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Abstract: Instruments based on light scattering used to measure total suspended particulate (TSP) 
concentrations have the advantages of fast response, small size, and low cost compared to the 
gravimetric reference method. However, the relationship between scattering intensity and TSP mass 
concentration varies nonlinearly with both environmental conditions and particle properties, 
making it difficult to make corrections. This study applied four machine learning models (support 
vector machines, random forest, gradient boosting regression trees, and an artificial neural network) 
to correct scattering measurements for TSP mass concentrations. A total of 1141 hourly records of 
collocated gravimetric and light scattering measurements taken at 17 urban sites in Shanghai, China 
were used for model training and validation. All four machine learning models improved the linear 
regressions between scattering and gravimetric mass by increasing slopes from 0.4 to 0.9–1.1 and 
coefficients of determination from 0.1 to 0.8–0.9. Partial dependence plots indicate that TSP 
concentrations determined by light scattering instruments increased continuously in the PM2.5 
concentration range of ~0–80 µg/m3; however, they leveled off above PM10 and TSP concentrations 
of ~60 and 200 µg/m3, respectively. The TSP mass concentrations determined by scattering showed 
an exponential growth after relative humidity exceeded 70%, in agreement with previous studies 
on the hygroscopic growth of fine particles. This study demonstrates that machine learning models 
can effectively improve the correlation between light scattering measurements and TSP mass 
concentrations with filter-based methods. Interpretation analysis further provides scientific insights 
into the major factors (e.g., hygroscopic growth) that cause scattering measurements to deviate from 
TSP mass concentrations besides other factors like fluctuation of mass density and refractive index. 

Keywords: light scattering; total suspended particulate (TSP); machine learning; hygroscopic effect 
 

1. Introduction 

Total suspended particulate (TSP) generally refers to particulate matter suspended in air with 
an aerodynamic equivalent diameter of less than 100 µm. Ambient particulate matter (PM) 
measurements are obtained using an offline manual method and an online automatic method. Offline 
methods usually refer to integrated filter sampling followed by gravimetric weighing, which is 
regarded as the reference method [1]. Filter sampling has poor time resolution (typically 24 hours) 
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and the data are not available for several days while the filters are equilibrated and weighed in a 
laboratory. Online automatic methods mainly include Tapered Element Oscillating Microbalance 
(TEOM), β-ray attenuation, and light scattering. The TEOM method is based on the principle of 
frequency changes when the oscillation element is loaded with particles, while the β-ray method 
estimates PM mass loading based on β-ray energy attenuation across a PM loaded filter [2-4]. These 
two methods are usually accurate and the time resolution can be as high as a few minutes; however, 
the large size and high cost of these instruments limit their wide application. Light scattering methods 
estimate PM mass from the particle light scattering intensity [5–7]. Due to their fast response time, 
high sensitivity, and low cost, light scattering instruments are widely used as portable real-time 
particle monitors. 

Despite the many advantages of the light scattering method, it does not measure PM mass based 
on first principles (gravimetry) and it suffers from limited accuracy and stability especially for low-
cost sensors with small sampling volumes. The relationship between scattering intensity and PM 
mass concentration depends on environmental conditions and particle properties, such as relative 
humidity (RH), particle chemical composition, refractive index, size distribution, and density [7–9]. 
Light scattering instruments are only sensitive to particles larger than ~100 nm; therefore, they 
underestimate the mass concentrations of nanoparticles. However, nanoparticles are expected to 
contribute only a small fraction of TSP mass in a typical ambient environment. Previous studies have 
shown significant growth in atmospheric aerosols at RH higher than 70%, which enhances light 
scattering and causes overestimation of PM mass (as compared to gravimetry) [8,9]. It is critical to 
correct these dependencies when converting light scattering measurements by using low-cost 
instruments to PM mass concentrations. 

Several studies have shown that machine learning algorithms can be effective for correcting 
atmospheric measurements. Suleiman et al. used Artificial Neural Networks (ANN), Boosted 
Regression Trees (BRT), and Support Vector Machines (SVM) to correct the traffic-related PM10 and 
PM2.5 concentrations at 19 air quality monitoring sites in urban London [9]. Zou et al. proposed a 
radial basis function neural network to predict PM2.5 concentrations in Texas, USA through 
meteorological factors and land-related factors [10]. Sayegh et al. used BRT to predict NOX 
concentrations based on the hourly concentration, traffic, and meteorological data [11]. Most past 
studies focused on correcting the concentrations of PM2.5, PM10, or gaseous pollutants such as nitrogen 
dioxide and carbon dioxide. In contrast, not much research on TSP (≤100 µm) correction has been 
reported. Due to its wide size range, TSP has more diverse particle physical and chemical properties, 
which also lead to more complicated hygroscopic effects, making the correction of TSP mass 
concentrations reported by light scattering instrument more challenging. 

This study aims to develop and validate machine learning models to correct light scattering 
instruments that report TSP mass concentrations. Four models were trained and tested on TSP 
datasets from collocated light scattering and filter measurements in Shanghai, China. TSP is one of 
the main pollutants in Shanghai, particularly in locations close to construction sites, storage piles, 
and busy roads. Partial dependence plots were used to interpret factors (e.g., hygroscopic growth) 
affecting the model outputs. 

2. Materials and Methodology 

2.1. Monitoring Instruments and Data Collection 

TSP data were collected at 52 monitoring sites in the urban area of Shanghai, the largest megacity 
of China, over the period from June 6, 2017 to September 20, 2018. Each site had collocated TSP mass 
concentration measurements determined by online light scattering and offline filter measurements 
in addition to meteorological parameters. Real-time TSP mass concentrations were measured by a 
light scattering dust monitor (Model CEL-712 Microdust Pro, Casella, Bedford, UK; referred to as 
Casella in this paper) calibrated by the manufacturer using Arizona road dust (ISO 12103-1 test dust) 
[12]. The instrument intake flow is 1.7 L/min. The Casella uses near forward light scattering to reduce 
the influence of particle refractive indices on the scattering intensity [13]. In this study, the TSP device 
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measures traffic emissions. For TSP collection we used Laoying 2030 medium flow rate intelligent 
TSP samplers, following the operation and QA/QC procedures specified in the China national 
standards GB/T15432-1995. For gravimetry analyses, we used a Mettler-Toledo MS105DU semi-micro 
balance with an accuracy of 0.01 mg. Prior to weighing, filters were equilibrated in a chamber with 
controlled temperature (25 °C) and RH (50%) for at least 24 hrs. Each filter was weighed twice and if 
the relative difference of the two weights exceeded 5%, the filter was weighed a third time. The 
average concentrations of the two weights with a difference <5% are reported. The ambient 
temperature and RH during the sampling period were recorded by a Hengxin AZ-8809 High 
Precision Humidity Temperature Recorder at each sampling site. Furthermore, hourly mass 
concentrations of ambient PM2.5, PM10, SO2, NO2, CO, and O3 were measured at the Caoxi Traffic Site 
with the most abundant data records. For the remaining sits, they were obtained from nearby sites of 
the national official monitoring network in Shanghai and used as the input indices for the prediction 
models. To ensure spatial consistency, 17 TSP monitoring sites and 7 national monitoring stations in 
urban Shanghai with geographical distances between 0.63 and 3.5 km were identified and selected 
(shown in Figure 1) for this study. The information about TSP sites and nearby national monitoring 
stations are shown in Table 1. This selection resulted in a total of 1141 hourly records in the 
monitoring datasets that were used for the model development and validation. The parameters used 
as model predictors and measurement instruments are listed in Table 2. The hourly criteria pollutant 
concentrations, temperature, and humidity will help resolve the potentially confounding influences 
on the accuracy of the Casella TSP measurements. 

Table 1. Information about all the total suspended particulate (TSP) monitoring sites and their nearby 
national monitoring stations. 

No. 
TSP Monitoring 

Sites a 
Nearby National 

Monitoring Stations b 
Data 

Volume 
Distance 

(km) 
Comments 

1 CX S. - 558 3.3 
The same 

site 

2 CX R. SSD 106 3.5 
Validation 

site 
3 GSY&XQ R. SSD 40 2.2  
4 GL&GSY R. SSD 40 1.4  
5 JD&DX R. PD 20 1.6  
6 PDN&WS R. PD 30 1.9  
7 YS R. PD 30 1.9  
8 ZY&TL R. PD 30 1.7  
9 CZ&YQ R. HK 30 1.2  
10 CZN&SD R. HK 30 1.5  
11 GY&WSD R. HK 20 0.63  
12 ZJZ&NJ R. YP 30 2.8  
13 LZ&CY R. YP 30 0.69  
14 DDH&MC R. PT 30 0.7  
15 JY&ZL R. PT 30 3  
16 FXZ&CQN R. SWC 30 1.8  
17 CHN&CH R. CS 30 0.97  

a: TSP sites cover the measurement indices of ambient TSP online and offline mass, ambient relative 
humidity and temperature. b: National Monitoring stations cover the measurement indices of ambient 
PM10, PM2.5, CO, SO2, NO2, and O3. 
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Table 2. Predictors used to model TSP concentrations and their corresponding measurement 
instruments. 

Predictors Unit Measurement Instruments 
Scattering TSP concentrations µg/m3 CEL-712, Casella 
Hourly PM10 concentrations µg/m3 TEOM1405, Thermo Fisher Scientific 
Hourly PM2.5 concentrations µg/m3 TEOM1405FDMS, Thermo Fisher 
Hourly SO2 concentrations µg/m3 43iSO2 analyzer, Thermo Fisher 
Hourly NO2 concentrations µg/m3 42iNOX analyzer, Thermo Fisher 
Hourly CO concentrations µg/m3 48iCO analyzer, Thermo Fisher 
Hourly O3 concentrations µg/m3 49i O3 analyzer, Thermo Fisher 

Hourly ambient temperature degree Celsius (°C) Hengxin AZ-8809 Temp./RH Recorder 
Hourly ambient relative humidity percent (%) Hengxin AZ-8809 Temp./RH Recorder 

 
Figure 1. Geographical locations of 17 total suspended particulate (TSP) monitoring sites and 7 
national monitoring stations in the urban area of the megacity of Shanghai, China. The blue triangle 
symbols ( ) represent TSP monitoring sites, which include measurements of TSP concentrations by 
light scattering and gravimetry, as well as ambient temperature and relative humidity. The red circle 
symbols ( ) represent national monitoring stations which include the measurements of mass 
concentrations of PM2.5, PM10, SO2, NO2, CO, and O3. 
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2.2. Model Development and Data Preparation 

Four supervised machine learning models (support vector machines (SVM), random forest (RF), 
gradient boosting regression trees (GBRT), and artificial neural networks (ANN)) were used in this study 
to correct the raw TSP concentration outputs by the Casella dust monitors. SVM is a powerful machine 
learning model that can perform linear or nonlinear classification, regression, and outlier detection tasks 
[14,15]. RF is a branch of ensemble learning algorithms that is composed of multiple decision trees. 
Ensemble learning includes Boosting and Bagging methods. RF is an extension of Bagging [16–18], while 
GBRT is one of the Boosting algorithms. Predictors are gradually added in the training process, each of 
which corrects its former predictor [19]. ANN is a multi-layer network consisting of an input layer, 
multiple hidden layers, and an output layer. Each layer can be regarded as a logistic regression mode. The 
backpropagation algorithm is used based on the gradient descent strategy. 

The SVM parameters set during the training were the kernel type, cost and sigma parameters. 
In this study, we used a Radial Basis Function (RBF) kernel to train the SVM model. The cost and 
sigma values were 1 and 0.1, respectively. The model parameters for an RF model are the number of 
trees, minimum samples split and bootstrap. We selected 500 estimators (trees) to train the RF and 
set the minimum samples split to 2 and bootstrap to true. For the GBRT model, we also selected 500 
trees for the training and the learning rate was 0.01. The ANN model in this study contained two 
hidden layers and 100 hidden neurons in each layer, the activation function was the Rectified Linear 
Unit (ReLU) function, and the maximum number of iterations was set to 400. 

The input variables included the hourly TSP mass concentrations from the Casella raw readings 
based on light scattering obtained at each site, criteria pollutant concentrations from the nearest national 
monitoring stations (PM2.5, PM10, SO2, NO2, CO, and O3), ambient temperature, and RH (Table 2). The 
unique output variable is hourly gravimetric TSP mass concentration at the same time as the Casella 
sampling. The Casella instrument monitors TSP concentrations based on light scattering continuously 
and hourly averages of raw readings were used in the data analysis. We put the training dataset (80% 
of total the records, randomly selected) into the four machine learning models to reconstruct the non-
linear relationship between the input and output variables. A 5-fold cross-validation as a resampling 
method was used to develop the models. After model training, the remaining 20% of the records were 
used to validate the reconstructed models. Due to the significant discrepancy of data volume (from to 
records) between different measurement sites in this study, it is unfair and improper to divide the 
training and testing datasets by station level, although the splitting by station level seems more 
reasonable and could avoid the problem of information leakage. Python programming language, 
pandas, and Scikit-Learn packages were used to train and validate the models. 

3. Results and Discussion 

3.1. Performance of Machine Learning Models in Predicting TSP 

The performance of the models was evaluated using various metrics including the Mean Square 
Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and coefficient of 
determination (R2). The mean/standard deviation R2 results of 5-fold cross-validation were 0.75/0.07 for 
SVM, 0.76/0.02 for GBRT, 0.78/0.03 for RF, and 0.81/0.04 for ANN. The cross-validation results show 
that ANN had the best performance while the SVM model performed poorer than the other three 
models. 

Figure 2 shows the performance of the four trained machine learning models in predicting TSP, 
and the overall predicting performance is summarized in Table 3. Figure 2a shows that the Casella 
raw TSP reading based on light scattering were poorly correlated with gravimetric TSP across the 
entire concentration range (~0–1000 µg/m3), with a low linear regression slope of 0.41 and R2 of only 
0.10. At high concentrations (≳400 µg/m3), the Casella readings did not increase with the gravimetric 
concentrations. Figures 2b-e shows that the machine learning models significantly improved the 
agreement between the corrected Casella and reference TSP concentrations for the 223 validation 
dataset. The linear regression slope increased from the original 0.41 to 0.91–1.11 and R2 increased 
from 0.10 to 0.76–0.90. Interestingly, all four models were able to correct those high concentrations 
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data points (≳400 µg/m3) for which the Casella seemed saturated. Among the four models, RF and 
GBRT had slopes (1.02 and 1.00, respectively) closer to 1.00 than did SVM and ANN (0.91 and 1.11, 
respectively). However, both RF and GBRT had a small group of datasets deviating from the 
regression lines with corrected concentrations being higher than the gravimetric concentrations at 
concentrations < 200 µg/m3, resulting in lower R2. On the other hand, this group of “outliers” were 
corrected successfully by ANN, resulting in a high R2 of 0.9. We note that the reasonable performance 
of the ANN was achieved by using only two hidden layers in this study, implying that a very complex 
and deep neural network is not always necessary. The SVM model had a few outliers with corrected 
concentrations being lower than the gravimetric mass concentrations, partially contributing to the 
lower slope and R2. 

 

Figure 2. Comparison of TSP concentrations determined by light scattering and machine learning 
model outputs with those by gravimetric analyses. (a) LR: Linear Regression; (b) SVM: Support Vector 
Machine; (c) RF: Random Forest; (d) GBRT: Gradient Boosting Regression Tree; (e) ANN: Artificial 
Neural Network. y/x represents the slope, R2 is the coefficient of determination, N means the volume 
of the dataset. 
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Table 3. Testing performance of the machine learning (ML) models. 

ML Models  Slope R2 
MSE 

(µg/m3)2  
RMSE 
(µg/m3) 

MAE 
(µg/m3) 

Original Measurement  0.41 0.10 - - - 
SVM  0.91 0.76 2401.52 49.01 24.19 
RF  1.02 0.82 2453.52 49.53 24.71 

GBRT  1.00 0.78 2861.07 53.49 30.15 
ANN  1.11 0.90 2723.42 52.19 29.18 

Similar improvement in correcting raw data by machine learning models have been reported in 
several recent studies. Suleiman et al. developed and applied three machine learning models (SVM, 
BRT, and ANN) to predict the roadside PM10 and PM2.5 concentrations in London. The models 
performed well: ~95% of predicted values were within a factor of 2 of the observations and the R2 
values were in the range of 0.62–0.77 [9]. Similar to the finding of our study, Suleiman showed that 
the ANN and BRT models performed better than the SVM model, especially for PM10 prediction. It 
was speculated that the SVM over-fitted the PM10 data and failed to generalize the performance 
gained during training. Zimmerman et al. used an RF model to correct the low-cost air quality sensors 
that measured CO, NO2, O3, and CO2 [20]. The RF model consistently outperformed laboratory 
calibration and multiple linear regression corrections. The RF-corrected sensor readings had relative 
errors of <5% for CO2, 10%–15% for CO and O3, and ~30% for NO2. When the RF-corrected sensor 
readings were regressed against reference monitors for ambient concentrations measured in 
Pittsburgh, Pennsylvania, USA, the slopes of the linear regression lines for CO, NO2, and O3 were 
0.86 ± 0.09, 0.64 ± 0.11, and 0.82 ± 0.05, respectively, and the R2 values were 0.91, 0.67, and 0.86, 
respectively. Brokamp et al. used RF to predict PM2.5 concentrations with a 1 km × 1 km spatial 
resolution from aerosol optical density and supplemental measurement data. The modeled data had 
an RMSE of 2.22 µg/m3 and R2 of 0.91 when compared with reference PM2.5 concentrations [18]. 

Figure 3 illustrates three examples of time series data obtained from the CaoXi road site, which 
had the most complete data capture among all 52 TSP monitoring sites. The overall information is 
shown in Table 4. During the first time period of June 15, 2017 to June 22, 2017, the average TSP 
concentrations were 92.28 µg/m3 and 132.22 µg/m3 from the Casella raw reading and gravimetric 
measurement, respectively. The gravimetric over Casella TSP concentration ratios varied from 0.30 
to 3.35. The average TSP concentrations by the four machine learning models (SVM, RF, GBRT, ANN) 
were 132.85, 133.15, 132.53, and 134.04 µg/m3, deviating from the gravimetric mass by less than 1.5%. 
During the second period of February 23, 2018 to February 27, 2018, the average TSP concentrations 
were 108.10 µg/m3 and 121.15 µg/m3 from the Casella raw reading and gravimetric measurement, 
respectively; the average TSP concentrations by the four machine learning models (SVM, RF, GBRT, 
ANN) were 114.96, 119.92, 120.71 and 119.83 µg/m3, respectively. During the third time period of 
June 15, 2018 to June 30, 2018, the raw TSP concentrations by the Casella were as high as 236.4–242.8 
µg/m3 on June 20, 2018, while the gravimetric TSP concentrations were only 65.3–89.6 µg/m3. The RH 
values on that day were as high as 90.0%–93.4%. The average TSP concentrations were 94.53 µg/m3 
and 107.73 µg/m3 from the Casella raw reading and gravimetric measurements, respectively. The 
average TSP concentrations by the four machine learning models (SVM, RF, GBRT, ANN) were 
104.82–107.96 µg/m3. Overall, all four machine learning methods can fit the result of the gravimetric 
method. The SVM model performed poorer than the other three models. 
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Figure 3. Time series of TSP concentrations obtained from gravimetric measurement, raw Casella 
reading, and Casella readings corrected by four machine learning models (SVM, RF, GBRT, and 
ANN). The illustrated data were obtained from the CaoXi Road site over three periods: June 15, 2017 
to June 22, 2017, February 23, 2018 to February 27, 2018 and June 15, 2018 to June 30, 2018. 
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Table 4. Comparison of machine learning model performances at the CaoXi Road site. 

Time Period 
Gravimetric 

Results 
（µg/m3） 

Casella 
Results 

（µg/m3） 

SVM  
（µg/m3） 

RF  
（µg/m3） 

GBRT  
（µg/m3） 

ANN  
（µg/m3） 

June 15, 2017 to June 
22, 2017 

132.22 92.28 132.85  133.15 132.53 134.04 

February 23, 2018 to 
February 27, 2018 

121.15 108.10 114.96  119.92 120.71 119.83 

June 15, 2018 to June 
30, 2018 107.73 94.53 104.82 107.94 107.73 107.96 

The random forest method provides a very convenient tool for importance analysis. It can 
estimate the importance or amount of contribution by a feature by calculating the average depth of a 
feature on all trees in the forest. Figure 4 plots the feature importance of different factors on Casella 
readings. It can be seen that PM2.5, RH, TSP, and PM10 are the top four factors influencing TSP 
concentration determined by a Casella monitor, which should be the focuses for follow-up analysis. 
Among the gaseous pollutants, CO and O3 relatively higher influences as compared to SO2 and NO2. 
Compared with relative humidity, the temperature had a minor direct impact on the measurement 
results. Temperature affects the gas-particle partitioning of semi-volatile species, such as nitrate and 
some organics. However, the mass contribution of these species to TSP is probably low and their 
evaporation is also affected by RH, leading to a lower influence by temperature. As an additional 
method to understand factor importance. We did an ablation study for the other three models. We 
calculated the average R2 and RMSE over 5-folds cross-validation when we exclude each factor. The 
results of the difference from all features are shown in Figure 4b–c. The three most impactful features 
were PM2.5, RH, and TSP. Four models have almost the same results, which means the results are 
scientific. We used a correlation analysis method to analyze the Pearson correlation coefficient 
between features (shown in Figure 5). The closer the value is to 1, the higher the correlation is. The 
result shows that the relationship between PM2.5 and PM10 is very close, which has a correlation 
coefficient of 7.3. RH has a negative correlation with most features (O3, PM2.5, PM10, TSP, Tem). The 
correlation coefficient between O3 and NO2 is −0.37. 
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Figure 4. Feature importance analysis on ten factors including PM concentrations (PM2.5, PM10, and 
TSP), gaseous pollutant concentrations (CO, O3, SO2, and NO2), temperature, relative humidity, and 
the morning hour of the day. (a) Random forest features importance, (b) SVM ablation study, (c) 
GBRT ablation study, (d) ANN ablation study. 
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Figure 5. The correlation coefficient between all the input features. The black blocks represent the 
coefficients higher than 0.3 while the red blocks represent coefficients lower than −0.3. The white 
blocks represent the coefficients between −0.3 and 0.3. 

3.2. Partial Dependence of Influencing Factors 

As a model-agnostic interpretation method, the Partial Dependence Plot (PDP) charts were used 
to analyze the influence of different features on the light scattering instrument [21]. The partial 
dependence was estimated by calculating averages in the training data, also known as the Monte 
Carlo method: 

푓 (푋 ) = ∑ 푓 푋 , 푋 ( ) , (1)

The 푋  are the features for which the partial dependence function should be plotted and 푋  are the 
other features used in the machine learning model 푓. The partial function relates the value(s) of 
features S to the average marginal effect on the prediction. 

PDPs were generated for RF, GBRT, and ANN. This analysis was not conducted for SVM as it 
had poorer performances than the other three models and its PDPs had larger biases. Other methods, 
such as ICE (Individual Conditional Expectation) and ALE (Accumulated Local Effects) plots, are 
also available to reveal how features affect machine learning model predictions. These methods will 
be explored in future studies. This study focuses on assessing the different influences on light 
scattering monitors so we exchanged the input variable “Casella raw TSP readings” and output 
variable “Gravimetric TSP results” to rebuild the model. 

Both one-way and two-way plots were used to show the effects of the four variables: PM2.5, PM10, 
gravimetric TSP concentrations, and RH on the Casella raw TSP readings. The scattering hygroscopic 
curves, which show how RH influences light scattering-based TSP concentrations, were further 
investigated. The scattering hygroscopic factor (f(RH)) was calculated by dividing the TSP 
concentrations reported by the Casella at ambient RHs by the values at 40% RH. The hygroscopic 
curves were derived from the one-way and two-way PDP results. 
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To examine the relative importance of factors, the dependence of the TSP reading from the 
Casella on one or two factors was examined using one-way or two-way partial dependence plots, 
respectively. One-way partial dependence of the Casella raw TSP concentrations on the four most 
significant influencing factors (gravimetric TSP, reference PM2.5, reference PM10, and RH) is plotted 
and shown in Figure 6. Distinct partial dependence patterns for the four factors were observed. For 
the factor of PM2.5 concentration (Figure 6a), the Casella-reported TSP concentration increased 
continuously from 80 to 140 µg/m3 as the PM2.5 mass concentration increased from ~20 to 50 µg/m3; 
the most rapid increase occurred in the PM2.5 mass range of 22–46 µg/m3. For the factors of PM10 and 
TSP concentrations (Figure 4b,c), the Casella-reported TSP concentration increased from 85 to ~110 
µg/m3 rapidly in the low mass ranges of both PM10 (<60 µg/m3) and TSP (<240 µg/m3) and then leveled 
off at higher concentrations. Because the Casella derives the TSP concentration from the particle light 
scattering intensity, the ratio of Casella-reported TSP to the reference PM2.5, PM10, and TSP 
concentrations can be regarded as an index of aerosol mass scattering efficiency. As a result, the 
relative aerosol scattering efficiency could be estimated to be 2 for PM2.5, 0.83 for PM10, and 0.2 for 
TSP. These values are consistent with the theoretical dependence of scattering efficiency on particle 
size [6]. Light scattering efficiencies are the highest (Mie scattering) for particles with diameters close 
to the laser wavelength (635 nm for the Casella) and drop off at smaller (Raleigh scattering) and larger 
sizes (geometric scattering). Particles with diameters near the laser wavelength from a higher mass 
percentage in PM2.5 than in PM10 and TSP. The influence of RH (Figure 5d) was different from that of 
the three PM factors. When the RH was less than ~70%, the Casella-reported TSP concentrations were 
nearly independent of RH; however, when RH was higher than 70%, the Casella-reported TSP 
concentrations experienced a near-exponential growth, like the classical aerosol hygroscopic growth 
curve [8,9]. More details of the derived hygroscopic growth factors from PDP will be discussed in 
Section 3.3. 

In terms of performance differences among the three machine learning models, the PDP of the 
GBRT algorithm was quite close to that of the RF algorithm. The PDP trend of the ANN algorithm 
was much smoother than those of the other two algorithms. These differences may be caused by the 
different structures of tree models and neural networks. Each decision tree in a set is independent, 
and anyone can predict the final response. A neural network is a network connecting neurons. 
Neurons cannot function without other neurons. Usually, they are grouped by layers and process the 
data in each layer. The results are passed to the next layer and the neurons in the last layer are 
responsible for making decisions. In this way, the marginal effect of the tree models is uneven on a 
small scale because of the difference in individual predictors, while that of the neural network is 
much smoother because neurons are connected. 
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Figure 6. Partial dependence of Casella raw TSP concentrations on four influencing factors: (a) PM2.5 
concentration, (b) PM10 concentration, (c) gravimetric TSP concentration, (d) relative humidity. 

Two-way PDP charts can provide more comprehensive dependence information on the 
dependence between the target response of light scattering TSP values and PM concentrations (PM2.5, 
PM10, TSP) as well as RH. Figure 7 shows that for RH lower than 70%, the Casella-reported TSP 
concentrations were dominantly influenced by PM concentrations, while the influence of RH was 
negligible. When RH values were higher than 70%, Casella-reported TSP concentrations always 
experienced near-exponential growth, at all PM concentration levels. Similar to the performance of 
the one-way PDP charts, the two-way PDP trends of the ANN algorithm were smooth over the entire 
range, much different from those of the other two algorithms. 



Atmosphere 2020, 11, 139 14 of 18 

 

 

Figure 7. Two-way partial dependence plot of Casella-reported TSP concentration on relative 
humidity and particulate matter concentration. (a), (b), and (c) represents different particle size of 
PM2.5, PM10, and TSP, respectively. 

3.3. Derivation of Scattering Hygroscopic Growth Curve 

Figure 8 shows the two-way PDP charts between the estimated scattering hygroscopic factor 
(f(RH)) and PM concentrations (PM2.5, PM10, and TSP) as well as RH for the three machine learning 
models (i.e., GBRT, RF, and ANN). The hygroscopic curve of RF and GBRT had similar patterns with 
distinct deliquescence growth at RH ≳ 70%, while that of ANN showed smooth growth without 
deliquescence growth. The maximum f(RH) values when RH >90% for the ANN were 2.0–2.3, also 
much higher than the 1.6–2.0 for RF and GBRT. Although both GBRT and RF showed a critical RH of 
~70% above which f(RH) showed a significant increase, the trends of f(RH) were different for PM2.5, 
PM10 and TSP. f(RH) increased with increasing PM2.5 mass concentrations until 40 µg/m3, reached at 
the maximum value of 1.9–2.1 when RH > 90%, and then decreased with a further increase of the 
PM2.5 mass concentrations. For PM10, f(RH) increased with increasing PM10 mass concentrations until 
50 µg/m3, and then remained at a stable maximum value of 1.6–1.7 when RH > 90%, independent of 
any further increase in PM10 mass concentration. For TSP, f(RH) reached a maximum of 1.6–1.8 when 
RH > 90% with a TSP initial mass concentration of 60 µg/m3, then decreased continuously to 1.2 with 
increasing TSP mass. The different dependence levels of the scattering hygroscopic factor on PM size 
fractions and concentrations might be related to the different mass fractions of inorganic components 
such as sulfates and nitrates, which have large hygroscopic growths with distinct growth curves [22]. 
However, the chemical species percentages in different PM size fractions during the sampling period 
were not available. 

(a) PM2.5 

(b) PM10 

(c) TSP 
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Figure 8. Partial dependence plot of estimated hygroscopic growth factor dependence on relative 
humidity and particulate matter concentration. (a), (b), and (c) represent different particle sizes of 
PM2.5, PM10, and TSP, respectively. 

Figure 9 further compares the f(RH) curves from GBRT, RF, and ANN with those from previous 
studies on ambient aerosol hygroscopic growth. Although most hygroscopic data in the literature 
refers to the PM2.5 size fraction, the general f(RH) variation patterns are still comparable with those 
of TSP in this study. In previous studies, Cheng et al. reported an average hygroscopic extinction 
factor f (RH = 80%) of 2.63 ± 0.45 from 24 cities in China [23]. Zhang et al. found f (RH = 85%) for PM2.5 
to be 1.58 ± 0.12 in the Yangtze River Delta of China in March 2013 [24]. Liu et al. estimated that f (RH 
= 80%) for PM2.5 was 2.01 ± 0.2 at an urban site in the mega-city of Beijing from October 24 to 
November 9, 2007 [25]. Magi and Hobbs (2003) measured a PM2.5 f (RH = 80%) value of 2.12 ± 0.15 in 
South Africa, Botswana, Mozambique, and Zambia [26]. In this study, the average f(RH = 80%) values 
were 1.31, 1.37, and 1.69 derived from GBRT, RF, and ANN, respectively. The f(RH) values of PM2.5 
from previous studies are about 1 to 3 times that of TSP in this study, indicating that the scattering 
hygroscopic efficiency of PM2.5 is much higher than that of TSP. The mass scattering efficiency of 
PM2.5 is higher than that of PM10 and TSP. This is expected because there are higher proportions of 
hygroscopic inorganic components in PM2.5 than in TSP. For the specific f(RH) curve versus RH, the 
pattern from the ANN shows more consistency with the previous PM2.5 pattern than do those from 
RF and GBRT, although the absolute f(RH) value from the ANN was obviously higher than those 
from the other two machine learning models. 
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Figure 9. Comparison of scattering hygroscopic growth curves from three machine learning models 
(GBRT, RF, and ANN) with previous studies. The hygroscopic growth factor f(RH) of this study 
(marked with the secondary Y-axis) refers to TSP and is estimated by the Casella -reported TSP 
concentrations at any ambient RH divided by the scattering TSP concentration value when ambient 
RH was 40%. Previous studies of hygroscopic growth factor refer to PM2.5 and were marked with the 
primary Y-axis. 

4. Conclusion 

This study explored and applied four machine learning models (SVM, RF, GBRT, ANN) to 
correct raw TSP concentrations reported by a Casella CEL-712, a light scattering dust monitor. The 
result shows that all four machine learning models greatly improved the correlation of the TSP 
concentrations reported by the Casella with filter-based measurements. Partial dependence plots 
between Casella-reported TSP concentrations and reference PM2.5, PM10, and TSP concentrations and 
RH provided insights into the main factors influencing the Casella TSP biases. While RH had a 
negligible influence on TSP concentrations at RH < 70%, near exponential growth in the Casella 
reported TSP concentrations were observed at RH > 70% by RF and GBRT. When compared with 
earlier studies on the hygroscopic growth of PM2.5, it was found that the growth factors of TSP were 
smaller than those of PM2.5, likely due to the lower mass percentage of hygroscopic inorganic species 
in TSP. Due to the large impact of RH on Casella TSP data accuracy, more data from high RH periods 
will be collected and used in model training to improve model performance. 

Although a significant improvement in Casella TSP accuracy was achieved using machine 
learning models, there are some limitations that should be addressed in future work: 1) The volume 
of the dataset was not large enough for deeper machine learning progresses; better model 
performance is expected with larger a number of hourly data, more monitoring sites, and other 
parameters that can potentially indicate confounding factors (e.g., traffic volume, wind speed, and 
direction). 2) TSP concentrations were not measured at the same site as the National monitoring 
stations, which might cause some discrepancies. Future work should attempt collocated TSP, criteria 
pollutant, and metrological measurements to obtain matching data. 3) Many of the data in this study 
were collected at different times at different sites, which made comparison among different sites very 
difficult. Future work should collect data simultaneously at different sites with better data 
completeness. 4) This study used 80% of total combined records of all sites to train the models and 
the remaining 20% records to evaluate model performance due to the huge discrepancy of records 
amount among stations. The alternative is to use 80% by the number of sites for training and use the 
remaining 20% sites for model evaluation. A sensitivity study is proposed to estimate the model 
performance by these two methods in the future. 5) The models were specifically trained for Casella 
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monitors. Future work should evaluate how these models can be extended to other light scattering 
devices or other types of air quality sensors (e.g., electrochemical CO, SO2, NO2, and O3 sensors). 

The emergence of a wide range of low-cost sensors in recent years is changing the paradigm of air 
quality monitoring, drastically increasing spatial and temporal resolutions. However, corrections of the 
raw sensor output using machine learning seems indispensable and is a perfect supplement for these 
sensors. Furthermore, machine learning is no longer a black box with the assistance of interpretability 
methods. Major factors affecting sensor performance can be probed and diagnosed, and more useful 
scientific information could be derived from the reconstructed machine learning models. 
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