

Supplementary Material for Characterization of Aerosol Physical and Optical Properties at The Observatoire Pérenne de l'Environnement (OPE) Site

Antoine Farah^{1,*}, Paolo Villani¹, Clemence Rose¹, Sebastien Conil², Laurent Langrene², Paolo Laj³ and Karine Sellegri^{1,*}

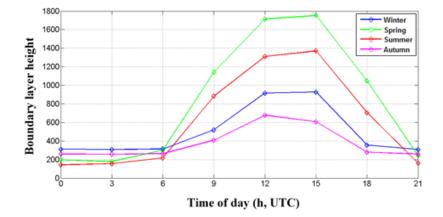
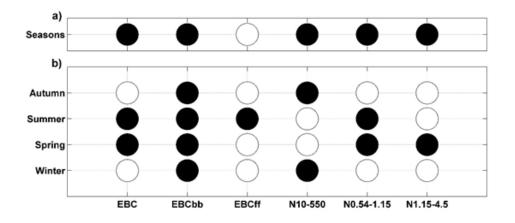

- ¹ Laboratoire de Météorologie Physique, UMR6016, Université Clermont Auvergne-CNRS, 4 avenue Blaise Pascal, 63178 Aubière, France; p.villani@opgc.fr (P.V.); c.rose@opgc.univ-bpclermont.fr (C.R.)
- ² ANDRA-DRD, Observatoire Pérenne de l'Environnement, F-55290 Bure, France; Sebastien.Conil@andra.fr (S.C.); Laurent.LANGRENE@andra.fr (L.L.)
- ³ Institut des Géosciences de l'Environnement, Université Grenoble Alpes, Centre National de la Recherche Scientifique, 38000 Grenoble, France; paolo.laj@univ-grenoble-alpes.fr (P.L.)
- * Correspondence: anfarah90@gmail.com (A.F.); karine.sellegri@uca.fr<u>; (K.S.)</u> Tel.: +33-473-407-678 (A.F.); Tel.: +33-473-407-394 (K.S.)

Table 1. Median values of different aerosol optical and physical properties at OPE as a function of seasons.


	Full Period	Winter	Spring	Summer	Autumn
	Median = 0.3	Median = 0.32	Median = 0.24	Median = 0.25	Median = 0.34
EBC (µg m⁻³)	$Perc_{25} = 0.17$	$Perc_{25} = 0.18$	$Perc_{25} = 0.16$	$Perc_{25} = 0.17$	$Perc_{25} = 0.21$
	Perc ₇₅ = 0.47	Perc ₇₅ = 0.56	Perc75 = 0.41	Perc ₇₅ = 0.37	Perc ₇₅ = 0.54
	Median = 0.09	Median = 0.12	Median = 0.08	Median = 0.05	Median = 0.1
ЕВСьь (µg m ⁻³)	$Perc_{25} = 0.04$	$Perc_{25} = 0.06$	$Perc_{25} = 0.04$	$Perc_{25} = 0.02$	$Perc_{25} = 0.05$
	Perc75 = 0.16	Perc75 = 0.2	Perc75 = 0.15	Perc75 = 0.1	Perc75 = 0.18
	Median = 0.24	Median = 0.2	Median = 0.2	Median = 0.27	Median = 0.3
EBCff (µg m ⁻³)	$Perc_{25} = 0.13$	$Perc_{25} = 0.11$	$Perc_{25} = 0.12$	$Perc_{25} = 0.15$	$Perc_{25} = 0.17$
	Perc ₇₅ = 0.4	Perc ₇₅ = 0.35	Perc75 = 0.34	Perc ₇₅ = 0.4	Perc ₇₅ = 0.47
α	Median = 0.95	Median = 1.03	Median = 0.96	Median = 0.8	Median = 0.9
	$Perc_{25} = 0.76$	$Perc_{25} = 0.93$	$Perc_{25} = 0.78$	$Perc_{25} = 0.62$	$Perc_{25} = 0.72$
	Perc ₇₅ = 1.11	Perc75 = 1.14	Perc75 = 1.11	Perc ₇₅ = 1.02	Perc ₇₅ = 1.09
b_{scat} (Mm ⁻¹)	Median = 19	Median = 24	Median = 19	Median = 14	Median = 21
	$Perc_{25} = 11$	$Perc_{25} = 13$	$Perc_{25} = 10$	$Perc_{25} = 10$	$Perc_{25} = 12$
	Perc ₇₅ = 41	Perc ₇₅ = 53	$Perc_{75} = 40$	Perc ₇₅ = 22	Perc ₇₅ = 47
	Median = 0.86	Median = 0.87	Median = 0.86	Median = 0.86	Median = 0.85
SSA	$Perc_{25} = 0.82$	$Perc_{25} = 0.83$	$Perc_{25} = 0.81$	$Perc_{25} = 0.82$	$Perc_{25} = 0.81$
	Perc ₇₅ = 0.9	Perc ₇₅ = 0.9	$Perc_{75} = 0.9$	Perc ₇₅ = 0.89	Perc ₇₅ = 0.89
	Median = 2155	Median = 1828	Median = 2600	Median = 2500	Median = 1870
N10-550 (cm ⁻³)	$Perc_{25} = 1377$	$Perc_{25} = 1099$	$Perc_{25} = 1734$	$Perc_{25} = 1650$	$Perc_{25} = 1225$
	Perc ₇₅ = 3176	Perc ₇₅ = 2826	Perc ₇₅ = 3632	Perc ₇₅ = 3537	Perc ₇₅ = 2695
	Median = 0.63	Median = 0.7	Median = 0.56	Median = 0.54	Median = 0.73
N0.54–1.15 (cm ⁻³)	$Perc_{25} = 0.23$	$Perc_{25} = 0.1$	$Perc_{25} = 0.21$	$Perc_{25} = 0.33$	$Perc_{25} = 0.23$
	Perc75 = 1.4	$Perc_{75} = 2$	Perc ₇₅ = 1.15	Perc ₇₅ = 0.88	Perc ₇₅ = 1.41
	Median = 0.03	Median = 0.01	Median = 0.03	Median = 0.05	Median = 0.02
N1.15-4.5 (cm ⁻³)	$Perc_{25} = 0.01$	$Perc_{25} = 0.001$	$Perc_{25} = 0.01$	$Perc_{25} = 0.03$	$Perc_{25} = 0.01$
	$Perc_{75} = 0.06$	$Perc_{75} = 0.35$	$Perc_{75} = 0.06$	Perc ₇₅ = 0.07	$Perc_{75} = 0.05$
Nucfresh (cm ⁻³)	Median = 67	Median = 51	Median = 90	Median = 90	Median = 50
	$Perc_{25} = 20$	$Perc_{25} = 17$	$Perc_{25} = 26$	$Perc_{25} = 29$	$Perc_{25} = 13$
	Perc ₇₅ = 172	Perc ₇₅ = 123	Perc ₇₅ = 217	Perc ₇₅ = 222	Perc ₇₅ = 148
Nuc _{aged} (cm ⁻³)	Median = 302	Median = 257	Median = 370	Median = 332	Median = 277
	$Perc_{25} = 147$	$Perc_{25} = 122$	$Perc_{25} = 185$	$Perc_{25} = 147$	Perc ₂₅ = 139
	Perc ₇₅ = 593	Perc ₇₅ = 483	Perc ₇₅ = 715	Perc ₇₅ = 667	Perc ₇₅ = 540

Atmosphere 2020, 11, x FOR PEER REVIEW

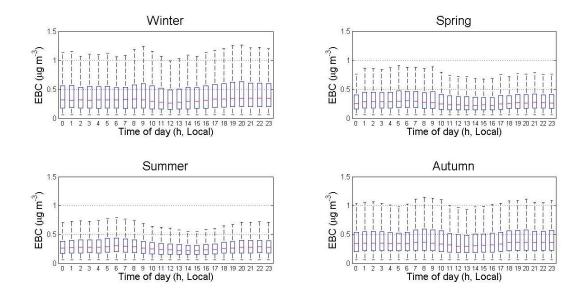

	Median = 507	Median = 402	Median = 647	Median = 586	Median = 444
Ait (cm ⁻³)	Perc ₂₅ = 291	$Perc_{25} = 237$	$Perc_{25} = 389$	$Perc_{25} = 312$	$Perc_{25} = 273$
	Perc75 = 871	Perc ₇₅ = 686	Perc ₇₅ = 1063	Perc ₇₅ = 1089	Perc ₇₅ = 733
Acc1 (cm-3)	Median = 762	Median = 700	Median = 864	Median = 829	Median = 675
	$Perc_{25} = 407$	$Perc_{25} = 347$	$Perc_{25} = 479$	$Perc_{25} = 445$	$Perc_{25} = 360$
	Perc75 = 1240	Perc ₇₅ = 1265	Perc ₇₅ = 1339	Perc ₇₅ = 1293	Perc ₇₅ = 1083
Acc2 (cm ⁻³)	Median = 120	Median = 142	Median = 127	Median = 91	Median = 136
	$Perc_{25} = 53$	$Perc_{25} = 51$	$Perc_{25} = 59$	$Perc_{25} = 48$	$Perc_{25} = 53$
	Perc75 = 228	Perc ₇₅ = 286	Perc ₇₅ = 228	Perc ₇₅ = 159	Perc ₇₅ = 240

Figure S1. Diurnal variation of the boundary layer height at OPE (computed with ECMWF ERA-Interim data for the year 2012 to 2018) averaged over the four seasons.

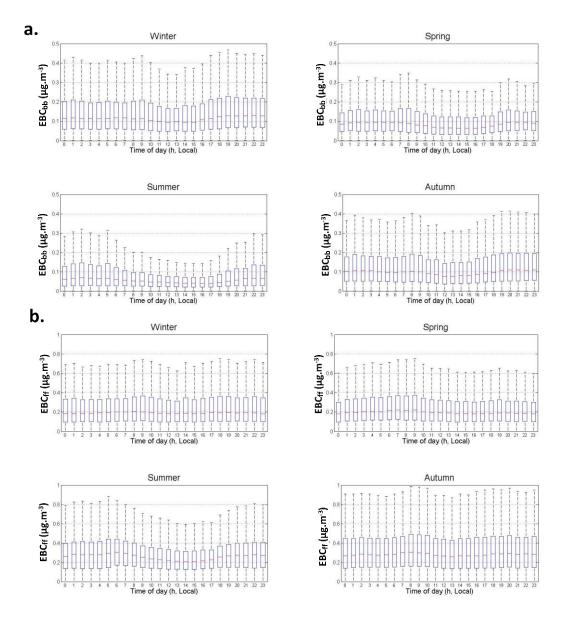


Figure S2. The Wilcoxon–Mann–Whitney test applied on EBC, EBC_{bb}, EBC_{ff}, N₁₀₋₅₅₀, N_{0.54-1.15}, N_{1.15-4.5} concentrations measured for each season. The circles are black (white) when: (**a**) the cold seasons median are significantly different (equal) from the warm seasons medians; (**b**) the daytime medians are significantly different (equal) from the nighttime medians, with a threshold of 5%.

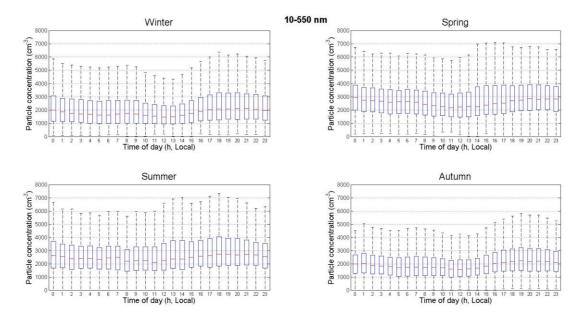
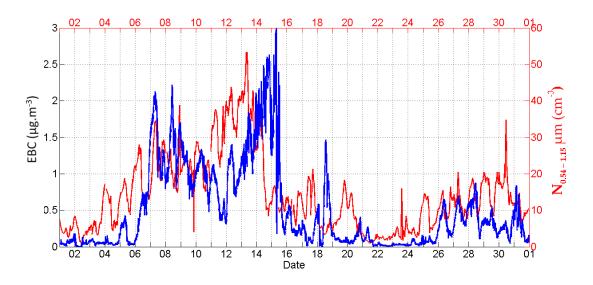
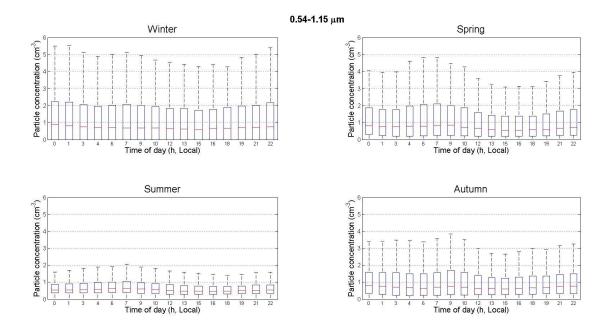
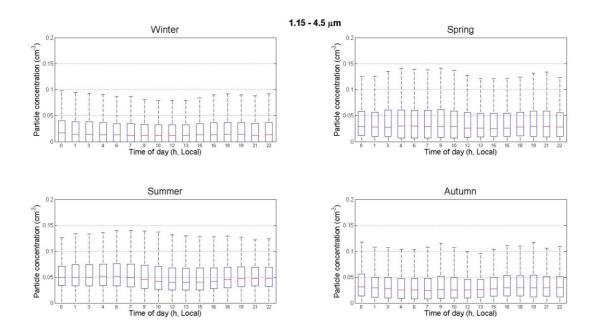
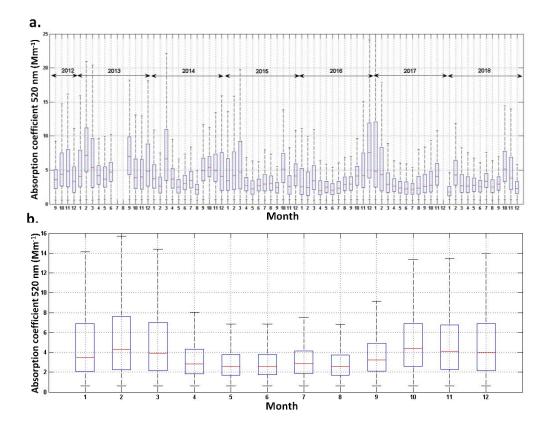


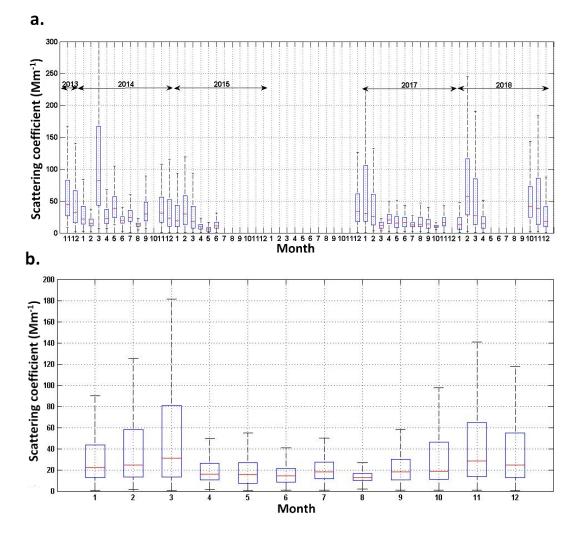
Figure S3. Seasonal median daily variation of EBC (μ gm⁻³) for each season at OPE. Red lines represent the median value, bottom and top sides of the boxes symbolize the 25th and 75th percentile respectively. The length of the whiskers represent 1.5× interquartile range which includes 99.3% of the data.




Figure S4. Seasonal median daily variations of (**a**) EBC_{bb} and (**b**) EBC_{ff} for each season. Red lines represent the median value, bottom and top sides of the boxes symbolize the 25th and 75th percentile respectively. The length of the whiskers represent 1.5× interquartile range which includes 99.3% of the data.


Figure S5. Seasonal median daily variations of the total particle concentration cm⁻³ of diameter between 10 and 550 nm for each season. Red lines represent the median value, bottom and top sides of the boxes symbolize the 25th and 75th percentile respectively. The length of the whiskers represent 1.5× interquartile range which includes 99.3% of the data.


Figure S6. Time series of EBC (Blue) and total particle number concentration of diameter between 0.54 and 1.15 μ m (N_{0.54-1.15} μ m): Red, in March 2014 at OPE.


Figure S7. Seasonal median daily variations of the total particle number concentration of diameter between 0.54 and 1.15 μ m for each season. Red lines represent the median value, bottom and top sides of the boxes symbolize the 25th and 75th percentile respectively. The length of the whiskers represent 1.5× interquartile range which includes 99.3% of the data.

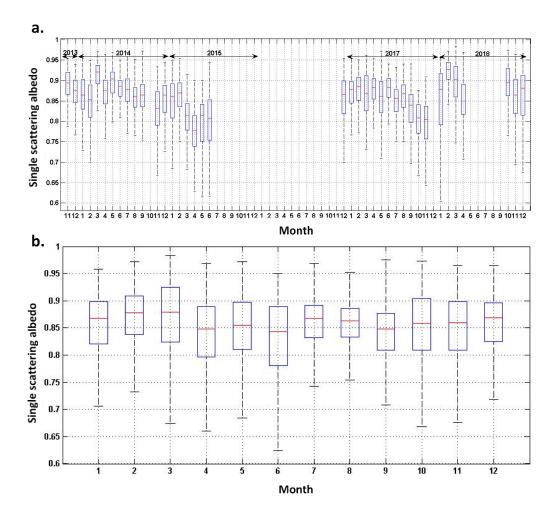

Figure S8. Seasonal median daily variations of the total particle number concentration of diameter between 1.15 and 4.5 μ m for each season. Red lines represent the median value, bottom and top sides of the boxes symbolize the 25th and 75th percentile respectively. The length of the whiskers represent 1.5× interquartile range which includes 99.3% of the data.

Figure S9. (a) Evolution of the absorption coefficient at 520 nm over the entire measurement period; (b) seasonal median variations of this same parameter. Red lines represent the median value, bottom and top sides of the boxes symbolize the 25th and 75th percentile respectively and the extremities of the black lines are the 10th and 90th percentile.

Figure S10. (a) Evolution of the scattering coefficient at 525 nm over the entire measurement period; (b) seasonal median variations of this same parameter. Red lines represent the median value, bottom and top sides of the boxes symbolize the 25th and 75th percentile respectively. The length of the whiskers represent 1.5× interquartile range which includes 99.3% of the data.

Figure S11. (a) Evolution of the single scattering albedo over the entire measurement period; (b) seasonal median variations of this same parameter. Red lines represent the median value, bottom and top sides of the boxes symbolize the 25th and 75th percentile respectively. The length of the whiskers represent 1.5× interquartile range which includes 99.3% of the data.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).