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Abstract: Long-term ground-based measurements of aerosol optical properties in Athens, Greece,
for the period 2008-2018 performed by the National Observatory of Athens are used in order to
investigate the aerosol climatology of the area. In this study, we utilize quality-assured measurements
of the aerosol optical depth (AOD), Single Scattering Albedo (SSA) and Angstrém exponent obtained
by CIMEL photometers in the framework of the Aerosol Robotic Network (AERONET) to extract the
seasonality and the trends of aerosols in the region. Higher aerosol loads are found during spring
and summer months. A 1.1% per year decrease for AOD at 440 nm and 0.4% decrease per year
for SSA during the studied period are recorded. Collocated and synchronous PM;, values, for a
five-year period, are used in order to study ground-level conditions. Also, the Planetary Boundary
Layer Height from ERA-5 is used to investigate the stratification of the particles. The classification
of aerosols using AERONET data is performed to separate dust, biomass burning, polluted urban,
marine and continental dominant aerosol mixtures. Also, the characterization of AOD provided by
Copernicus Atmosphere Monitoring Service (CAMS) is investigated. Finally, seasonal AOD trends
recorded from AERONET from satellite sensors (MODIS-Aqua/MODIS-Terra) and estimated by
CAMS are examined, and significant differences have been found.
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1. Introduction

Aerosols play an important role in Earth’s climate system, as has been reported by the
Intergovermental Panel on Climate Change (IPCC) [1], and also affect human health in urban
and agricultural areas [2—4]. Aerosols absorb and scatter solar radiation; however, these mechanisms
still remain a major source of uncertainty in climate modelling [5]. Additionally, aerosol estimation is
important for diverse applications such as in the correction of the surface’s satellite retrievals [6-8] and
in forecasting solar energy [9,10].

Over the last two decades, significant improvements have been performed for surface networks
and the satellite retrievals of aerosols, contributing to major improvements in the monitoring and
understanding of the related procedures. The major surface aerosol networks include AERONET, which
operates hundreds of stations around the globe [11]; SKYNET, which operates more than 60 stations globally
with main focus on Asia [12]; and the Global Atmospheric Watch/Precision Filter Radiometer (GAW/PER),
which operates approximately 20 stations with long-term measurements [13,14]. Various homogenization
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activities for these different networks have been reported [15,16]. Data from these networks have
been used frequently for climatological studies. Satellite aerosol retrievals are available from several
instruments [17], such as Microwave Integrated Retrieval System (MISR) [18], Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations (CALIPSO) [19], Advanced Along-Track Scanning
Radiometer (AATSR) [20]. Satellite-based products of aerosol properties, although geographically
denser, are however more uncertain than ground-based measurements.

Aerosol trends in urban environments have attracted specific interest over recent years as
anthropogenic emissions (traffic, industry) undergo significant interannual changes. In addition,
satellite retrievals above densely populated areas are subject to significant errors [17], leading to
different indications of trends in a number of areas when satellite-derived time series are used [21].
Model sulfate concentrations show a slower rate of decline than sulfur emissions across Western
Europe and the USA, mainly as a result of the increased availability of HyO; in clouds, which alters the
oxidization rate of SO, [22]. In Europe, an average aerosol decrease of 2.3% year for the period 1995-2017
has been reported by the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS) [23].

The current study focuses on the city of Athens, Greece, which is located near the coastline in
the eastern Mediterranean. The Athens greater area constitutes a complex aerosol environment with
a multitude of natural and anthropogenic sources. A common natural procedure in the area is the
emission of marine aerosols by the sea surface, which are advected by the wind speed/sea waves and
then chemically processed by interactions with gases and water vapor [24]. The long-distance transport
of Saharan desert dust aerosols is occasionally observed, especially in spring/summer months, with high
aerosol loads in the free troposphere in most cases [25-27]. Marinou et al. [28] and Koukouli et al. [29]
found a very small negative trend in the dust optical depth in the eastern Mediterranean for the period
2007-2015 using satellite data. Wildfires also contribute to the aerosol mixture in the area occasionally,
either by nearby events [30,31] or by long-range transport [32,33]. Athanasopoulou et al. [31] showed
that wildfires in Greek forests could lead to up to three times higher aerosol optical depth (AOD)
values in the area during summer. The Mediterranean basin is moderately to highly polluted over
summer and significantly lower during winter months because of air masses originating from Turkish
cities and European industrial areas [34]. A major local aerosol source in the greater area of the Athens
basin is biomass burning [35-39], which has significantly increased in winter months since 2010 due to
the economic crisis and the associated wood burning for residential heating. In addition, secondary
aerosol formation makes a significant contribution in the area [40-44]. Especially during summer
months, when the long sunshine duration enhances photochemical activity, secondary aerosols are
dominant in the area, particularly when air masses arrive from the northern parts of the Balkan
peninsula [45]. Emissions of aerosols linked to vehicle traffic have decreased, but the trend has changed
since 2014, which is associated with the lifting pf the ban of diesel vehicles in the metropolitan area [44].
An estimate of the contribution of the different sources to the average AOD loadings over Athens
is provided by Gerasopoulos et al. [25], who reported that the annually averaged AOD is 40% due
to regional and local sources, 23% due to dust from the Saharan desert and 22% due to European
continental sources.

In the present study, we have exploited a 10-year-long data set recorded by the Aerosol Robotic
Network (AERONET) in the city of Athens. The seasonality of the aerosol optical properties is
investigated and discussed. A hybrid database that combines columnar variables from AERONET and
in-situ PMj9 measurements has been used as a proxy for the layering of aerosols as well as in respect
to the Planetary Boundary Layer Height (PBLH). The classification of aerosols using well-established
approaches and modeled data is presented and discussed. Finally, trends in optical parameters,
both using AERONET data and modelled data, are compared.
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2. Data and Methodology

2.1. Theoretical Background

Aerosol optical depth is the quantity that describes the attenuation of radiation when propagating
in an aerosol layer and indirectly quantifies the presence of aerosols in an atmospheric column. It is

defined as follows:
TOA

AOD, = f baer(A, h) dh 1)
0

where A is the wavelength, TOA is the top of the atmosphere and b, is the extinction over a vertical
optical path. Additionally, Angstrom [46] proposed the following formula, which includes the spectral
dependence of the extinction:

AOD) =p AT )

where o is the Angstrém exponent, which parameterizes the spectral dependence of the extinction,
and {3 is a variable indicative of the number of particles found in the solar beam path. Using solar
direct irradiance measurements from the ground, AOD is calculated through the Beer-Lambert law,
which, when solved for atmospheric boundary conditions, is expressed as follows:

I\ =1, exp(—mT) R~? 3)

where I, is the irradiance measured at ground level at wavelength A, I, 5 is the extraterrestrial irradiance
at wavelength A, m is the optical air mass along the line of sight connecting the observations point
and the sun, T is the total optical depth and the term R is the Sun-Earth distance in astronomical
units, normalized to the variations around the mean distance. Then, the AOD is extracted from t by
eliminating any other extinctors including trace gases and physical processes such as Rayleigh scattering.

The Angstrom exponent « is usually calculated as the ratio of AOD between two wavelengths A
and A:

AODy; _ (?\1 )‘a @

AODy, ~ \A2

The Single Scattering Albedo (SSA) is a variable that is defined as the ratio of scattering to

total extinction. The SSA a wavelength A is defined as the relative contribution of the aerosol

scattering extinction (bsca) to total extinction (bsca + baps), thus indirectly also describing the absorption
contribution (b,ps):

SSA(A) = (bsca (N)/(bsca (A)+babs (M) ©)

The values of SSA could theoretically range from 0 to 1, but for aerosol layers in the Earth’s
atmosphere, they are very close to 1, as aerosols mainly scatter the solar light, and are rarely found to
be lower than 0.65 [47], when very absorbing aerosols dominate the layer.

The planetary boundary layer is the lowest part of the troposphere, is directly affected by the
surface conditions and responds to surface forcing in very short time scale [48]. The planetary boundary
layer height (PBLH) is the height that distinguishes the atmospheric boundary layer from the free
troposphere, and the highest values on cloudless days are detected around local noon. On cloudy
days, the PBLH has a more complex behavior, resulting in a complicated stratification. In most cases,
local emissions of aerosols and trace gases are trapped in this layer; thus, it severely affects the
dispersion of pollutants. Stratification in the lower troposphere is the main factor leading to the fact
that the columnar properties of aerosols are often different from those measured at the surface. Hence,
PBLH could be used to interpret patterns caused by the stratification.

When addressing air quality and public health issues, instead of the columnar AOD,
the concentration of different fractions of particulate matter (PM) at ground level is used, with PM;g
being the most traditional and most commonly used fraction in terms of legislation obligations.
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PM is defined as the concentration of all solid or liquid-suspended particles that have diameters
less than 10 um. PM;g can be monitored by using different methods such as sampling techniques on
filters (reference method)—e.g., cascade impactors which use size selective inlets that favor either a
certain particle size range or a particular upper cut-off point—or (almost) real-time techniques such as
tapered element oscillating microbalance (TEOM) and light scattering systems—e.g., optical particle
counters—while currently the most common method is beta gauge monitors (using the attenuation of
beta radiation through a filter of specific particle loading).

2.2. Site

Athens is a city of 3.7 million habitants with an estimated 2.5 million automobiles and heavy
traffic, which represents the single greatest source of local emissions. The area has been heavily
deindustrialized over recent decades, but there are still emissions linked to factories and fossil fuel.
Athens is located in a basin in which three mountains with a height of around 1 km trap most of the
urban emissions in the greater area, causing poor ventilation. The dispersion of the pollutants is mainly
caused by is the sea breeze along the NE-SW axis [49]. Additionally, there are common cases of the
long-distance transport of air masses from arid areas of Northern Africa, frequently associated with
dust events that affect the area [50,51]. Athens has a temperate climate with warm and dry summers
and wet and mild winters, which is typical for the Eastern Mediterranean. The measurements used
in this study were conducted at the urban background site of the National Observatory of Athens
(NOA) at Thissio (37.97° N, 23.72° E), which is located at an elevation of 130 m a.s.l. and 8 km from
the coastline, in a moderately populated area, where the influence of direct local emissions is limited.
A detailed description of the measuring site can be found in Paraskevopoulou [35].

2.3. Measurements

Data from the AERONET station ATHENS-NOA have been used for the period May
2008-September 2018. The instrument is located at the site described in the previous paragraph,
and the horizon view is clear at a 360° viewing angle.

The CIMEL Sun-photometer is a filter radiometer developed by Cimel Electronics (Paris, France),
which performs direct Sun and sky radiance measurements. Measurements are performed at nine
bandpass filters between 340 and 1640 nm (eight of them are dedicated to AOD retrieval, and one
us used for integrated water vapor (IWV)). During this time period at the station CIMEL CE318,
photometer #440 operated as the main instrument, with some months of operations of CIMEL CE318
photometers #110, #240 and #395 as replacement instruments. Instruments #110 and #240 recorded only
four channels (440, 675, 870 and 1020 nm), which shortened the time series of the other wavelengths by
a total of 350 days (combined for these instruments). Additionally, gaps in the time series are expected
due to the frequent calibrations (annually) demanded by the network protocol. All calibrations were
performed at Laboratoire d’Optique Appliquée (LOA) at Université de Lille, France.

Direct measurements are performed usually every 10-15 min. These measurements are processed
centrally and are widely available from the Aerosol Robotic Network (AERONET) [11]. Aerosol optical
depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud screened),
and Level 2.0 (cloud-screened and quality-assured). Thus, gaps in time series are caused by cloudy
skies and multi-day gaps by instrument malfunction. Additionally, there is an around 2-month-long
gap in the time series for every calibration of the instrument.

In this study, AERONET version 3 retrievals have been used [52,53] at level 2.0 for direct Sun
and inversion products to guarantee the highest quality. The unique exception is Single Scattering
Albedo (SSA) inversion retrievals, for which level 1.5 was used. This practice is relatively common in
climatology studies, because AERONET level 2.0 criteria for this product are very strict (Solar Zenith
Angle (SZA) > 50° AOD > 0.4) and for many areas, including Athens, such cases are rare. For the
presented dataset, level 2.0 filtered out all but 186 SSA level points in 10 years, while at level 1.5,
there are 8933 measurements available. A conditional sampling has been applied to level 1.5 data
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in order to ensure that the quality assurance filtered out only based on AOD values. The sampling
criterion applied in the current dataset has been described by Kazadzis et al. [54]. The usage of
level 1.5 should be performed while always taking in account the higher uncertainty of this product,
which could be up to 0.04 higher than level 2.0 depending on the AOD and SZA.

The monitoring of in situ PM;g takes place continuously at Thissio from NOA as part of the routine
station measurements, and data are available from 1 January 2014. The PM;g concentrations near the
surface were measured by means of a beta-attenuation monitor (Eberline, FH 62 I-R), which pulls
ambient air through the sampling line, and a size-selective inlet for PM;,, which deposits particles
on a clean section of a filter tape (single filter spot principle) and utilizes the radiometric attenuation
(Kr-85 noble gas, with a maximum energy 0.67 MeV) by a two-beam compensation method [55].
Measurements are stored at an initial, 1 min temporal resolution; in this study, we have used the hourly
averages. The instrument is located 50 m away from the AERONET site.

The Copernicus Program and its Atmosphere Monitoring Service (CAMS) combines state-of-the-art
atmospheric modelling of aerosols with Earth observation data to provide information services covering
European air quality, global atmospheric composition, climate, and UV and solar energy [56]. CAMS is
part of European Centre for Medium-Range Weather Forecasts (ECMWEF) numerical weather prediction
and combines the assimilation of satellite data on aerosols and trace gases with chemical modelling
and ground-based measurements [57,58]. CAMS is one of the main tools used in Europe for forecasting
air quality at regional scales. Emissions sources are also included in the modelling procedure, as well
as sedimentation and wet and dry deposition processes [59]. In the current study, we have used 3 h
time step outputs from CAMS for pixels corresponding to instrument locations, for the variables AOD
at 550 and 1020 nm and for dust, black carbon, organic matter, sea salt and sulfate AOD for the period
2008-2018. Sulfate is assumed to be non-absorbing, and all the assumptions used could be found in
the work by Benedetti [59]. The spatial resolution of CAMS data is about 80 km, which could be a
source of inconsistencies when compared with a point Sun-photometric measurement, especially in a
complex environment such as Athens. The CAMS dataset has potential use for climatological studies
in areas without ground-based measurements. Thus, we performed an analysis of this data, despite
the expected differences from AERONET, in order to assess the provided climatology and especially
the classification of optical depths for different aerosol types.

Spaceborne observations of aerosol optical depth at 550 nm (AOD550), acquired from the Moderate
Resolution Imaging Spectroradiometer (MODIS), have been utilized in order to investigate their
consistency against ground-based data obtained by the AERONET ATHENS-NOA station. MODIS,
mounted on NASA'’s twin polar-orbit satellites Terra and Aqua, provides pre-noon (Terra) and post-noon
(Aqua) columnar aerosol observations, almost on a daily basis, thanks to its wide swath (~2330 km).
The MODIS AOD product analyzed here resulted from the merging [60] of the corresponding retrievals
obtained from three independent algorithms applied over dark continental [61,62] and maritime [62,63]
surfaces (Dark Target) as well as over land areas via the Deep Blue approach [64]. In the current study,
the Level 2 (L2) MODIS AOD values (10 km x 10 km spatial resolution at nadir view), provided by the
latest version of the applied retrieval algorithms (Collection 6.1, C061), are used. The aforementioned
data are organized in bands (segments of 5 min intervals) and have been downloaded from the
Level 1 and Atmosphere Archive and Distribution System (LAADS) Distributed Active Archive Center
(DAAC) [65]. In order to ensure the best quality of AOD retrievals, only those associated with a
Quality Assurance flag equal to 3 have been processed [66]. MODIS AODs satisfying the quality
control criterion are spatially averaged in a circle centered on the Athens AERONET station with a
radius of 20 km. All the regional AOD averages are calculated for every day with available satellite
data during the period 2008-2018.
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3. Results

3.1. Seasonality

Since the aim of this work is to define the climatology of aerosols in Athens area, the monthly
means of AOD at all seven recorded wavelengths are presented in Figure 1. Monthly mean values
are counter-proportional to wavelength, as 870, 1020 and 1640 nm show very low mean values
(almost always < 0.1), while UV wavelengths record the highest values. Retrievals at 1640, 1020,
870 and 675 nm have peak monthly AOD values in April-May, while 440 nm and UV AODs demonstrate
the highest values in July-August. AOD values at 675, 870, 1020 and 1640 nm show a secondary
peak during summer months. At all wavelengths, the lowest monthly values are recorded in January
and December. Additionally, it should be noted that there is a local maximum at all wavelengths for
November mean values. This behavior is mainly explained by the maximum values recorded during
November 2010 and 2011. It should be noted that during November 2011, there was a severe drought
in Eastern Europe, which resulted in wildfires in Ukraine, Moldova and Slovakia. It has been reported
in earlier studies that, depending on synoptic conditions, plumes from these areas reach Greece [67].
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Figure 1. Monthly mean of aerosol optical depth (AOD) at all seven Aerosol Robotic Network
(AERONET) wavelengths, calculated for months with at least 15 days of data.

Monthly values of the Angstrom exponent of 440-870 nm (Figure 2) show that the AOD peak in
July-August is related to higher « values, which imply more fine aerosols in the mixture. Meanwhile,
in April-May, the Angstrém exponent has the lowest values, which indicates a dominance of coarse
mode particles. This attribute explains the different spectral behavior of monthly mean values in
Figure 1, where higher values are found at shorter wavelengths with different seasonality. Additionally,
it should be highlighted that for January and December, when AOD is generally very low, the Angstrém
exponent has different behavior. The mean December Angstrom exponent is high (1.52), but for January,
the mean value is 1.02, which implies almost equal fine and coarse fractions. Figure 2 also reports the
number of data points per month in the whole measuring period. Since measurements depend on
direct solar irradiance, the amount of data is related to the sunshine duration. January and December
have the least data, with 2127 and 2100 points, respectively, and August is the month with the largest
dataset, with 13,182 data points.
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Figure 2. Monthly mean of AOD 440 nm and Angstrom exponent 440-870 nm. The lower plot shows
the amount of data per month.

Figure 3 shows the mean size distribution per month, providing more evidence for the arguments
presented in the previous paragraph. The coarse mode has its maxima in May, June and April, which is
the period with the highest occurrence of Saharan dust events in the area due to enhanced cyclonic
activity [50]. Meanwhile, the fine mode shows maximum values during August, September and July.
December is the period in which fine mode dominates, while the coarse mode has very low values.
In January, the two fractions are almost equal. February also shows a coarse mode double the fine
mode. Regarding the coarse mode, June, August and September have their peaks in a higher radius
than the other months, suggesting the presence of even bigger particles in the mixture. It should be
highlighted that direct sun and inversion retrievals are extracted from different measurements in the
data set (direct sun and almucantar), but in the current dataset, the fine/coarse behavior converges.
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Figure 3. Mean size distribution per month with AERONET level 2.0.
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Mean monthly SSA values at four wavelengths are presented at Figure 4. The lowest values
are retrieved during January, July and December; thus, more absorbing particles are presented in
these periods. SSA values at 440 nm show very little seasonal variation, ranging between 0.91 and
0.93. This spectral seasonal pattern results in four months (April, May, June and November) with a
lower SSA of 440 nm. For the rest of the year, SSA at 440 nm is higher, showing a decrease to longer
wavelengths. Thus, the spectral behavior of SSA indicates that, in these periods, the particles also
have a varying spectral absorption. Brown carbon is known to highly absorb in UV region, while it
is almost non-absorbing above 700 nm [68], which was found in an earlier study to have the highest
concentrations in Athens during the same four months [54]. Also, dust aerosols—especially those
containing hematite—are known to absorb more at lower wavelengths [69], which also contributes to
this behavior for the April-June period.

1 p—
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Figure 4. Mean Single Scattering Albedo (SSA) values at 440, 675, 870 and 1020 nm per month with
AERONET level 1.5.

Figure 5 shows all SSA values at 440 nm against an Angstrom exponent of 440-870 nm and
respective AOD loads according to colors. SSA retrieval has the highest uncertainty when AOD < 0.2;
thus, these data points should be treated with caution, especially when very low SSA values are
retrieved. Very high AOD (>0.7) cases could by separated into two different groups: one with high
SSA, where scattering particles dominate, and one with lower SSA values and an Angstrém exponent
< 0.6—a condition which best describes the Saharan dust events in the area. The class of 0.4 < AOD
< 0.7 AOD shows a high concentration around the mean SSA values for the period which is equally
spread in high and low Angstrém exponents. Only 9% of cases in this class have an SSA lower than
0.9. The class of 0.2-0.4 AOD also has a considerable SSA uncertainty, containing a large number of
measurements which were rejected at AERONET level 2.0. Thus, there is a number of cases with an
uncommonly low SSA (13% lower than 0.85), which should be attributed to the uncertainty.
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Figure 5. SSA 440 nm in respect to the Angstrom exponent 440-870nm, categorized according to the
AOD for the whole period.

3.2. Connection of AOD with PMyg

For the comparison of in-situ data with AERONET measurements, a new dataset has been
created by the linear interpolation of PM;y hourly averaged values to the CIMEL recording moments.
The comparison between these datasets is considered synchronous; otherwise, daily average values
have been compared. In Figures 6 and 7, blues lines represent the mean AOD at 440 nm and mean
PMy, respectively, for that period. At Table 1, the relative frequencies of the four quadrants created by
the mean values (blues lines) are presented in order to clarify the seasonal variations of the conditions.
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Figure 6. AOD at 440 nm plotted against synchronous particulate matter (PM);q, separated by season
(color), with blue lines for the mean AOD and mean PMy
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Table 1. Occurrence of cases in each quadrant per season (December-February, March-May, June-August,
September-November) for all synchronous values. Quadrants are separated by the mean AOD 440 nm
and PMy values for the whole dataset.

DJF MAM JJA SON  All Seasons

Lower Left

Low AOD Low My, 5% 4%  319%  Sle%  425%
Low ]fg]gfé%}wm 81%  167% 23.8% 145%  189%
High Xg}gf}rlingPMw 151%  350% 37.5% 242%  23.6%

Upper left 36.6% 189%  690%  9.7% 14.9%

Low AOD-High PMy

It appears that in winter months, AOD is usually low, but PMy fluctuates, with both low and
high values (compared to the annual mean), which indicates a strong stratification, trapping most of
the emissions in lower troposphere. This condition is associated with urban emissions (traffic) and
especially with heating. The condition of low AOD and high PMj is significantly less frequent in other
seasons. Only in summer months is there a high occurrence of the condition of low PM;g and high AOD
(23.8% of the cases), which indicates high aerosol loads outside the surface layer. One of the factors
contributing to this is the presence of dust layers from the Sahara only at higher levels, which occurs
mainly during that season, while in the rest of the year, dust appears to be more distributed in height,
drastically affecting the layers near the surface [70]. In general, during winter months, 76.1% of the
cases have an AOD lower than the annual mean value. Also, summer is the season in which PMy is
lower than the annual mean in 66.1% of the cases. Thus, there is a seasonal anti-correlation of low
values of AOD and PMjg. Extremely high values of PM;( (>150 ugr/m3) are only recorded during the
March—-August period and are synchronous at 90.3% with AOD values higher than the annual mean
and at 74.5% with AOD values higher than 0.4. Finally, cases with extremely high AOD (>0.8) are
separated into two classes: one with high PM;g (>150 ugr/m?), consisting of 48.2% of cases, and one
with average PM;q (23-62 ugr/m3), with 51.8% of cases. All the extremely high AOD cases occur in
the March—August period. Thus, extremely high AOD values are always associated with long-range
transport and high aerosol concentration at higher layers, mainly dust from Sahara, and in almost
half the cases co-occur with high PMy,, which could be explained either by strong deposition or the
presence of an independent layer near the surface. PM;j, values during winter show maxima in Athens
during night-time, when there are no AERONET measurements, but these data are not used in the
above-described comparison.

In Figure 7, daily mean values of AOD at 440 nm and PM; have been plotted with respect to
PBLH at 12:00 UTC for all available days. PBLH is extracted from the ERA5 database, generated
using the Copernicus Climate Change Service Information [71], which uses assimilated values from
ECMWE outputs. Cases with low PM10 and low AOD values are more frequently (52.1% of cases)
linked with days with low PBL, indicating that the majority of aerosols are found in the lower layer
and hardly any particles above that. Cases with low AOD but high PM;( concentration are usually
(88.9% of cases) associated with low BL heights. In theory, for these cases, it is expected that most
aerosols are concentrated in a relatively short surface layer and originate from local pollution sources.
Cases of low PMjg and high AOD are usually measured when PBLH is more than 600 m (84.2% cases).
This condition is expected to occur when most particles are found in layers above the PBL. Specific
interest should be attracted to cases of high PM;( loads and high AOD values for which the PBL height
is lower than 600 m, which gives evidence of the existence of two different aerosol layers at different
heights. Taking into account the layering of aerosols in urban areas such as Athens is extremely
important for several applications, including in health-related areas.
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Figure 7. Daily averages of AOD440 nm against PMy, separated by boundary layer height (color);
blue lines show the mean AOD and mean PMj for this dataset.

Figure 8 shows the mean SSA 440 nm values and mean Angstrom exponents according to PMjg
concentration classes. A high PM;g (>50 ug/m3) is linked with columnar mixtures with coarse mode
aerosol dominance. The lowest mean SSA values are found when PM;g concentrations are recorded in
the range of 50-60 pgr/m?, which indicates the presence of dust cases in this class and probably some
brown carbon during winter. Lower « values are found mainly with high PM;. It is interesting that
87.55% of the data with AOD values > 0.6 also have PM;( values > 60 ugr/m3, o < 1and SSA > 0.9,
which means these are cases of high coarse aerosol loads of a scattering nature spread across the
column. PMj classes lower than 40 pg/m3 are associated with higher Angstrém exponents; hence,
lower concentrations of surface particles have statistically higher fine mode fractions. SSA error bars
represent 10, which for all PM10 classes covers the largest part of the expected SSA range in the
atmosphere. Beyond that fact, the classes of 40-60 jigr/m> have a systematically more absorbing
columnar behavior.
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Figure 8. Mean SSA against the Angstrém exponent for different PMjq clusters (colors); error bars
represent 1o.
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3.3. Particles Classification

In Figure 9, the commonly used AERONET aerosol classification described by Dubovik et al. [72]
is visualized. This approach utilizes the inversion products of AERONET and, by using some data
from stations where the dominant aerosol type is well known, it defines threshold values for each class.
The disadvantage of this approach is the precision of the threshold values in cases of complicated
aerosol mixtures. It should be highlighted that columnar atmospheric mixtures in urban areas such
as Athens can almost never have a single type of aerosols. Thus, the classification should be treated
as the characterization of the prevailing type(s) to which the recorded optical properties are closest.
Using this classification, it appears that polluted-type aerosol mixtures are more commonly detected
(27% and 23% of cases for polluted and mixed, respectively), while the fewest occurrences are for
biomass burning aerosols (5%). Also, it is clear that the majority of AOD cases higher than 0.7 are
characterized either as dust or biomass burning. Marine and continental aerosols dominate the low
AOD cases.

4r

= marine
. = continental
3.5F dust
* polluted
« biomass burning
- mixed

1%

19%

5%

AE 440-870nm

_0-5 1 1 1
0 0.5 1 1.5 2

AOD 440 nm

Figure 9. AOD at 440 nm against the Angstrom exponent, classified according to Dubovik et al. [72] for
the whole dataset (left). Pie chart of the Dubovik et al. [72]. classification for the whole dataset (right).

When this characterization is applied to the synchronous PM; data, it appears that marine and
continental aerosol cases are usually associated with lower PM;q values, while biomass burning and
dust particles are more frequently recorded with higher PM;( values. In Figure 10, the normalized
distribution of the classification of the cases in respect to PMjg is presented. It is clear that,
above 40 pgr/m3, the recorded columnar condition is at 82% related to dust or biomass burning.
Since these conditions are usually attributed to the long-range transport of aerosols, it is interesting
that it also leads to higher concentrations on the ground, indicating that there is at least a partial
deposition effect.
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Figure 10. Normalized distribution of cases in each class in respect to PM;( synchronous recordings
according to Dubovik et al. [72].

CAMS data are used in order to benefit from the classification made by the model, always keeping
in mind the considerable differences from measurements. CAMS characterizes the aerosol types by
using the emission inventories in combination with meteorological and chemical modelling. Even with
extrapolated data at the AERONET wavelength (440 nm), there are considerable differences (R? = 0.74)
between the AOD values in the datasets. The seasonality of AOD at 550 nm from the CAMS database
appears to have the same pattern as AERONET at 440 nm, as shown in Figure 11. It appears in
this dataset that there is a steady sulfate aerosol background, fluctuating at around 0.1 AOD units
year-round. Dust aerosols show a peak in the period March—June. It is interesting that the dust
AOD seasonal pattern is exactly in phase with AOD at 1240 nm and highly correlated to the AOD
550 nm seasonal pattern. It appears that, in the CAMS dataset, the seasonality of AOD should be
mainly attributed to dust events. Organic matter aerosols appear to have a peak during July-August,
which is probably linked with wild forest fires. Sea salt AOD has lower values during the summer
months and is higher from December to March, which is linked to the higher winds during this period.
This characterization of AOD is not directly comparable with the earlier classification which labelled
the columnar mixture according to optical properties, while here it is based on emissions and modelling.
The separation of AOD made by CAMS converges with AERONET retrievals in the detection of
frequent dust presence for spring months and the dominance of fine particles during summer.
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Figure 11. Copernicus Atmosphere Monitoring Service (CAMS) mean monthly values for AOD
at 550 and 1240 nm and AOD for aerosol types (black carbon—BCAOD, dust—DUAOD, organic
matter—OMAQOD, sea salt—SSAOD, sulfate—SUAOD).

The Gobbi plot [73] is an approach to gain information regarding the spectral variation of aerosol
optical properties (Figure 12). To achieve this classification, the Angstrom exponent difference, defined
as do = (440, 675) — «(675, 870) is used. A visual estimation of the contribution of fine aerosol to the
AOD (through the fine mode fraction) and the size of the fine aerosol using this approach is presented
in Figure 12. It should be mentioned that low aerosol loads (AOD < 0.1) propogate high uncertainty to
aand d«, at up to 50% [50]; thus, the yellow points in this plot should be considered as highly uncertain.
The average fine mode Ry is found at 0.13 pm, and the same average is found for the most usual AOD
class (0.1-0.4) and for the cases of more than 70% fine mode contribution. Higher AODs appear to
cluster in two regions of the plot, thus having two different typical behaviors: one is associated with
an average fine mode R¢ of 0.20 pm and a contribution of the fine mode at less than 30%, meaning
that these cases are dominated by the coarse mode, which is most likely to be linked with dust events;
the other one is associated with an average fine mode R¢ of 0.11 pm and a contribution of fine mode at
more than 70%, meaning that these cases are dominated by the finest particles and are most likely to be
linked with anthropogenic emissions.
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AOD 440nm Daily Averages

e o © © o
N o N » (-] (-] -
1 ] 1 T T 1 1

-0.4f
-0.6|

«(440-675nm) - «(675-870nm)

o
0
1

1 1 1 1 1 . 1 1 1
0 0.5 1 15 2 25 3
Angstrom Exponent 440-870 nm

Figure 12. Gobbi plot for daily-averaged AERONET data [72]. Black lines represent the size of the
fine mode R¢, and cyan lines represent the fixed fraction contribution of the fine mode to total AOD.
Colors of dots represent ranges of AOD at 440 nm.
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3.4. Long-Term Trends

Figure 13 reports the trends of AOD during the measured 10-year period (2008-2018).
Deseasonalization is calculated by eliminating the mean monthly value of the corresponding month.
Afterwards, the trend calculations are performed by estimating a linear fit in the deseasonalized
timeseries. AOD at 440 nm decreases during the measurement period, at a rate of 1.1% per year.
The Greek Ministry of Environment and Energy, in its annual report, has reported a 1.6% decrease
of mean PM; daily values, for the same period, for the station Aristotelous, which is located 1 km
from NOA’s measuring site [74]. Thus, the negative trend is mainly due to the decrease of urban
emissions in the basin during this period. The antipollution measures combined with decreased
industrial/transportation activity during the financial crisis are the main factors that are driving a
decrease in local urban aerosol emissions. This trend is within the range reported for Europe in the last
decade [23].

Meanwhile, the Angstrém exponent at 440-870 nm practically shows no trend. SSA at 440 nm
decreases at 0.4% per year, which is important compared to the actual range of SSA in the atmosphere.
This could be interpreted as a 4% decrease in the examined decade, signifying an increase of absorbing
aerosol types. This behavior, combined with the findings of the previous sections of this study,
gives some evidence for an increase of absorbing particles, without changing the fine/coarse fraction.
This could be explained by a substitution of fine particles with more absorbance at 440 nm, such as
brown carbon [75].
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Figure 13. Anomalies of AOD, Angstrom exponent and SSA and deseasonalized trends using
AERONET retrievals.

Table 2 presents the deseasonalized total and seasonal trends for the period, as calculated by
AERONET, CAMS and MODIS-Terra and MODIS-Aqua. All months with at least 15 days of data
were used to calculate the monthly deseasonalized trends from AERONET data. July is the only
month that fulfilled this criterion in all years, while other months have gaps in the range of 1-3 years.
MODIS-Terra, MODIS-Aqua and CAMS datasets have full datasets. November has a huge decrease
since November 2011, when the AOD mean value is 0.28 (AERONET), which is probably attributed
to eastern European wildfires. The peak is also detected by all datasets. All datasets used report a
decrease of AOD in the period. Differences could be partially explained by different wavelengths and
the gaps in the AERONET database. When collocated data are used (with only the months available
for AERONET, used in all datasets), the MODIS-Aqua trend is —1.4%, while the trend for MODIS-Terra
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is =1.5% and for CAMS is —2.0%. All annual trends are statistically significant at a confidence interval
of 95%.

Seasonal trends calculated from CAMS are significantly different from the other datasets—in
particular for winter period (DJF), when the highest decrease is recorded. Satellite and AERONET
trends show the highest decreases during summer, when CAMS estimates the most moderate trend.
Ground-based and satellite trends for winter have no statistically significant trend.

Table 2. Deseasonalized trends annually and per season for AOD 440 nm. AERONET LV2 and CAMS
500 nm, MODIS-TERRA and MODIS AQUA 550 nm.

AOD Trends CAMS MODIS-TERRA  MODIS-AQUA
(% per Year) AERONET 440 nm 500 nm 550 nm 550 nm
Annual -1.1+0.7 -25+11 -1.7+1.0 -1.7+1.0
DJF -01+09 -42+15 -13+14 -13+14
MAM -1.8+09 -05+13 -1.7+12 -12+13
JJA -32+11 -19+15 -29+13 -27+14
SON -0.8+1.0 -21+14 -26+13 -26+13

4. Conclusions

A decade of AERONET measurements have been studied for the city of Athens, Greece, for the
2008-2018 period. Version 3 Level 2.0 data have been used. Maximum AOD monthly values for
340-440 nm were recorded during August and for 675-1640 nm during May. CAMS data also show a
maximum at both 550 and 1240 nm during May and a similar seasonal pattern to AERONET retrievals.
The mean monthly Angstrom exponent at 440-870 nm had maximum values in July and lowest values
in April, which was attributed to anthropogenic sources (including biomass burning) and Sahara dust
intrusion, respectively. The mean monthly size distribution reveals a maximum of coarse mode in May
and a maximum of fine mode in August. SSA also has lowest values in December—January. All the
findings lead to the conclusion that the main seasonal pattern in the area is a maximum AOD during
summer with a dominance of fine-mode aerosols and frequent dust events in spring time. Additionally,
the more absorbent types of aerosols are found during winter.

PM; exhibits higher concentrations during winter months and lower concentrations during
summer. AOD and PM; are more frequently correlated when PBLH is higher than 1200 m. Higher PM;,
concentrations are related with coarse aerosols in the columnar mixture, while more absorbing aerosol
types are linked with PMjq concentrations in the range of 40-60 pgr/m?3.

Polluted and anthropogenic-mixed are the aerosol classes which are most frequently dominant
in the area, comprising 50% of the cases. Dust and biomass burning aerosols constitute 21% of the
cases when higher AOD values are attributed to these types. Additionally, dust and biomass burning
aerosol dominance is more frequently related to PMjq concentrations higher than 50 pgr/m?3.

CAMS aerosol types AOD show a constant sulfate aerosol background, with higher dust aerosols
in spring time and maximum organic matter in August. ThedDust AOD seasonal pattern in CAMS
data drives the seasonal pattern of AOD at 1240 nm.

AQOD data retrieved from AERONET show a decreasing trend of 1.1% per year for the area,
which could be attributed to antipollution measures and the financial crisis. Satellite and CAMS
datasets also show a decrease for the period. The Angstrém exponent shows practically no trend. SSA
exhibits a 0.4% decrease per year, which signifies the increase of absorbing aerosol types in the mixture.
Satellite and AERONET datasets show the highest decrease during summer months. CAMS seasonal
trends have a different pattern than the other datasets.

The climatological results presented in this study are only an early step towards understanding
the behavior of aerosols in the complex environment of a European city; longer records are needed to
confirm the recorded trends and fully characterize the seasonal patterns. Further analysis combining
more sources of data could more clearly provide the signatures of aerosol types and their stratification.
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Additionally, similar studies should be performed in other areas in the Eastern Mediterranean area to
generalize the findings.
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