
atmosphere

Article

Neural Network Model Analysis for Investigation of
NO Origin in a High Mountain Site

Eleonora Aruffo 1,* , Piero Di Carlo 1, Paolo Cristofanelli 2 and Paolo Bonasoni 2

1 Department of Psychological, Health & Territorial Sciences, University “G. d’Annunzio” of Chieti-Pescara,
66100 Chieti, Italy; piero.dicarlo@unich.it

2 Institute of Atmospheric Sciences and Climate, National Research Council of Italy, 40129 Bologna, Italy;
p.cristofanelli@isac.cnr.it (P.C.); P.Bonasoni@isac.cnr.it (P.B.)

* Correspondence: eleonora.aruffo@unich.it

Received: 20 November 2019; Accepted: 4 February 2020; Published: 7 February 2020
����������
�������

Abstract: Measurements of nitrogen oxide (NO), ozone (O3), and meteorological parameters have
been carried out between September and November 2013 in a high mountain site in Central Italy
at the background station of Mt. Portella (2401 m a.s.l.). Three NO plumes, with concentrations
up to about 10 ppb, characterized the time series. To investigate their origin, single hidden layer
feedforward neural networks (FFNs) have been developed setting the NO as the output neuron. Five
different simulations have been carried out maintaining the same FFNs architecture and varying
the input nodes. To find the best simulations, the number of the neurons in the hidden layer varied
between 1 and 40 and 30 trials models have been evaluated for each network. Using the correlation
coefficient (R), the normalized mean square error (NMSE), the fractional bias (FB), the factor of 2 (FA2)
and the t-student test, the FFNs results suggest that two of the three NO plumes are significantly
better modeled when considering the dynamical variables (with the highest R of 0.7996) as FFNs
input compare to the simulations that include as input only the photochemical indexes (with the
lowest R of 0.3344). In the Mt. Portella station, transport plays a crucial role for the local NO level,
as demonstrated by the back-trajectories; in fact, considering also the photochemical processes, the
FFNs results suggest that transport, more than local sources or the photochemistry, can explain the
observed NO plumes, as confirmed by all the statistical parameters.

Keywords: artificial neural network; NO; high mountain

1. Introduction

Nitrogen oxides (NOx = NO + NO2) indirectly affect the tropospheric greenhouse gas level playing
a crucial role in the tropospheric ozone (O3) budget and contributing to the formation of the secondary
organic aerosols (SOAs). Their emission into the atmosphere is mainly dominated by anthropogenic
sources (fossil fuel combustion-related especially to the road transport, industrial and agricultural
processes, and biomass and biofuel burning) and partially associated with natural activities (lightning,
soils) [1]. The European Environmental Agency in 2016 attributed 71,000 premature deaths to the NO2

in 41 European countries with an annual mean concentration of 16.3 µg/m3 [2].
NO and NO2 have been widely sampled in free troposphere remote sites: their origin and the

role played by the long transport have been investigated. In fact, the knowledge of the pollutant
levels in background high mountain sites and the understanding of the mechanisms from which they
originate are crucial to evaluate the impact of anthropogenic activities with regards to ecosystem
integrity [3]. In 2019, Cheng et al. [4] demonstrated that meteorological conditions significantly
influence the background levels of pollutants in the Gongga Mountain station (3541 m, southwestern
China) identifying potential source areas (long-range transport and/or local emissions) for their
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pollutant of interest. Bytnerowicz et al. [3] found that the estimated deposition of reactive nitrogen,
among which was NO and NO2, monitored in 14 sites in the central Sierra Nevada Mountains and
White mountains (511 m and 4346 m, California), impact on lichen communities of these ecosystems
and could potentially cause the enrichment of nutrients and the acidification levels of high mountain
lakes. Even in Europe, the free troposphere chemistry variability as a function of the air masses
transport has been extensively studied [5–7]. Kaiser et al. (2007) [8] investigated the NOx transport to
Alpine Global Atmosphere Watch (GAW) stations by using a methodology based on trajectory studies.
They found that NOx, sampled in air masses with long residence time, principally originated from
northwest of Europe, East Germany, Czech Republic and southeast Poland. In 2016, Okamoto and
Tanimoto [9] reviewed the atmospheric chemistry observed worldwide at high-altitude mountain sites,
highlighting the importance of the long-range transport in these stations. Sigmund et al. (2019) [10]
classified air masses with respect to the vertical transport developing a multivariate statistical model,
measured at the Zugspitze mountain observatory (Germany, 2650 m a.s.l.). The NOx variability
between 1998 and 2009 has been studied at the high alpine site Jungfraujoch (Swiss Alps, 35,810 m a.s.l.),
where the NOx did not show a long-term trend but, on the contrary, a strong interannual variation
influenced by single episodes of pollution [11]. Gilge et al. [12] analyzed the long-term time series of
NOx at four alpine GAW stations highlighting that the NO2 concentrations are strongly affected by
anthropogenic emissions. The Po Valley is one of the more polluted areas in Europe due to its high
density of population and agricultural and industrial activities. The pollution emitted in this region
and its impact on trace gases observed in high mountain stations in Central Europe have been widely
investigated [13–15]. The Mediterranean area, moreover, is considered a European hot spot for both air
quality and climate change [16] and, consequently, the monitoring and analysis of NOx and O3 in this
region are of primary importance. Cristofanelli et al. [17] investigated the O3 variability measured at
the Mt. Portella station (henceforth CMP) demonstrating, by using the five-day back trajectories, that
highest ozone concentrations are related to air masses transported from Central and Eastern Europe
and northern Italy.

Several models have been developed to simulate the atmospheric compounds based on different
approaches: box models integrating, for example, the Master Chemical Mechanism [18], mesoscale
non-hydrostatic 3-D meteorological model, i.e., WRF-Chem [19], regression models (such as, multiple
linear regression [20], land-use regression, supervised linear regression [21], and so on. Recently,
artificial neural networks (ANNs) have been increasingly used by the scientific community to simulate
and predict the atmospheric composition, focusing especially on NOx, O3, and particulate matters [22].
The nitrogen oxide was modeled by ANNs in the urban context [23,24]. In this work, we present
simulations of NO in a free troposphere site (Mt. Portella climatological station, 2401 m a.s.l.), located
in the middle of the Mediterranean basin, using a single hidden feedforward neural network (FFN)
architecture. For our analysis, we performed 5 different simulations varying the input of the neuron
to identify the origin of three NO plumes that reached the mountain station between October and
November 2013. We found that the model including only the meteorological parameters related to the
transport (i.e., wind speed, wind direction, and pressure) gives statistically better simulations than that
considering only the photochemistry.

2. Materials and Methods

2.1. Data and Site

The data analyzed have been recorded at the high altitude climatological station CMP (42◦26′53”
N, 13◦33′02” E, elevation 2401 m a.s.l.), part of the SHARE (Station at High Altitude for Research on the
Environment) network. The station is located in Central Italy on Mt. Portella, which is one of the peaks
around the Campo Imperatore plateau, near to the Corno Grande, the highest peak on the Apennines
chain (2912 m a.s.l.), and to the Calderone, the southernmost glacier of Europe (Figure 1). The position
of the CMP station is such that it can be considered a free horizon site without local pollution sources:
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Assergi village (500 inhabitants, 1000 m a.s.l.) is at about 6 km of distance from CMP, L’Aquila town
(~70,000 inhabitants, 721 m a.s.l.) at about 16 km, Rome town (~3 million inhabitants, 20 m a.s.l.) at
more than 100 km, the Po valley (North Italy) at about 400 km.
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Figure 1. The location of the Mt. Portella (CMP) station in Central Italy. The raster map is from the
Natural Earth website archive (available at http://www.naturalearthdata.com/).

In this study, we analyzed the data collected between September and November 2013 calculating
their hourly average. The meteorological parameters were measured by a Vaisala instrument (model
520 WTX) and the solar radiation by the LSI Lastem srl DPA 153 sensor. The NO and O3 concentration
were sampled using the 2b nitric oxide (model 410) and the 2b ozone (model 205) monitors, respectively.

Figure 2 shows the time series of all the parameters employed in this analysis: the temperature
ranges between 271.65 K and 285.05 K, the relative humidity between 11.9% and 94%, the wind speed
between 0.9 m/s and m/s 16.3 m/s. The background value of the NO registered average is about 2 ppb.
The NO behavior presents three plumes registered, respectively, on 16 October, 17 October, and 3–5
November, which are highlighted with grey boxes in Figure 2, with concentrations up to 9.7 ppb while
the O3 levels vary between 27.3 and 59.8 ppb. These plumes are well characterized by the temperature
ranging between ~273 K and ~279 K, the relative humidity (RH) included between ~30% and ~94%
and the wind direction that varies between the sectors North-West (NW) and North-East (NE). It
is important to highlight that the meteorological conditions occurring during the three plumes are
different. The first and third plumes, in fact, show a very high level of RH and low solar radiation,
whereas in the second plume the RH decreases and the solar radiation increases. This suggests that the
first and third plumes have been sampled in cloudy days, during which the photochemistry is less
active compared to the second plume. Despite these considerations, the three plumes persist for more
days (i.e., during both nighttime and daytime) indicating and confirming the important role played by
transport in a remote site.

http://www.naturalearthdata.com/
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Figure 2. Time series of all the parameters of interest. The grey boxes highlight three plumes in the NO
trend: two very close on 16 and 17 of October and the last on November (3–5 November 2013).

As expected in a remote site, the diurnal trend of NO and O3 does not show the typical evolution
like in an urban environment where they are strongly linked to the photochemistry (Figure 2). However,
the presence of three important plumes in the NO time series suggests analyzing in detail their origin
and relation with the O3. To understand the origin of the three NO plumes, we employed an artificial
neural network model varying the input parameters to deeply investigate the role played by the
dynamical and photochemical process in a high mountain background site.



Atmosphere 2020, 11, 173 5 of 11

2.2. The Neural Network Model

The artificial neural networks (ANNs) paradigm is inspired by the biological mechanisms that
occur in the human brain. The ANNs, through a training and learning procedure, allows trend
forecasts, including pattern recognition and classification. The basic architecture of ANNs considers
three parts: the input layer, which contains the input neurons (or nodes), one or more hidden layers, in
which there are neurons that are neither input nor output, and the output layer with the corresponding
output neurons. Given the i-th neuron with an input vector x of N elements, first, each input datum is
multiplied by the corresponding weight W and then they are summed (i.e., weight function, which can
be expressed in matrix formalism as W × x). A bias b is added to the last term to produce the net input
(i.e., the net input function), which is eventually the argument of the transfer function f that generates
the output value for the i-th neuron. The training procedure consists of the tuning of the bias and
weight values, which are at first randomly initialized until the network performance is optimized. In
our simulations, we used a single hidden layer feedforward neural network (FNN) with a different
number of inputs neurons, depending on the simulation purposes, and one output neuron. In the
FNNs the information propagates only forward through the network nodes, contrary to the recurrent
neural networks in which there are feedback connections between the layers.

In this study, we made use of the deep learning toolbox available in Matlab. The FNN, employed
in this study and schematically illustrated in Figure 3, uses a tan-sigmoid transfer function in the
hidden layer and the linear one in the output layer.
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Figure 3. Schematic illustration of the feedforward neural networks (FFNs) architecture employed in
this study. T: temperature; RH: relative humidity; RAD: solar radiation; WS: wind speed; WD: wind
direction; P: pressure; W: weight; b: bias.

To keep our simulations reproducible, we fixed the seed: the same random values for initial
weights and biases are produced when restarting the software (the random number generator functions
are set to their default values).

In our analysis, we first carried out 3 simulations keeping all the FNNs settings equal and
varying the input neurons as follows: (1) temperature (T), pressure (P), RH, solar radiation, wind
speed, and wind direction (henceforth, ALL simulations); (2) only the parameters describing the
atmospheric dynamic, i.e., P, wind speed, and wind direction (henceforth, DYN simulations); (3) only
the variables related to the photochemistry of the atmosphere, i.e., T, RH, solar radiation (henceforth,
PHO simulations). Successively, we run 2 further simulations in which we included also O3 in the first
and the last simulations described above (henceforward, ALLO3 and PHOO3 simulations, respectively).
We run the FNNs varying the number of the neurons in the hidden layer from 1 to 40 and, to find the
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best simulations, for each number of neuron configurations, we did 30 trials of the model, i.e., we
executed the FFNs 30 times during which the weights and biases varied in turn. Considering that the
aim of our analysis was the NO simulation, we had only one output node that is the nitrogen oxide.
The data have been divided into three sets: training (70%), validation (15%), and test (15%). Each set is
selected using indexes initially generated randomly, and then kept fixed for all the simulations: in
this way, we fixed the selection of the dataset for all the simulations leaving only the weights and the
biases variable. The network performance function employed in the FFNs is the mean square error
(MSE), which controls the weights and biases tuning and optimization during the training process. To
select the best simulation between the 40 × 30 cases that we generated with our approach, we choose
different statistical parameters: the minimum MSE between the target output (i.e., the measured NO)
and the network output (i.e., the NO modeled), the minimum normalized MSE (NMSE) that is the MSE
divided by the variance of the measured NO and the maximum correlation coefficient (R) between the
NO measured and modeled [20].

3. Results and Discussions

Figures 4 and 5 show the time series of the measured NO and the modeled NO in the different
simulations ran under distinct scenarios, as defined above, including or not the O3 as input node. The
three NO plumes are highlighted in the lower panels of both Figures 4 and 5.
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Figure 4. Upper panel: Time series of measured and modeled nitrogen oxide with three different
scenarios for the input nodes (see text for more details). Lower panels: temporal magnification of the
upper panel time series to highlight the three peaks of NO.

It is evident that the FNNs are able to reproduce the overall NO time series in almost all the
simulation conditions: considering the entire time series, in fact, we found the best simulation of the
NO using all the input parameters with an R between the NO modeled and measured at about 0.89.
However, focusing on the three NO plumes highlighted at the lower panels of Figures 4 and 5, the
simulations with the photochemical parameters (blue lines) do not follow the measured NO behavior,
whereas the NO modeled only with the dynamical inputs (green lines), reproduces the observations.
In detail, both the PHO and PHOO3 simulations do not correctly describe the first plume (16 October
2013), even though in the second one (17 October 2013) these simulations overlap the measurements
(especially the PHOO3). This result suggests that, as expected in a background site, the role played
by transport is fundamental in characterizing the variations of the NO concentrations allowing one
to describe some behavior excluding the photochemistry. The performance of the models and their
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ability to simulate the NO concentrations have been evaluated using four statistical indices: R, NMSE,
fractional bias (FB), and factor of two (FA2). They are defined as follows [20]:

R =

(
CO −CO

)
∗

(
CM −CM

)
σCO ∗ σCM

(1)

NMSE =
(CO −CM)2

CO ∗CM
(2)

FB = 2
CO −CM(
CO + CM

) (3)

FA2 =
1
2
≤

C0

CM
≤ 2 (4)

where CO, CM, σCO , and σCM represent the observed and modeled concentrations and their standard
deviations, respectively. Further details on these parameters and their interpretation can be found
elsewhere [20]. Table 1 lists the values of these four indices for each simulation both considering the
whole time series and the three single NO plumes.Atmosphere 2020, 11, x FOR PEER REVIEW 13 of 13 
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Figure 5. As Figure 4 but the modeled time series are the output of simulation without the inclusion of
the O3 as input nodes.

The statistical parameters suggest that the simulations including O3 input typically are better
than those without it. Moreover, it is proved that, in the first and third plume, the PHO and PHOO3
parametrization give the worst model results compared to the DYN simulations in terms of R, NMSE,
and FB confirming that, in a high mountain site, the transport (expressed by the dynamical parameters)
governs the measured NO plumes persistence more than the photochemistry. We evaluated the
t-student test to further confirm that, in the first and third plumes, the NO time series modeled by the
PHO and PHOO3 simulations are classified as not part of the population defined by the measured
NO trend (i.e., they are statistically different). We rejected the null hypothesis, with a significance
level α of 0.01, evaluating the t-student test between the modeled and the measured NO for both the
PHO and PHOO3 models in the first and third plume (h = 1 in these cases). On the contrary, in the
same plumes, we found that the null hypothesis is verified (h = 0) when comparing the NO measured
and modeled only with the dynamical parameters (DYN simulations). Moreover, it is important to
notice that the first plume is generally modeled with worse results than the other two: this could be
addressed, keeping the same FNNs architecture, considering other input parameters (such as visibility,
lightning, etc.) that could improve the model performances.
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Table 1. Summary of the performance of the FFNs in the NO modeling for different input node
simulations. R is the correlation coefficient, NMSE is the normalized mean square error, FB the
fractional bias, and FA2 the factor of two. T: temperature; RH: relative humidity; P: pressure.

Plume Simulation Input Parameters R NMSE FB FA2

Whole time
series

ALL T, RH, solar radiation, Wind
speed, Wind direction, P 0.8795 0.0208 −0.0024 0.9991

DYN Wind speed, Wind direction, P 0.7621 0.0389 −0.0016 0.9955

PHO T, RH, solar radiation 0.7379 0.0419 −0.0041 0.9964

ALLO3 T, RH, solar radiation, Wind
speed, Wind direction, P, O3

0.8890 0.0194 −0.0027 0.9982

PHOO3 T, RH, solar radiation, O3 0.7997 0.0333 −7.8421 × 10−4 0.9973

I plume

ALL T, RH, solar radiation, Wind
speed, Wind direction, P 0.6072 0.0625 0.1029 0.9630

DYN Wind speed, Wind direction, P 0.6164 0.0786 0.1580 0.9630

PHO T, RH, solar radiation 0.3344 0.1273 0.2204 0.9259

ALLO3 T, RH, solar radiation, Wind
speed, Wind direction, P, O3

0.7090 0.0492 0.1024 1

PHOO3 T, RH, solar radiation, O3 0.3686 0.1378 0.2423 0.9259

II plume

ALL T, RH, solar radiation, Wind
speed, Wind direction, P 0.9195 0.0276 0.0306 1

DYN Wind speed, Wind direction, P 0.7996 0.0891 0.1208 0.9583

PHO T, RH, solar radiation 0.8414 0.0731 0.1316 1

ALLO3 T, RH, solar radiation, Wind
speed, Wind direction, P, O3

0.9094 0.0296 0.0076 1

PHOO3 T, RH, solar radiation, O3 0.9086 0.0295 0.0022 1

III plume

ALL T, RH, solar radiation, Wind
speed, Wind direction, P 0.7913 0.0252 0.0210 1

DYN Wind speed, Wind direction, P 0.8179 0.0256 0.0542 1

PHO T, RH, solar radiation 0.4115 0.0747 0.1146 1

ALLO3 T, RH, solar radiation, Wind
speed, Wind direction, P, O3

0.8620 0.0165 0.0089 1

PHOO3 T, RH, solar radiation, O3 0.3351 0.0786 0.1161 1

To confirm this assumption and to identify the origin of the air masses for the three plumes
analyzed, the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model [25] has been
employed. In detail, we evaluated the 24 h-back trajectories selecting the departure time of each of
them every half hour for all the three chosen plumes under analysis, fixing their start location to the
geographical coordinates of the CMP station. Figure 6 reports the 24 h-back trajectories as a function
of the starting date: it is evident that air masses reached the CMP station from different locations in
the Mediterranean area considering as starting time the occurrence of the first and third (dots and
diamonds) or the second (squares) plumes. In detail, the air masses of the second plume (in which
the photochemistry describes better the NO trend) originated from the Po Valley, a very polluted
area in northern Italy [26]. On the contrary, the remaining two NO plumes (16 October 2013 and 3–5
November 2013) reach the CMP station from the Tyrrhenian Sea (western coast of Italy). Two back
trajectories have been evaluated as part of the first and third plumes (i.e, those calculated starting
on 16/10 at 12:30 and 06/11 at 00:00 in light pink and dark red in Figure 6), but they show a different
provenance. This can be explained considering that they are relative to a transient phase in which the
NO level varies between the first and second plume or it is returning to a background condition.
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Lastly, the FNN results suggest that transport is a crucial factor for describing NO plume
persistence in a high mountain site, even if it is also important to consider that, depending on the local
meteorological conditions, the photochemistry can contribute or not significantly to the NO levels.

4. Conclusions

Single hidden layer FFNs have been developed to investigate the origin of three NO plumes
measured between October and November 2013 at the Mt. Portella background station (2401 m a.s.l.).
To evaluate the role played by the transport in this high mountain site, the input neurons have been
varied in 5 different configurations of the FFNs. In details, we run five distinct simulations using
different scenarios defined by the input parameters: (1) including all the available data (i.e., P, T,
RH, wind speed, wind direction, solar radiation), (2) using only the dynamical parameters (wind
speed, wind direction, and P) or (3) only the photochemical variables (T, RH, solar radiation). The
remaining two simulations have been run using the same input nodes of the first and third scenarios
described above, but including also the O3 as an input. Analyzing the simulation outputs, we found
that the input parameters that can be considered as a proxy of dynamical process, i.e., the atmospheric
transport, describe better two of the NO plumes compared to those that are mainly a proxy of the
photochemistry. Statistical tests (R, NMSE, FB, FA2, and t-student) have been applied to the modeled
time series confirming that the atmospheric dynamic prevalently governs the NO plumes in this site.
This study suggests that the FNN models are a very useful instrument to discriminate/characterize the
origin of air masses in high mountain background areas and to simulate the local NO concentrations.
However, further analyses are required to investigate the role played by the long-range transport in the
high mountains, especially on the NO forecast in these sites. The air quality monitoring in background
sites, in fact, allows one to study the impact of anthropogenic emissions on background conditions of
the troposphere, especially considering that compounds such as NOx and O3 could have a significant
and negative impact on the ecosystem of the high altitude locations.
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