
supposes locality of nonlinear interactions, and this may not hold in Hall MHD as, in that case, there
are interactions between small scales and large scales [72]. It also supposes that the invariant cascading
to larger scales does not include smaller-scale features, which is not a correct assumption for HG as we
noted before, as it involves, for higher value of εH , the kinetic helicity. These points will thus need
further studies. Another remark is that the assumption of maximal helicity may be too strong for the
present case (see Figure 2).

The temporal mean of the integral scale based on the magnetic energy spectrum, LM, on the other
hand, displays a different, but still exponential, scaling. Taken over a long time after the initial growth
phase, it decreases with εH (see Figure 4b). It can be seen as a consequence of the lesser efficiency of
the inverse cascade of magnetic helicity as εH increases. A simple argument for this scaling goes as
follows. One can show that, in the inverse cascade of magnetic helicity, the wavenumber k(ti) reached
at a given time ti is found to be proportional to [112]:

k(ti) ∼ [1/ε̃1/3
M ] t−1

i . (14)

Replacing ε̃m by its expression in terms of the Hall parameter εH , one can conclude that the largest
scale in the system (for kmin = 1) in the Hall-MHD inverse cascade of magnetic helicity HM, is reached
at a time varying with εH as

Tkmin=1 ∼ e +εH/[3LH ] . (15)

Thus, the stronger the Hall term, the longer it takes to reach the size of the box, or any scale in the
inverse cascade for that matter. It follows that a temporal average of the magnetic integral scale will
also decay with εH , but with a third the rate of the decrease of magnetic helicity (with possibly a
logarithmic correction coming from the magnetic energy). This is consistent with what is observed in
Figure 4 for both functional fits. Of course, as the excitation reaches the size of the box, the formation
of large-scale coherent structures takes place. Their presence and further temporal dynamics may alter
the scaling just derived, as shown recently for example in the case of two-dimensional fluids [118].
This could interfere as well with the inverse cascade scaling at late times.

Finally, we also note that we observe such an exponential variation with εH for the growth rate
of
〈

a2〉, with an exponent of ≈ −9.015 (not shown), and of the temporal rate of growth of the kinetic
integral scale LV (not shown).

6. Variation of the Forcing Wavenumber

We performed a second series of runs but now with 7 ≤ kF ≤ 9 (see Table 2). The runs are computed
on grids of 483 points so as to preserve, comparing with the runs of Table 1, the same resolution of
the small-scale dynamics. In that case, for runs with εH < 0.2, the ion inertial length scale is smaller
than the forcing scale and, as expected, because of the locality of nonlinear interactions in the inverse
cascade, all runs see a similar growth rate, independent of εH and corresponding roughly to that of
MHD (see Figure 6a). We also note that, for longer times, the saturation level of HM does depend on
εH , and is lower the larger εH , as expected from the arguments developed in the preceding section (see
also [80] where it is argued that the relaxed state for long times need not be force-free in Hall MHD).

When extending these runs to higher values of εH , the ion inertial length is now again in
the inverse cascade range and the growth rate of magnetic helicity is clearly smaller for higher
εH (Figure 6b). This shows that the non-monotonicity in Hall-MHD, as mentioned earlier in the
context of the expression of generalized helicity, is also related to the relative ratio of various significant
length-scales in the problem. Finally, the variation of the growth rate of magnetic helicity with εH for
all runs of Table 2 is given in Figure 7. The resulting scaling is again, in part, an exponential decrease
which, when
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Table 2. Same as Table 1 but with the forcing set at approximately 7 ≤ k f ≈≤ 9. Here, for runs AH2f
to AH4f, the ion inertial scale is smaller than the forcing scale, contrary to the runs of Table 1. The fit
presented in Figure 6b is done for runs AH5f to AH9f.

ID Np ν εH σM σV σC σG Re kdi

AM1f 483 0.016 0.0 0.11 0.20 0.15 0.64 34.8 –
AH2f 483 0.016 0.0667 0.11 0.24 0.10 0.52 34.7 15
AH3f 483 0.016 0.0833 0.11 0.24 0.10 0.48 34.7 12
AH4f 483 0.016 0.14 0.11 0.24 0.10 0.36 34.7 7.2

AH5f 483 0.016 0.20 0.11 0.24 0.10 0.27 34.7 5
AH6f 483 0.016 0.25 0.11 0.20 0.15 0.23 34.8 4
AH7f 483 0.016 0.30 0.11 0.22 0.19 0.21 34.9 3.3
AH8f 483 0.016 0.45 0.11 0.20 0.15 0.15 34.8 2.2
AH9f 483 0.016 0.60 0.11 0.22 0.19 0.15 34.9 1.7

AH10f 483 0.016 0.90 0.11 0.22 0.19 0.13 34.9 1.1
AH11f 483 0.016 1.2 0.11 0.22 0.19 0.12 34.9 0.8

restricting ourselves to the intermediate range, has a −1.81 exponent, and with a saturation at both
ends, for small or for large εH (when including all values of εH , the exponent is −1.17, not shown).

We do observe qualitatively that for a larger forcing scale, the decay has a smaller exponent, as
argued in Section 5, but a quantitative agreement is clearly lacking: the scaling for the runs of Table 1
is almost five times larger than for the runs of Table 2, although the ratio in forcing scales is only a
factor of 3 between the two sets of runs. Several elements could explain this discrepancy, given the fact
that we argue in the preceding section that the length appearing in the scaling exponent is that of the
forcing. At high values of εH , the difference is probably due to the fact that for εH ≥ 1, the Hall-MHD
range is not fully resolved as, in that case, L0 = 2π < εH . Moreover, the effect of small scales in the
ideal conservation laws, for HG in particular, is felt through the contribution to its evaluation of both
HC and HV , but nonlinear interactions at small scales are barely present in the runs of Tables 1 and 2.
Indeed, another intervening factor may well be the lack of resolution of the direct inertial range in a
problem in which, as εH increases, the small scales play a more prominent role in the inverse cascade
through the invariance of HG, a problem not present in pure MHD flows. Yet another factor may be
the amount of cross helicity present in the flow: completely negligible for the runs of Table 1 (with
σC ≈ 0.03), it is more significant for the runs of Table 2 (with 0.1 ≤ σC ≤ 0.2). As analyzed in [96],
on the basis of statistical equilibria for extended MHD, the amount of cross-correlation between the
velocity and the magnetic field may have a measurable effect on the strength of the inverse cascades.

7. Discussion and Conclusions

In the solar wind, the regime of Hall MHD arises at small scales, starting at the ion inertial length.
It has been studied thoroughly in the context of the change to small-scale dynamics, reconnection, and
dissipative processes due to the presence of dispersive plasma waves. It leads to a steepening of the
energy spectra in the direct cascade, and to strong small-scale structures, all phenomena observed in
the solar wind, and more recently in the magnetosheath [48,119–123]. In this paper, we are concerned
with the occurrence within such a system of large-scale phenomena due to inverse cascades which are
known to exist thanks to pioneering studies of idealized Hall-MHD [81]. Such inverse cascades can
also affect small-scale dynamics because of the strong non-locality of global nonlinear transfer [124],
even if the nonlinear interactions within the inverse cascades are local.

We show that, as a function of the ion inertial length, there is an exponential decrease of the rate
of growth of magnetic and generalized helicity—HM and HG—as the controlling parameter for Hall
MHD is increased. Moreover, this phenomenon is explained through a simple dimensional argument
that relies on the scaling of the magnetic and generalized helicity spectra. Exponential scaling can also
be found, in simulations of reduced MHD turbulence, for the fraction of (global) energy dissipation,
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Figure 6. (a) Total magnetic helicity as a function of time measured in turn-over times for a subset of
the runs of Table 2 with kF ≈ 8 and εH ≤ 0.2. (b) The same with values of εH extended to O(1) (see
insets); dotted lines indicate temporal fits.

in terms of the vorticity and current (or equivalently in terms of the curl of the Elsassër variables ω± =

ω± j), when expressed as a function of the fraction of volume occupied by dissipative structures [125].
Indeed, the subsequent energy and helicity input towards large scales can in turn affect the

complex small-scale dynamics and the ensuing energy dissipation. In particular, it was stated in [81]
that the inverse cascade in Hall MHD is weaker than in the MHD case, a result confirmed by the
present analysis at least for positive polarity, PM > 0. This can be related to the fact that, in Hall
MHD, the magnetic field is not so efficient at creating a large-scale force-free structure, with a resulting
σM ≈ 1. Furthermore, it was shown in [126] for the problem of two-dimensional Navier–Stokes
turbulence, that inverse transfer is effective even when no forcing is acting on the flow. This is due to
the fact that, as invariants are quadratic, one has detailed balance, i.e., conservation of the invariants
for each individual set of triadic interactions; as such, this represents a huge constraint on the resulting
nonlinear dynamics. Therefore, the magnitude of inverse transfer in Hall-MHD, which depends on εH ,
is bound to affect the dissipative structures at small scales.

The correlation between the velocity and the magnetic field grows as well, in both absolute and
relative terms. It is not an invariant except in the limit εH → 0, when HX reduces to HC (see Equation (3)).
In MHD, it has been known for a long time that HC affects the amount of dissipation present in the
fluid [127], so it may be the case as well here. Furthermore, an intriguing possibility is whether or not one
obtains, for some values of the controlling parameter at a given Reynolds number, a dual, bidirectional
cross-helicity cascade, as already observed for the total energy in the atmosphere in the presence of
both rotation and stratification [28,29]. Such two-signed constant fluxes have been found as well in
oceanic data [128] and in numerical models of the atmosphere [129]. Similarly, bidirectional cascades
were analyzed in the case of MHD turbulence both in two dimensions and in three dimensions (see the
reviews in [30,32] and references therein). Further study of the role of HC and of the Reynolds number
in the dynamics of Hall MHD is reserved for future work. Theories of wave turbulence (or closures in
the strongly nonlinear case) will be useful to achieve higher Reynolds numbers with substantial scale
separation to unravel the different phenomena at play. These could also give access to formulations of
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Figure 7. Variation of the rate of temporal growth of HM with the Hall control parameter for the same
runs as in Figure 6a, in lin-log coordinates. Note the three dynamical regimes, with again an exponential
decay for intermediate values of εH .

transport coefficients, such as eddy viscosity and eddy noise for these complex problems, and see how
they depend on the control parameters such as εH and the relative helicities. We note that, recently,
a model for low ratios of magnetic to electron pressure has also detected the possibility of an inverse
cascade of (generalized) cross-helicity in the context of kinetic Alfvén wave interactions [97,130] (see
also [131,132]).

It would also be of interest to investigate the dynamics of inverse cascades for left-circular polarized
waves, with PM > 0, in which case the magnetic energy may become more prominent. It is known that
the whistler waves have a stronger effect than the ion-cyclotron waves on transport coefficients and, in
particular, on the effective diffusivity, which can in fact become negative [72]. Similarly, it was shown
in [133] that the plasma βP (i.e., the ratio of thermal to magnetic pressure) can affect the interactions
between large and small scales and thus the inverse cascades in magneto-fluids and space plasmas.
In particular, it can make them less efficient in the presence of a strong Hall current, as found here for
PM < 0. One could also look at these questions from the slightly less-demanding problem, from a
numerical stand-point, of electron MHD (or EMHD [32,109,132,134]), in which one only deals with the
evolution of the magnetic induction. EMHD is the limit of Hall MHD that obtains for small velocities
and large ion inertial scales, and is known to have an inverse cascade of magnetic helicity [132,135].
For example, is the cascade in fact bidirectional? Is there more reconnection as well, due to non-local
effects between large and small scales? These points are left for future work.

Author Contributions: Conceptualization, A.P. and J.S.; Data curation, J.S. and D.R.; Formal analysis, A.P.;
Investigation, J.S. and D.R.; Software, D.R.; Validation, J.S. and D.R.; Visualization, J.S. and D.R.; Writing—original
draft, A.P.; Writing—review & editing, A.P., J.S. and D.R. All authors have read and agreed to the published
version of the manuscript.

Funding: The research contribution of JES was funded by STFC(UK) grant ST/S000364/1.

Acknowledgments: The runs analyzed in this paper have used an open allocation on the Janus super-computer
at LASP/CU, which is gratefully acknowledged, together with time on a local cluster. We thank the reviewers
for useful remarks. NCAR is supported by the National Science Foundation. Support for AP, from LASP and in
particular from Bob Ergun, is gratefully acknowledged as well.



Atmosphere 2020, 11, 203 18 of 23

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Newell, A.; Nazarenko, S.; Biven, L. Wave turbulence and intermittency. Phys. D 2001, 152, 520–550.
2. Sagaut, P.; Cambon, C. Homogeneous Turbulence Dynamics; Cambridge University Press: Cambridge, UK, 2008.
3. Bühler, O. Wave-Vortex Interactions in Fluids and Superfluids. Ann. Rev. Fluid Mech. 2010, 42, 205–228.
4. Mahrt, L. Stably Stratified Atmospheric Boundary Layers. Ann. Rev. Fluid Mech. 2014, 46, 23–45.
5. Pouquet, A.; Marino, R.; Mininni, P.D.; Rosenberg, D. Dual constant-flux energy cascades to both large scales

and small scales. Phys. Fluids 2017, 29, 111108.
6. Gregg, M.; D’Asaro, E.; Riley, J.; Kunze, E. Mixing Efficiency in the Ocean. Ann. Rev. Marine Sci. 2018, 10, 9.
7. Shaw, R.; Oncley, S.P. Acceleration intermittency and enhanced collision kernels in turbulent clouds. Atmos. Res.

2001, 59–60, 77–87.
8. Lopez, D.H.; Rabbani, M.R.; Crosbie, E.; Raman, A., Jr.; Arellano, F.A.; Sorooshian, A. Frequency and

Character of Extreme Aerosol Events in the Southwestern United States: A Case Study Analysis in Arizona.
Atmosphere 2016, 7, 1.

9. Lovejoy, S.; Schertzer, D. Towards a new synthesis for atmospheric dynamics: Space–time cascades. J. Atmos.
2010, 96, 1–52.

10. Kalamaras, N.; Tzanis, C.G.; Deligiorgi, D.; Philippopoulos, K.; Koutsogiannis, I. Distribution of Air
Temperature Multifractal Characteristics Over Greece. Atmosphere 2019, 10, 45.

11. Schertzer, D.; Tchiguirinskaia, I. A century of turbulent cascades and the emergence of multifractal operators.
Earth Space Sci. 2020. DOI: https://doi.org/10.1029/2019EA000608

12. van Haren, H.; Gostiaux, L. Convective mixing by internal waves in the Puerto Rico Trench. J. Mar. Res.
2016, 74, 161–173.

13. Sorriso-Valvo, L.; Marino, R.; Carbone, V.; Noullez, A.; Lepreti, F.; Veltri, P.; Bruno, R.; Bavassano, B.;
Pietropaolo, E. Observation of Inertial Energy Cascade in Interplanetary Space Plasma. Phys. Rev. Lett.
2007, 99, 115001.

14. Lenschow, D.H.; Lothon, M.; Mayor, S.D.; Sullivan, P.P.; Canut, G. A Comparison of Higher-Order Vertical
Velocity Moments in the Convective Boundary Layer from Lidar with in Situ Measurements and Large-Eddy
Simulation. Bound.-Layer Meteorol. 2012, 143, 107–123.

15. Cava, D.; Giostra, U.; Katul, G. Characteristics of Gravity Waves over an Antarctic Ice Sheet during an
Austral Summer. Atmosphere 2015, 6, 1271–1289.

16. Walterscheid, R.L.; Gelinas, L.J.; Mechoso, C.R.; Schubert, G. Spectral distribution of gravity wave
momentum fluxes over the Antarctic Peninsula from Concordiasi superpressure balloon data. J. Geophys. Res.
2016, 121, 7509–7527.

17. Rorai, C.; Mininni, P.; Pouquet, A. Turbulence comes in bursts in stably stratified flows. Phys. Rev. E
2014, 89, 043002.

18. Feraco, F.; Marino, R.; Pumir, A.; Primavera, L.; Mininni, P.; Pouquet, A.; Rosenberg, D. Vertical drafts and
mixing in stratified turbulence: sharp transition with Froude number. Eur. Phys. Lett. 2018, 123, 44002.

19. Smyth, W.; Moum, J. Anisotropy of turbulence in stably stratified mixing layers. Phys. Fluids 2000, 12, 1343–1362.
20. Pouquet, A.; Rosenberg, D.; Marino, R. Linking dissipation, anisotropy and intermittency in rotating

stratified turbulence. Phys. Fluids 2019, 31, 105116.
21. Smyth, W.; Nash, J.; Moum, J. Self-organized criticality in geophysical turbulence. Sci. Rep. 2019, 9, 3747.
22. Sujovolsky, N.; Mininni, P. Invariant manifolds in stratified turbulence. Phys. Rev. Fluids 2019, 4, 052402.
23. Buaria, D.; Pumir, A.; Feraco, F.; Marino, R.; Pouquet, A.; Rosenberg, D.; Primavera, L. Single-particle

Lagrangian statistics from direct numerical simulations of rotating stratified turbulence. arXiv 2019,
arXiv:1909.12433.

24. Sujovolsky, N.; Mininni, P. From waves to convection and back again: The phase space of stably stratified
turbulence. arXiv 2020, arXiv:1912.03160v1.

25. Meneveau, C. Lagrangian Dynamics and Models of the Velocity Gradient Tensor in Turbulent Flows.
Ann. Rev. Fluid Mech. 2011, 43, 219–245.

26. Marino, R.; Rosenberg, D.; Herbert, C.; Pouquet, A. Interplay of waves and eddies in rotating stratified
turbulence and the link with kinetic-potential energy partition. EuroPhys. Lett. 2015, 112, 49001.



Atmosphere 2020, 11, 203 19 of 23

27. Herbert, C.; Marino, R.; Pouquet, A.; Rosenberg, D. Waves and vortices in the inverse cascade regime of
rotating stratified turbulence with or without rotation. J. Fluid Mech. 2016, 806, 165–204.

28. Pouquet, A.; Marino, R. Geophysical turbulence and the duality of the energy flow across scales. Phys. Rev.
Lett. 2013, 111, 234501.

29. Marino, R.; Pouquet, A.; Rosenberg, D. Resolving the paradox of oceanic large-scale balance and small-scale
mixing. Phys. Rev. Lett. 2015, 114, 114504.

30. Alexakis, A.; Biferale, L. Cascades and transitions in turbulent flows. Phys. Rep. 2018, 762, 1–139.
31. Pouquet, A.; Rosenberg, D.; Marino, R.; Herbert, C. Scaling laws for mixing and dissipation in unforced

rotating stratified turbulence. J. Fluid Mech. 2018, 844, 519–545.
32. Pouquet, A.; Rosenberg, D.; Stawarz, J.; Marino, R. Helicity Dynamics, Inverse, and Bidirectional Cascades

in Fluid and Magnetohydrodynamic Turbulence: A Brief Review. Earth Space Sci. 2019, 6, 351–369.
33. Bruno, R.; Carbone, V. The solar wind as a turbulence laboratory. Living Rev. Solar Phys. 2005, 2, 4.
34. Veltri, P.; Carbone, V.; Lepreti, F.; Nigro, G. Self-Organization in Magnetohydrodynamic Turbulence.

In Encyclopedia of Complexity and System Science; 2009 , R. A. Meyers Ed.; Springer: Berlin, Germany.
35. Matthaeus, W.H.; Wan, M.; Servidio, S.; Greco, A.; Osman, K.T.; Oughton, S.; Dmitruk, P. Intermittency,

nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas. Phil. Trans. R. Soc. A
2015, 373, 20140154.

36. Galtier, S. Turbulence in space plasmas and beyond. J. Phys. A Math. Theor. 2018, 51, 293001.
37. Matthaeus, W.; Velli, M. Who Needs Turbulence? A Review of Turbulence Effects in the Heliosphere and on

the Fundamental Process of Reconnection. Space Sci. Rev. 2011, 160, 145–168.
38. Marino, R.; Sorriso-Valvo, L.; D’Amicis, R.; Carbone, V.; Bruno, R.; Veltri, P. On the occurence of the

third-order scaling in high latitude Solar Wind. Astrophys. J. 2012, 750, 41.
39. Pouquet, A. On the possible role of constraints in MHD turbulence. In Lecture Notes, Festival de Théorie,

Aix-en-Provence; Ghendrih, P., Diamond, P., Eds.; World Scientific: Singapore 2015; pp. 45–79.
40. Tóth, G.; Chen, Y.; Gombosi, T.I.; Cassak, P.; Markidis, S.; Peng, I.B. Scaling the Ion Inertial Length and Its

Implications for Modeling Reconnection in Global Simulations. J. Geophys. Res. 2017, 122, 10336–10355.
41. Sahraoui, F.; Huang, S.; Belmont, G.; Goldstein, M.L.; Rétino, A.; Robert, P.; de Patoul, J. Scaling of the

electron dissipation range of Solar Wind turbulence. Astrophys. J. 2013, 777, 15.
42. Lacombe, C.; Alexandrova, O.; Matteini, L. Anisotropies of the Magnetic Field Fluctuations at Kinetic Scales

in the Solar Wind: Cluster Observations. Astrophys. J. 2017, 848, 45.
43. Stawarz, J.E.; Eriksson, S.; Wilder, F.D.; Ergun, R.E.; Schwartz, S.J.; Pouquet, A.; Burch, J.L.; Giles, B.L.;

Khotyaintsev, Y.; Le Contel, O.; et al. Observations of turbulence in a Kelvin-Helmholtz event on 8 September
2015 by the Magnetospheric Multiscale mission. J. Geophys. Res. Space Phys. 2016, 121, 11021–11034.

44. Mare, F.D.; Sorriso-Valvo, L.; Retinò, A.; Malara, F.; Hasegawa, H. Evolution of Turbulence in the Kelvin-
Helmholtz Instability in the Terrestrial Magnetopause. Atmosphere 2019, 10, 561.

45. Le Contel, O.; Retinó, A.; Breuillard, H.; Mirioni, L.; Robert, P.; Chasapis, A.; Lavraud, B.; Chust, T.; Rezeau, L.;
Wilder, F.D.; et al. Whistler mode waves and Hall fields detected by MMS during a dayside magnetopause
crossing. Geophys. Res. Lett. 2016, 43, 5943–5952.

46. Faganello, M.; Califano, F. Review, Magnetized Kelvin-Helmholtz instability: theory and simulations in the
Earth’s magnetosphere context. J. Plasma Phys. 2017, 83, doi:10.1017/S0022377817000770.

47. Bandyopadhyay, R.; Chasapis, A.; Chhiber, R.; Parashar, T.N.; Matthaeus, W.H.; Shay, M.A.; Maruca, B.A.;
Burch, J.L.; Moore, T.E.; Pollock, C.J.; et al. Incompressive Energy Transfer in the Earth’s Magnetosheath:
Magnetospheric Multiscale Observations. Astrophys. J. 2018, 866, 106.

48. Stawarz, J.E.; Gershman, D.J.; Eastwood, J.P.; Phan, T.D.; Gingell, I.L.; Shay, M.A.; Burch, J.L.; Ergun, R.E.;
Giles, B.L.; Contel, O.L.; et al. Properties of the Turbulence Associated with Electron-only Magnetic Reconnection
in Earth’s Magnetosheath. Astrophys. J. Lett. 2019, 877, L37.

49. Camporeale, E.; Sorriso-Valvo, L.; Califano, F.; Retinó, A. Coherent Structures and Spectral Energy Transfer
in Turbulent Plasma: A Space-Filter Approach. Phys. Rev. Lett. 2018, 120, 125101.

50. Kitamura, N.; Kitahara, M.; Shoji, M.; Miyoshi, Y.; Hasegawa, H.; Nakamura, S.; Katoh, Y.; Saito, Y.; Yokota,
S.; Gershman, D.J.; et al. Direct measurements of two-way wave-particle energy transfer in a collisionless
space plasma. Science 2018, 361, 1000–1003.

51. Brandenburg, A.; Subramanian, K. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep.
2005, 417, 1–209.



Atmosphere 2020, 11, 203 20 of 23

52. Mahajan, S.M.; Mininni, P.D.; Gómez, D.O. Waves, Coriolis force, and the dynamo effect. Astrophys. J.
2005, 619, 1014–1018.

53. Mininni, P.D.; Gómez, D.; Mahajan, S. Direct simulations of helical Hall-MHD turbulence and dynamo
action. Astrophys. J. 2005, 619, 1019–1027.

54. Galtier, S.; Buchlin, E. Multiscale Hall MHD turbulence in the Solar Wind. Astrophys. J. 2007, 656, 560–566.
55. Galtier, S. Wave turbulence in incompressible magnetohydrodynamics. J. Plasma Phys. 2006, 72, 721–769.
56. Mininni, P.; Pouquet, A.; Montgomery, D. Small-Scale Structures in Three-Dimensional Magnetohydrodynamic

Turbulence. Phys. Rev. Lett. 2006, 97, 244503.
57. Borovsky, J.E.; Funsten, H.O. Role of solar wind turbulence in the coupling of the solar wind to the Earth’s

magnetosphere. J. Geophys. Res. 2003, 108, 1246.
58. Borovsky, J.E.; Funsten, H.O. MHD turbulence in the Earth’s plasma sheet: Dynamics, dissipation, and

driving. J. Geophys. Res. 2003, 108, 1284.
59. Franci, L.; Landi, S.; Matteini, L.; Verdini, A.; Hellinger, P. High-resolution hybrid simulations of kinetic

plasma turbulence at proton scales. Astrophys. J. 2015, 812, 21.
60. Gonzàlez, C.A.; Parashar, T.N.; Gomez, D.; Matthaeus, W.H.; Dmitruk, P. Turbulent electromagnetic fields at

sub-proton scales: Two-fluid and full-kinetic plasma simulations. Phys. Plasmas 2019, 26, 012306.
61. Galtier, S.; Meyrand, A. Entanglement of helicity and energy in kinetic Alfvén wave/whistler turbulence.

J. Plasma Phys. 2015, 81, 325810106.
62. Grappin, R.; Pouquet, A.; Léorat, J. Dependence of MHD turbulence spectra on the velocity-magnetic field

correlation. Astron. Astrophys. 1983, 126, 51–58.
63. Stawarz, J.E.; Pouquet, A. Small-scale behavior of Hall magnetohydrodynamic turbulence. Phys. Rev. E

2015, 92, 063102.
64. Vasyliunas, V.M. Theoretical models of magnetic field line merging. 1. Rev. Geophys. Space Phys. 1975, 13, 303–336.
65. Priest, E.; Forbes, T. Magnetic Reconnection: MHD Theory and Applications; Cambridge University Press:

Cambridge, UK, 2000.
66. Song, P.; Gombosi, T.; Ridley, A. Three-fluid Ohm’s law. J. Geophys. Res. 2001, 106, 8149–8156.
67. Cothran, C.D.; Landreman, M.; Brown, M.R.; Matthaeus, W. Generalized Ohm’s law in a 3-D reconnection

experiment. Geophys. Res. Lett. 2005, 32, L03105.
68. Mahajan, S.; Yoshida, Z. Double Curl Beltrami Flow: Diamagnetic Structures. Phys. Rev. Lett. 1998, 99, 4863–4866.
69. Laveder, D.; Passot, T.; Sulem, P. Transverse dynamics of dispersive Alfvén waves. I. Direct numerical

evidence of filamentation. Phys. Plasmas 2002, 9, 293–305.
70. Mininni, P.; Gómez, D.O.; Mahajan, S.M. Role of the Hall current in magnetohydrodynamic dynamos.

Astrophys. J. 2003, 584, 1120–1126.
71. Gòmez, D.; Mininni, P.; Dmiturk, P. Hall-magnetohydrodynamic small-scale dynamos. Phys. Rev. E

2010, 82, 036406.
72. Mininni, P.D.; Alexakis, A.; Pouquet, A. Energy transfer in Hall-MHD turbulence, cascades, backscatter and

dynamo action. J. Plasma Phys. 2007, 73, 377–401.
73. Torbert, R.B.; Burch, J.L.; Giles, B.L.; Gershman, D.; Pollock, C.J.; Dorelli, J.; Avanov, L.; Argall, M.R.; Shuster, J.;

Strangeway, R.J.; et al. Estimates of terms in Ohm’s law during an encounter with an electron diffusion
region. Geophys. Res. Lett. 2016, 43, 5918–5925.

74. Webster, J.; Burch, J.L.; Reiff, P.H.; Daou, A.G.; Genestreti, K.J.; Graham, D.B.; Torbert, R.B.; Ergun, R.E.;
Sazykin, S.Y.; Marshall, A.; et al. Magnetospheric Multiscale Dayside Reconnection Electron Diffusion
Region Events. J. Geophys. Res. 2018, 123, 4858–4878.

75. Shuster, J.R.; Gershman, D.J.; Chen, L.J.; Wang, S.; Bessho, N.; Dorelli, J.C.; da Silva, D.E.; Giles, B.L.;
Paterson, W.R.; Denton, R.E.; et al. MMS Measurements of the Vlasov Equation: Probing the Electron
Pressure Divergence Within Thin Current Sheets. Geophys. Res. Lett. 2019, 46, 7862–7872.

76. Ergun, R.E.; Goodrich, K.A.; Wilder, F.D.; Ahmadi, N.; Holmes, J.C.; Eriksson, S.; Stawarz, J.E.; Nakamura, R.;
Genestreti, K.J.; Hesse, M.; et al. Magnetic Reconnection, Turbulence, and Particle Acceleration: Observations
in the Earth’s Magnetotail. Geophys. Res. Lett. 2018, 45, 3338–3347.

77. Mininni, P.; Dmitruk, P.; Matthaeus, W.H.; Pouquet, A. Large-scale behavior and statistical equilibria in
rotating flows. Phys. Rev. E 2011, 83, 016309.

78. Mininni, P.; Rosenberg, D.; Reddy, R.; Pouquet, A. A hybrid MPI-OpenMP scheme for scalable parallel
pseudospectral computations for fluid turbulence. Parallel Comput. 2011, 37, 316–326.



Atmosphere 2020, 11, 203 21 of 23

79. Rosenberg, D.; Mininni, P.D.; Reddy, R.; Pouquet, A. GPU Parallelization of a Hybrid Pseudospectral
Geophysical Turbulence Framework Using CUDA. Atmosphere 2020, 11, 00178.

80. Turner, L. Hall effects on magnetic relaxation. IEEE Trans. Plasma Sci. 1986, PS-14, 849–857.
81. Servidio, S.; Matthaeus, W.H.; Carbone, V. Statistical properties of ideal three-dimensional Hall

magnetohydrodynamics: The spectral structure of the equilibrium ensemble. Phys. Plasmas 2008, 15, 042314.
82. Banerjee, S.; Galtier, S. Chiral exact relations for helicities in Hall magnetohydrodynamic turbulence.

Phys. Rev. E 2016, 93, 033120.
83. Ohsaki, S.; Yoshida, Z. Variational principle with singular perturbation of Hall magnetohydrodynamics.

Phys. Plasmas 2005, 12, 064505.
84. Sorriso-Valvo, L.; Catapano, F.; Retinò, A.; Le Contel, O.; Perrone, D.; Roberts, O.W.; Coburn, J.T.; Panebianco, V.;

Valentini, F.; Perri, S.; et al. Turbulence-Driven Ion Beams in the Magnetospheric Kelvin-Helmholtz Instability.
Phys. Rev. Lett. 2019, 122, 035102.

85. Politano, H.; Pouquet, A. Dynamical length scales for turbulent magnetized flows. Geophys. Res. Lett.
1998, 25, 273–276.

86. Rüdiger, G.; Kitchatinov, L.; Brandenburg, A. Cross Helicity and Turbulent Magnetic Diffusivity in the Solar
Convection Zone. Sol. Phys. 2011, 269, 3–12.

87. Pouquet, A.; Meneguzzi, M.; Frisch, U. Growth of correlations in magnetohydrodynamic turbulence.
Phys. Rev. A 1986, 33, 4266–4276.

88. Grappin, R.; Frisch, U.; Léorat, J.; Pouquet, A. Alfvénic fluctuations as asymptotic states of MHD turbulence.
Astron. Astrophys. 1982, 102, 6–14.

89. Passot, T.; Sulem, P.L. Imbalanced kinetic Alfvén wave turbulence: from weak turbulence theory to nonlinear
diffusion models for the strong regime. J. Plasma Phys. 2019, 85, 905850301.

90. Perez, J.C.; Boldyrev, S. Role of cross-helicity in magnetohydrodynamic turbulence. Phys. Rev. Lett.
2009, 102, 025003.

91. Meneguzzi, M.; Politano, H.; Pouquet, A.; Zolver, M. A sparse-mode spectral method for the simulations of
turbulent flows. J. Comp. Phys. 1996, 123, 32–44.

92. McManus, M.D.; Bowen, T.A.; Mallet, A.; Chen, C.H.; Chandran, B.D.; Bale, S.D.; Livi, R.; Larson, D.E.;
de Wit, T.D.; Kasper, J.; et al. Cross Helicity Reversals in Magnetic Switchbacks. Astrophys. J. Suppl. Series
2020, 246, 67.

93. Yokoi, N. Cross helicity and related dynamo. Geophys. Astrophys. Fluid Dyn. 2013, 107, 114–184.
94. Yokoi, N.; Higashimori, K.; Hoshino, M. Transport enhancement and suppression in turbulent magnetic

reconnection: A self-consistent turbulence model. Phys. Plasmas 2013, 20, 122310.
95. Titov, V.; Stepanov, R.; Yokoi, N.; Verma, M.; Samtaney, R. Cross helicity sign reversals in the dissipative

scales of magnetohydrodynamic turbulence. Magnetohydrodynamics 2019, 55, 225–232.
96. Milosevich, G.; Lingam, M.; Morrison, P.J. On the structure and statistical theory of turbulence of extended

magnetohydrodynamics. Astrophys. J. Lett. 2017, 19, 015007.
97. Milosevich, G.; Passot, T.; Sulem, P. Modeling Imbalanced Collisionless Alfvén Wave Turbulence with

Nonlinear Diffusion Equations. Astrophys. J. Lett. 2020, 888, L7.
98. Politano, H.; Pouquet, A.; Sulem, P. Inertial ranges and resistive instabilities in two–dimensional MHD

turbulence. Phys. Fluids B 1989, 1, 2330–2339.
99. Sahraoui, F.; Galtier, S.; Belmont, G. On waves in incompressible Hall magnetohydrodynamics. J. Plasma

Phys. 2006, 73, 723–730.
100. Meyrand, R.; Galtier, S. Spontaneous Chiral Symmetry Breaking of Hall Magnetohydrodynamic Turbulence.

Phys. Rev. Lett. 2012, 109, 194501.
101. Lee, T.D. On some statistical properties of hydrodynamical and magneto-hydrodynamical fields. Quart. Appl.

Math. 1952, 10, 69–74.
102. Kraichnan, R. Inertial ranges in two-dimensional turbulence. Phys. Fluids 1967, 10, 1417–1423.
103. Kraichnan, R. Helical turbulence and absolute equilibrium. J. Fluid Mech. 1973, 59, 745–752.
104. Cichowlas, C.; Bonaïti, P.; Debbasch, F.; Brachet, M. Effective Dissipation and Turbulence in Spectrally

Truncated Euler Flows. Phys. Rev. Lett. 2005, 95, 264502.
105. Nastrom, G.D.; Gage, K. A climatology of atmospheric wavenumber spectra of wind and temperature

observed by commercial aircraft. J. Atmos. Sci. 1985, 42, 950–960.



Atmosphere 2020, 11, 203 22 of 23

106. Koprov, B.; Koprov, V.; Ponomarev, V.; Chkhetiani, O. Experimental Studies of Turbulent Helicity and Its
Spectrum in the Atmospheric Boundary Layer. Dokl. Phys. 2005, 50, 419–422.

107. Krstulovic, G.; Brachet, M.; Pouquet, A. Alfvén waves and ideal two-dimensional Galerkin truncated
magnetohydrodynamics. Phys. Rev. E 2011, 84, 016410.

108. Mininni, P.D.; Pouquet, A. Energy spectra stemming from interactions of Alfvén waves and turbulent eddies.
Phys. Rev. Lett. 2007, 99, 254502.

109. Zhu, J.Z.; Yang, W.; Zhu, G.Y. Purely helical absolute equilibria and chirality of (magneto)fluid turbulence.
J. Fluid Mech. 2014, 739, 479–501.

110. Servidio, S.; Matthaeus, W.; Dmitruk, P. Depression of nonlinearity in isotropic MHD turbulence.
Phys. Rev. Lett. 2008, 100, 095005.

111. Mininni, P.; Pouquet, A. Helicity cascades in rotating turbulence. Phys. Rev. E 2009, 79, 026304.
112. Pouquet, A.; Frisch, U.; Léorat, J. Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid

Mech. 1976, 77, 321–354.
113. Brissaud, A.; Frisch, U.; Léorat, J.; Lesieur, M.; Mazure, A. Helicity cascades in fully developed isotropic

turbulence. Phys. Fluids 1973, 16, 1366–1367.
114. Baerenzung, J.; Mininni, P.; Pouquet, A.; Rosenberg, D. Spectral modeling of turbulent flows and the role of

helicity in the presence of rotation. J. Atmos. Sci. 2011, 68, 2757–2770.
115. Mininni, P.; Pouquet, A. Finite dissipation and intermittency in MHD. Phys. Rev. E 2009, 80, 025401.
116. Müller, W.; Malapaka, S.; Busse, A. Inverse cascade of magnetic helicity in magnetohydrodynamic turbulence.

Phys. Rev. E 2012, 85, 015302.
117. Müller, W.; Malapaka, S. Role of helicities for the dynamics of turbulent magnetic fields. Geophys. Astrophys.

Fluid Dyn. 2013, 107, 93–100.
118. Frishman, A.; Herbert, C. Turbulence Statistics in a Two-Dimensional Vortex Condensate. Phys. Rev. Lett.

2018, 120, 204505.
119. Alexandrova, O.; Lacombe, C.; Mangeney, A. Spectra and anisotropy of magnetic fluctuations in theEarth’s

magnetosheath: Cluster observations. Ann. Geophys. 2008, 26, 3585–3596.
120. Huang, S.Y.; Hadid, L.Z.; Sahraoui, F.; Yuan, Z.G.; Deng, X.H. On the Existence of the Kolmogorov Inertial

Range in the Terrestrial Magnetosheath Turbulence. Astrophys. J. Lett. 2017, 863, L10.
121. Chasapis, A.; Matthaeus, W.H.; Parashar, T.N.; Wan, M.; Haggerty, C.C.; Pollock, C.J.; Giles, B.L.; Paterson, W.R.;

Dorelli, J.; Gershman, D.J.; et al. In Situ Observation of Intermittent Dissipation at Kinetic Scales in the Earth’s
Magnetosheath. Astrophys. J. Lett. 2018, 856, L19.

122. Phan, T.D.; Eastwood, J.P.; Shay, M.A.; Drake, J.F.; Sonnerup, B.U.Ö.; Fujimoto, M.; Cassak, P.A.; Øieroset, M.;
Burch, J.L.; Torbert, R.B.; et al. Electron magnetic reconnection without ion coupling in Earth’s turbulent
magnetosheath. Nature 2018, 557, 202–206.

123. Bandyopadhyay, R.; Sorriso-Valvo, L.; Chasapis, A.; Hellinger, P.; Matthaeus, W.H.; Verdini, A.; Landi, S.;
Franci, L.; Matteini, L.; Giles, B.L.; et al. In-situ observation of Hall Magnetohydrodynamic Cascade in Space
Plasma. arXiv 2019, arXiv:1907.06802.

124. Alexakis, A.; Mininni, P.; Pouquet, A. On the inverse cascade of magnetic helicity. Astrophys. J. 2006, 640, 335–343.
125. Zhdankin, V.; Boldyrev, S.; Uzdensky, D.A. Scalings of intermittent structures in magnetohydrodynamic

turbulence. Phys. Plasmas 2016, 23, 055705.
126. Mininni, P.; Pouquet, A. Inverse cascade behavior in freely decaying two-dimensional fluid turbulence.

Phys. Rev. E 2013, 87, 033002.
127. Pouquet, A.; Sulem, P.L.; Meneguzzi, M. Influence of velocity-magnetic field correlations on decaying

magnetohydrodynamic turbulence with neutral X-points. Phys. Fluids 1988, 31, 2635–2643.
128. Scott, R.; Wang, F. Direct Evidence of an Oceanic Inverse Kinetic Energy Cascade from Satellite Altimetry.

J. Phys. Oceanogr. 2005, 35, 1650–1666.
129. Skamarock, W.C.; Park, S.H.; Klemp, J.B.; Snyder, C. Atmospheric Kinetic Energy Spectra from Global

High-Resolution Nonhydrostatic Simulations. J. Atmos. Sci. 2014, 71, 4369–4381.
130. Passot, T.; Sulem, P.L.; Tassi, E. Gyrofluid modeling and phenomenology of low-βe Alfvén wave turbulence.

Phys. Plasmas 2018, 25, 041207.
131. Schekochihin, A.; Cowley, S.; Dorland, W.; Hammett, G.; Howes, G.; Quataert, E.; Tatsuno, T. Astrophysical

gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J.
Suppl. 2009, 182, 310.



Atmosphere 2020, 11, 203 23 of 23

132. Cho, J. Magnetic Helicity Conservation and Inverse Energy Cascade in Electron Magnetohydrodynamic
Wave Packets. Phys. Rev. Lett. 2011, 106, 191104.

133. Ji, H. Turbulent dynamos and magnetic helicity. Phys. Rev. Lett. 1999, 83, 3198–3201.
134. Galtier, S.; Bhattacharjee, A. Anisotropic weak whistler wave turbulence in electron magnetohydrodynamics.

Phys. Plasmas 2003, 10, 3065–3076.
135. Kim, H.; Cho, J. Inverse cascade in imbalanced electron magnetohydrodynamic turbulence. Astrophys. J.

Suppl. 2015, 801, 75.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Interactions of Turbulent Eddies and Waves in Atmospheric and Oceanic Flows
	The Case of Space Plasmas

	Problem Set-Up
	Equations and Parameters
	The Ideal Case

	Large-Scale Dynamics of Hall MHD: Temporal Data
	Large-Scale Dynamics of Hall MHD: Growth Rates in Inverse Cascades and Spectral Data
	Exponential Decrease With Hall Parameter of the Growth Rate of HG and HM in Inverse Cascades
	Variation of the Forcing Wavenumber
	Discussion and Conclusions
	References

