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Abstract: Climate warming is causing permafrost thaw and there is an urgent need to understand 
the spatial distribution of permafrost and its potential changes with climate. This study developed 
a long-term (1901–2100), 1-km resolution daily meteorological dataset (Met1km) for modeling and 
mapping permafrost at high spatial resolutions in Canada. Met1km includes eight climate variables 
(daily minimum, maximum, and mean air temperatures, precipitation, vapor pressure, wind speed, 
solar radiation, and downward longwave radiation) and is suitable to drive process-based 
permafrost and other land-surface models. Met1km was developed based on four coarser gridded 
meteorological datasets for the historical period. Future values were developed using the output of 
a new Canadian regional climate model under medium-low and high emission scenarios. These 
datasets were downscaled to 1-km resolution using the re-baselining method based on the 
WorldClim2 dataset as spatial templates. We assessed Met1km by comparing it to climate station 
observations across Canada and a gridded monthly anomaly time-series dataset. The accuracy of 
Met1km is similar to or better than the four coarser gridded datasets. The errors in long-term 
averages and average seasonal patterns are small. The error occurs mainly in day-to-day 
fluctuations, thus the error decreases significantly when averaged over 5 to 10 days. Met1km, as a 
data generating system, is relatively small in data volume, flexible to use, and easy to update when 
new or improved source datasets are available. The method can also be used to generate similar 
datasets for other regions, even for the entire global landmass. 
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1. Introduction 

Permafrost is an important component of the global landmass, underlying 9–14% of world land 
surface [1]. In the Northern Hemisphere, permafrost underlies about 24% of exposed ground [2]. Climate 
warming is increasing permafrost temperatures [3], deepening summer thaw depths (e.g., [4]), and 
completely degrading permafrost in some areas (e.g., [5–7]). These changes have significant 
environmental and socioeconomic impacts from the local to global scales, including active-layer 
detachments and thaw slumps, ground subsidence, damage to infrastructure, changes in hydrology, 
ecosystems, animal habitats, and impacts on the global climate system (e.g., [8–10]). Therefore, there is an 
urgent need to improve our knowledge about the spatial distribution of permafrost and its potential 
changes with climate warming in the future. 
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Meteorological data are essential for understanding, modeling, and mapping the spatial 
distribution of permafrost and its potential changes. Since permafrost occurs beneath the layer of 
ground that freezes and thaws seasonally, it is difficult to detect it directly using satellite remote 
sensing. In addition, remote sensing and site observations alone cannot predict potential future 
changes. Permafrost distribution and its changes with climate are usually quantified using models of 
varying complexity with input data of climate, vegetation, soil, surficial geology, and topography 
(e.g., [1,11–18]). Statistical and analytical permafrost models are mainly driven by air temperature 
data (e.g., [1,11,12,18]) and assume that permafrost is in equilibrium with the climate. However, other 
climate variables, such as precipitation, solar radiation, vapor pressure, wind speed, and downward 
longwave radiation also affect permafrost through their impacts on surface energy fluxes, snow 
conditions, and soil moisture. Process-based permafrost models integrate these variables based on 
the surface energy balance and water dynamics. More importantly, process-based models can 
quantify transient changes in permafrost conditions, which are not in equilibrium with the climate at 
present and would not be in the coming decades to centuries [14]. 

Meteorological datasets currently available are not adequate for modeling and mapping permafrost 
in terms of climate variables required, data length, and spatial and temporal resolutions. Table A1 lists 
some of the gridded meteorological datasets covering Canada’s landmass. Generally, datasets 
interpolated from climate stations have a high spatial resolution but usually include a limited number of 
variables (commonly only air temperature and precipitation). Their temporal resolution is long (the 
reliability is higher for monthly than for daily data) and the temporal consistency can be influenced by 
changes in climate stations. A combination of station observations and climate model reanalysis can 
reduce these limitations, but the resulting spatial resolutions are coarse. Recently, Thornton et al. [19] 
developed a 1-km resolution daily meteorological dataset (Daymet) from 1980 to 2017 for North America, 
Puerto Rico, and Hawaii. Daymet was developed by interpolating climate station data using the spatial 
convolution of a truncated Gaussian weighting filter with the set of station locations [20]. The accuracy in 
Canada is unclear as observation stations in northern Canada are sparsely distributed compared to most 
areas in the USA. In addition, the data length is not ideal for permafrost modeling and does not include 
wind speed, downward longwave radiation, and future climate scenarios. Cao et al. [21] developed a 
software toolkit, GlobSim, to automate the downloading, interpolating, and scaling of several climate 
reanalysis datasets to generate meteorological time series for user-defined locations. This development 
improved the applications of reanalysis data, including for modeling permafrost dynamics. However, 
there are usually some systematic differences among reanalysis datasets, which causes uncertainties in 
modeled permafrost conditions [21,22]. Therefore, it is necessary to develop methods to reduce these 
biases. 

This paper describes the development of a long-term, 1-km resolution daily near-surface 
meteorological dataset (Met1km) for modeling and mapping permafrost in Canada. In Section 2, we 
define the specifications of the meteorological datasets required for modeling and mapping 
permafrost. Section 3 describes the source datasets and methods used to develop Met1km. Section 4 
describes general spatial and temporal patterns of Met1km data and assesses its accuracy through 
comparisons with observational datasets. In Section 5, we discuss the features of Met1km comparing 
to other meteorological datasets and potential improvements in the future. 

2. The Requirement of Meteorological Datasets for Permafrost Modeling and Mapping 

Although different meteorological datasets have been developed and used to model 
hydrological processes and terrestrial ecosystem dynamics (Table A1), process-based permafrost 
models have some special requirements. For example, they require long-term, continuous 
meteorological data because the response of permafrost to climate is slow and model initialization 
requires the climate conditions before the beginning of the current climate warming. In addition, 
process-based permafrost models (e.g., [23–25]) and most land-surface models need multiple climate 
variables to determine the upper boundary conditions based on the surface energy balance. The 
following is a detailed specification and rationale for meteorological datasets required to model and 
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map permafrost in Canada using process-based permafrost models, such as the Northern Ecosystem 
Soil Temperature model (NEST) [23]. 

Climate variables: Air temperature (daily minimum and maximum), precipitation, vapor 
pressure, wind speed, solar radiation, and downward longwave radiation. These variables are 
needed to explicitly compute surface energy balance, which is essential for determining the upper 
boundary conditions in process-based land surface models. We did not include snow depth or snow 
water equivalent in the dataset because such data are usually coarse in spatial and temporal 
resolutions. In addition, the insulating effect of snow also depends on its density, which is usually 
not available. Currently, most permafrost models simulate snow depth, density, and the insulation 
effects based on the above listed climate variables (e.g., [15,23–26]). 

Spatial coverage: The entire Canadian landmass. About 70% of Canada’s landmass is within 
defined permafrost zones [27,28]. Although permafrost is discontinuous over large regions, we do 
not know exactly where it occurs. A national dataset is therefore useful for improving modeling and 
mapping permafrost across the country. The dataset can also be used for other national-scale analysis 
and land-surface modeling. 

Spatial resolution: 30 arc seconds latitude/longitude (about 1 km). Although climate conditions 
are usually similar within tens of kilometers in flat areas, they can vary significantly in less than 1 km 
due to the impacts of topography and large water bodies. Several studies have developed gridded 
meteorological datasets using 30 arc second resolution [19,29–31] and mapped permafrost at such a 
spatial resolution [1,11,12]. Nicolsky et al. [32] used a finer spatial resolution (770 m) of meteorological 
dataset to model and map permafrost in Alaska North Slope at 30 m resolution. 

Temporal coverage: From 1901 to the end of the 21st century. Since observations are too sparse 
and incomplete to define the initial conditions for spatial modeling, process-based permafrost models 
are commonly initialized based on the assumption that the ground thermal condition is in 
equilibrium with the climate [13,14]. This assumption is valid when climate condition has no 
significant warming or cooling trend for a long period of time. The recent increases in ground 
temperature in Canada began largely from the end of the Little Ice Age, around the middle of the 
19th century [33]. Therefore, it is reasonable to initialize permafrost models based on the climate 
around that time. Running the model from an earlier year allows better consideration of the transient 
changes in ground thermal conditions, which is often not in equilibrium with the climate [14]. Almost 
all gridded meteorological datasets begin around 1901 or later (Table A1) because there were few 
climate stations before the 20th century. For the purpose of model initialization, we can estimate the 
climate from 1850 to 1900 by extrapolating monthly climate values using data from 1901 to present 
[13]. Climate projections during the 21st century are also required because understanding potential 
changes in permafrost conditions is important for land use planning, infrastructure development, 
and environmental assessments. Most global climate models (GCMs) have projected climate 
scenarios to the end of the 21st century. 

Temporal resolution: Daily and continuous records for the entire period. Process-based 
permafrost models require a short time-step (about a half-hour) to calculate surface energy balance 
and to keep the thermal conduction equation stable under explicit finite difference solutions. 
However, permafrost is not very sensitive to such short-term variations (e.g., [34]). The volume of 
meteorological data increases significantly at sub-daily time-steps and most observation-based 
datasets use daily or monthly time-steps (Table A1). Therefore, we used daily meteorological data as 
the input to the model and downscaled the daily data to half-hourly within the model for permafrost 
simulation [15,35]. 

3. Data and Methods 

3.1. Datasets for Generating Met1km and Accuracy Assessment 

Met1km was generated using the following six gridded meteorological datasets. The first five 
datasets are time-series gridded data, and the sixth dataset is monthly climatology averaged during 
1970–2000 for spatial downscaling. 
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The Climatic Research Unit (CRU) and Japanese reanalysis (JRA) blended dataset, CRU JRA [36], 
covers the global land surface at 0.5° latitude/longitude resolution from 1901 to 2017 with a 6-h time-
step. The climate variables include air temperatures (minimum, maximum, and mean), precipitation, 
specific humidity, solar radiation, downward longwave radiation, surface atmosphere pressure, and 
wind speeds (zonal and meridional directions). The dataset was developed by aligning the Climatic 
Research Unit Time Series dataset (CRU TS) [37] with the Japanese 55-year reanalysis dataset (JRA-
55) [38]. The JRA-55 dataset begins in 1958. The data from 1901 to 1957 were constructed based on an 
analog approach using the CRU TS monthly dataset and the JRA-55 dataset between 1958 and 1967 
[37]. We aggregated the 6-hourly data into daily values. 

The Princeton dataset (version 3) [39] covers the global land surface at 0.25° latitude/longitude 
resolution from 1948 to 2016 with 3-hourly, daily, and monthly time-steps. The climate variables 
include air temperature, precipitation, specific humidity, solar radiation, downward longwave 
radiation, surface atmosphere pressure, and wind speed. The dataset was constructed by combining 
a suite of global observation-based datasets with the National Centers for Environmental Prediction 
and National Center for Atmospheric Research (NCEP–NCAR) reanalysis [39]. 

The Natural Resources Canada meteorological dataset (NRCANmet) [40] provides daily air 
temperatures (minimum and maximum) and precipitation from 1950 to 2013 in North America at a 
resolution of 5 arc minutes latitude/longitude (about 10 km). The dataset was interpolated based on 
climate station observations using Australian National University Spline method (ANUSPLIN). 

The Pacific Climate Impacts Consortium (PCIC) meteorological dataset for northwest of North 
America (PNWNAmet) [41] covers northwestern North America (169° W to 101° W, 40° N to 72° N) 
at a resolution of 3.75 arc m latitude/longitude (about 6 km) from 1945 to 2013. The dataset includes 
daily air temperatures (minimum and maximum), precipitation, and wind speed. It is interpolated 
from long-term homogenized station observations and a high-resolution monthly climatology 
dataset averaged in 1970–2000 [41]. 

Two future climate scenarios generated by a newly developed Canadian regional climate model, 
CanRCM4, include daily climate projections from 2011 to 2100 in North America at a spatial 
resolution of 0.22° latitude/longitude [42]. The two projections are under representative concentration 
pathways (RCP) 4.5 and 8.5 for medium-low and high emission scenarios, respectively. The model 
outputs also include daily meteorological conditions from 1950 to 2010. 

The new 1-km spatial resolution climate surface for global land areas, WorldClim2, provides 
monthly climatology averaged during 1970–2000 covering the global land surface at a spatial resolution 
of 30 arc seconds latitude/longitude (about 1 km) [29]. The climate variables include monthly average air 
temperatures (daily minimum, maximum and average), precipitation, vapor pressure, solar radiation, 
and wind speed. The dataset was interpolated from climate station observations with covariates of 
elevation, distance to the coast, and three satellite image derived covariates from the Moderate 
Resolution Imaging Spectroradiometer (MODIS): Maximum and minimum land surface 
temperatures, and cloud cover [29]. 

We used the following three datasets to assess the accuracy of Met1km. The first two datasets 
are station observations and the third is a gridded dataset developed based on station observations. 

The second-generation homogenized daily air temperature and precipitation data in Canada [43] 
includes 338 and 463 stations across Canada for air temperature and precipitation, respectively. Air 
temperature data include daily minimum, maximum, and mean. Most stations were established in the 
middle of the 20th century, but some dated to the middle of the 19th century. The data records for most 
stations terminate in 2014. 

Canadian Weather Energy and Engineering Data Sets (CWEEDS) were developed by 
Environment Canada and the National Research Council of Canada [44]. They include hourly air 
temperature, dew point, wind direction and speed, cloud cover, direct and diffuse irradiance at 145 
stations across Canada for up to 48 years, starting as early as 1953, and ending in 2005. From this 
hourly dataset we calculated daily minimum and maximum air temperatures, daily mean vapor 
pressure, wind speed, and daily total solar radiation. 
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Canadian gridded temperature and precipitation anomalies (CANGRD) is a 50-km resolution 
gridded dataset from 1900 to 2017 in southern Canada (south of 60 °N) and from 1948 to 2017 in northern 
Canada. It was interpolated from adjusted and homogenized climate station data across Canada. It 
includes monthly, seasonal, and annual anomalies from the baseline averages over 1961–1990. 

3.2. Development of Met1km for the Historical Period 

We selected a combination of datasets for the 1901 to 2017 period considering their temporal 
coverages and spatial resolutions, which usually influence the accuracy. There are several datasets that 
cover the period before the 1940s with daily or shorter time-steps (Table A1). We used the newly released 
dataset CRU JRA [36] for the period from 1901 to 1947 and the year 2017. We selected CRU JRA because 
its monthly averages before the 1940s aligns with the widely used CRU dataset. From 1948 to 2016, we 
used the Princeton dataset [39]. We selected the Princeton dataset as it is readily available, combines re-
analysis and various observational data, and has a better spatial resolution and data length than most 
other similar datasets. We used NRCANmet [40] for air temperature and precipitation from 1950 to 2013 
(replacing the daily air temperature and precipitation from the Princeton dataset). We also used 
PNWNAmet [41] for air temperature, precipitation, and wind speed from 1945 to 2013 for western Canada 
where they are available (replacing air temperatures and precipitation from NRCANmet, and wind speed 
from the Princeton and the CRU JRA datasets). We used NRCANmet and PNWNAmet because they 
mimicked the station observations much more closely than the CRU JRA and the Princeton datasets 
(discussed in Section 4.6). 

3.3. Development of Met1km for Future Climate Change Scenarios 

Future climate change scenarios were derived from the output of a newly developed Canadian 
regional climate model, CanRCM4, for North America [42]. GCMs are the primary tools used to 
project future climate changes. Although the state-of-the-art GCMs can reasonably simulate the 
climate at large scales [45], climate change impact assessments often need to downscale the GCM 
outputs to regional and local scales. A commonly used method is dynamical downscaling based on 
regional climate models driven by GCM outputs for a relatively small domain but with fine 
resolutions (e.g., [46]). This method has the advantages of keeping the fine-resolution output 
consistent with the output of GCMs at large scales and better accounting of regional and local forcings 
(e.g., topography, land use, and land cover) than GCMs. In this study, we used the output of 
CanRCM4 for North America under RCP 4.5 and 8.5 [42] as they have been frequently used in climate 
change impact assessments (e.g., [47–49]). 

Climate model outputs often have some systematic biases when compared with observations. Such 
biases are related to imperfect model conceptualization, parameterization, and spatial averaging within 
grid cells. Therefore, bias correction has become a common practice to match modeled gridded data to 
station observations [50,51]. In this study, we conducted a bias correction using a quantile mapping 
approach that has been applied in previous studies [47–49]. The approach includes three steps for each 
grid: a) Determining the “true” cumulative probability distribution function (CDF) and the CDF from the 
CanRCM4 output under the current climate, b) correcting the CanRCM4 output to the “true” probability 
distribution under the current climate, and c) correcting the CanRCM4 output for the future period. The 
bias-corrected current climate data were used to calculate the CanRCM4 baseline, which was used to 
downscale the future scenarios to 1-km resolution. 

The CanRCM4 output for the current climate was corrected using the following equation 𝑥௖ି௖௢௥௥௘௖௧௘ௗ = 𝐹௧௥௨௘ିଵ ሾ𝐹௖ሺ𝑥௖ሻሿ, (1)

where xc-corrected is the bias-corrected data under the current climate. Ftrue−1 is the inverse function of the 
“true” CDF for the current climate, and Fc(xc) is the CDF of the model output for the current climate. 
The probability distributions Ftrue(xc) and Fc(xc) can be estimated theoretically or empirically. We 
estimated the distributions empirically to avoid complications of calibrating an appropriate 
probability distribution, since even daily minimum and maximum air temperatures do not 
necessarily follow a normal distribution [52]. Fc(xc) was determined using the CanRCM4 output for 
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the current climate. We estimated the “true” CDF for the current climate using the Princeton dataset 
because its spatial resolution (0.25° latitude/longitude) is similar to that of the CanRCM4 output (0.22° 
latitude/longitude). Empirical distributions for each variable were estimated month by month to 
account for seasonal variations. 

The CanRCM4 output for the future period was corrected using the following equation 𝑥௙ି௖௢௥௥௘௖௧௘ௗ = 𝑥௙ + 𝐹௧௥௨௘ିଵ ൣ𝐹௙൫𝑥௙൯൧ − 𝐹௖ି ଵൣ𝐹௙൫𝑥௙൯൧, (2) 

where xf-corrected is bias-corrected data for the future period. Ff (xf) is the CDF determined using the 
CanRCM4 output for the future (xf). It is important to incorporate potential changes in the probability 
distribution of a climate variable when the bias correction is applied to a future period [53]. We 
adopted the equidistant CDF matching method [53], which assumes that the difference between the 
quantiles estimated from the model output and observed values during the current climate would 
also be applicable to the future period. 

3.4. Spatial Downscaling 

The gridded meteorological datasets used in this study are at different spatial resolutions. We 
downscaled them to a resolution of 30 arc seconds latitude/longitude (about 1-km) based on the 
WorldClim2 dataset [29] using the re-baselining method [54]. We selected WorldClim2 dataset 
because it has a fine spatial resolution and includes all the climate variables required except 
downward longwave radiation. The Princeton and CRU JRA climate datasets and the future climate 
scenarios all include downward longwave radiation. We therefore estimated monthly mean 
downward longwave radiation using the other variables in the WorldClim2 dataset (Appendix B). 

The re-baselining method was developed by Way and Bonnaventure [54] to fill missing 
observations using gridded regional climate anomalies. The method is based on the commonly 
observed phenomenon that climate anomalies at the regional scale typically co-vary, whereas long-
term averages at different sites can be different due to local topography and other site conditions. 
Therefore, they estimated air temperature at a site by combining the long-term averages at the site 
(observations are available but there are many gaps) and the anomalies from gridded climate 
reanalysis datasets [54]. They tested the method for monthly air temperatures at 53 climate stations 
in northeastern Canada. We used this method to downscale all the daily climate variables to 1-km 
resolution using WorldClim2 as the baseline. This method can easily integrate datasets of various 
spatial resolutions without affecting their temporal variations and trends. We assessed this 
downscaling method across Canada for air temperature and precipitation based on climate station 
observations (Section 4.2). 

The re-baselining method is simple to compute. For daily minimum and maximum air temperatures, 
we used the differences to re-baseline the coarse gridded daily meteorological datasets to 1-km resolution 𝑇′ሺ𝑦,𝑚,𝑑ሻ =  𝑇ሺ𝑦,𝑚,𝑑ሻ + 𝐷ሺ𝑚ሻ, (3) 𝐷ሺ𝑚ሻ = 𝑇௪௖ሺ𝑚ሻ − 𝑇௔ሺ𝑚ሻ, (4) 

where T’(y,m,d) is the downscaled daily air temperature (minimum or maximum) for year y, month m, 
and day d for a 1-km resolution grid. T(y,m,d) is the daily air temperature (minimum or maximum) in a 
coarse gridded dataset (i.e., the CRU JRA, Princeton, NRCANmet, or PNWNAmet datasets) on that day. 
Twc(m) is the monthly average air temperature (minimum or maximum) for month m from the 
WorldClim2 dataset, which is the average from 1970 to 2000. Ta(m) is the monthly average air temperature 
(minimum or maximum) from 1970 to 2000 for the month m calculated using the coarse gridded dataset. 
D(m) is the difference between Twc(m) and Ta(m). Daily mean air temperature is calculated as the average 
of daily minimum and maximum air temperatures. 

For the other climate variables (daily precipitation, vapor pressure, wind speed, solar radiation, and 
downward longwave radiation), we used ratios to re-baseline the coarse gridded daily datasets to 1-km 
resolution 
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𝑉′ሺ𝑦,𝑚,𝑑ሻ =  𝑉ሺ𝑦,𝑚,𝑑ሻ · 𝑟ሺ𝑚ሻ, (5) 

𝑟ሺ𝑚ሻ = 𝑉௪௖ሺ𝑚ሻ/𝑉௔ሺ𝑚ሻ, (6) 

where V is a daily value of a climate variable (daily precipitation, vapor pressure, wind speed, solar 
radiation, and downward longwave radiation) from a coarse gridded dataset. Vwc(m) is the monthly 
average for month m from the WorldClim2 dataset, and Va(m) is the monthly average from 1970 to 
2000 for the month m calculated using the coarse gridded dataset. r(m) is the ratio between Vwc(m) and 
Va(m). We used ratios instead of difference for these variables to avoid generating negative values, 
and to avoid the effects of dry days for precipitation. 

The downscaled daily solar radiation has a smaller range in their day-to-day fluctuations 
comparing to the CWEEDS [44]. We adjusted this difference using the following method 𝑆′ = ቊ𝑆 + 𝑎൫𝑆 − 𝑆௔௩௚ଽ൯ 𝑖𝑓 𝑆 + 𝑎൫𝑆 − 𝑆௔௩௚ଽ൯ ≥ 𝑏𝑆௔௩௚ଽ 𝑏𝑆௔௩௚ଽ 𝑖𝑓 𝑆 + 𝑎൫𝑆 − 𝑆௔௩௚ଽ൯ < 𝑏𝑆௔௩௚ଽ , (7) 

where S’ is the adjusted daily solar radiation, and S is the downscaled daily solar radiation from the 
Equation (5). Savg9 is nine-day moving average of the solar radiation calculated by Equation (5) around 
the day for the adjustment. Their units are in KJ/m2/day. a and b are parameters, determined as 1.0 
and 0.4 by comparing the adjusted and the CWEEDS daily solar radiation for different stations across 
Canada. Essentially, Equation (7) doubles the fluctuation range, but the adjusted value should not be 
less than 40% of the nine-day average. 

3.5. Statsitical Measures for Accuracy Assessment 

We used Pearson’s correlation coefficient (R) and mean absolute error (MAE) to assess the 
accuracy of Met1km by comparing its values with observations. 𝑅 = ∑ ሺ𝑥௜ − 𝑥௠ሻሺ𝑥௜ᇱ − 𝑥௠ᇱ ሻ௡௜ୀଵ ඥ∑ ሺ𝑥௜ − 𝑥௠ሻଶ ∑ ሺ𝑥௜ᇱ − 𝑥௠ᇱ ሻଶ௡௜ୀଵ௡௜ୀଵ⁄ , (8) 𝑀𝐴𝐸 = ∑ |𝑥௜ − 𝑥௜ᇱ|௡௜ୀଵ 𝑛⁄ , (9) 

where R is Pearson’s correlation coefficient, and MAE is mean absolute error. xi and x’i are Met1km and 
observed values for a day i, respectively. xm and x’m are the averages of Met1km and observed values, 
respectively. n is the total number of days in which both Met1km and observed daily data are available. 

To further analyze sources of the errors, we partitioned the time series of a climate variable into 
three components: The long-term average, the long-term average seasonal pattern, and the deviation 
from the long-term average seasonal pattern. 𝑥௜ = 𝑥௔ + ൫𝑥௔,ௗ௢௬ − 𝑥௔൯ + ൫𝑥௜ − 𝑥௔,ௗ௢௬൯ = 𝑥௔ + 𝑑𝑥ଵ,ௗ௢௬ + 𝑑𝑥ଶ,௜, (10) 

where xa is the long-term average of a climate variable, and xa,doy is the long-term average for a day of 
year doy (which does not change from year to year). dx1,doy is the difference between xa,doy and xa, and 
dx2,i is the difference between xi and xa,doy 𝑑𝑥ଵ,ௗ௢௬ = 𝑥௔,ௗ௢௬ − 𝑥௔ , (11) 𝑑𝑥ଶ,௜ = 𝑥௜ − 𝑥௔,ௗ௢௬. (12) 

Thus, the MAE can be expressed as the following 

𝑀𝐴𝐸 = ෍ หሺ𝑥௔ − 𝑥௔ᇱ ሻ + ൫𝑑𝑥ଵ,ௗ௢௬ − 𝑑𝑥ଵ,ௗ௢௬ᇱ ൯ + ൫𝑑𝑥ଶ,௜ − 𝑑𝑥ଶ,௜ᇱ ൯ห௡௜ୀଵ 𝑛ൗ  ≤ |𝑥௔ − 𝑥௔ᇱ | + ∑ ห𝑑𝑥ଵ,ௗ௢௬ − 𝑑𝑥ଵ,ௗ௢௬ᇱ หଷ଺ହௗ௢௬ୀଵ 365⁄ + ∑ ห𝑑𝑥ଶ,௜ − 𝑑𝑥ଶ,௜ᇱ ห௡௜ୀଵ 𝑛⁄ . 

(13) 

For precipitation, we used a ratio to calculate dx2,i to avoid the effects of days without precipitation 
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𝑑𝑥ଶ,௜ = ሺ𝑟௜ − 1ሻ𝑥௔,ௗ௢௬, (14) 

where ri is the ratio of precipitation on day i to the long-term average of that day of year (xa,doy). Thus, 
the third term in Equation (13) for precipitation can be expressed as the following ∑ ห𝑑𝑥ଶ,௜ − 𝑑𝑥ଶ,௜ᇱ ห௡௜ୀଵ 𝑛⁄ =∑ หሺ𝑟௜ − 1ሻ𝑥௔,ௗ௢௬ − ሺ𝑟௜ᇱ − 1ሻ𝑥௔,ௗ௢௬ᇱ ห௡௜ୀଵ 𝑛 ≈ ∑ |𝑟௜ − 𝑟௜ᇱ|𝑥௔ᇱ௡௜ୀଵ 𝑛⁄ൗ , (15) 

where r’i is the ratio of precipitation on day i to the long-term average on that doy for the observed 
daily precipitation. Equation (13) indicates that the overall MAE can be divided into three 
components: The error in long-term average (the first term), the error in long-term average seasonal 
pattern (the second term), and the error in deviations from the average seasonal pattern (the third 
term), which reflects the error in day-to-day fluctuations. This partitioning is important for 
permafrost modeling because permafrost is sensitive to the error in long-term averages, somewhat 
sensitive to the error in seasonal patterns, but not sensitive to short-term fluctuations (e.g., [34]). 

4. Result and Analysis 

In this section, we first described the Met1km dataset and showed some examples of the data 
(Section 4.1). Then, we tested the re-baselining method using climate station observations for air 
temperature and precipitation (Section 4.2). After that, we assessed the accuracy of Met1km in four 
sections. Section 4.3 describes detailed comparisons of Met1km with observations of one climate station 
for all the climate variables except downward longwave radiation. Section 4.4 provides comparisons of 
Met1km with all the climate stations across Canada for air temperature and precipitation. Section 4.5 
describes comparisons of Met1km with CANGRD, a 50-km resolution gridded monthly anomaly time 
series for air temperature and precipitation. Finally, we compared the accuracy of Met1km with the 
accuracies of the source datasets and the effects of spatial downscaling (Section 4.6). 

4.1. Met1km Format and General Temporal and Spatial Patterns of the Data 

Met1km includes re-organized input source datasets and two scripts to generate spatial data and 
time series based on the input datasets. The input source datasets, including the Princeton dataset, 
CRU JRA, NRCANmet, PNWNAmet, WorldClim2, and two future scenarios, were re-organized and 
saved in binary format for easy and efficient processing. One script generates 1-km resolution spatial 
data for any climate variable for any time period. Another script generates daily time series from 1901 
to 2100 for all the climate variables for any user-defined location (1-km grid) in the domain of 
Canadian landmass. They were developed using Microsoft Visual C++ and can process the data very 
efficiently. With a desktop computer, generating a time-series dataset for one 1-km grid takes about 
one second, and generating a spatial dataset for a climate variable takes 4–5 min. The data volume of 
the re-organized input datasets and the scripts is about 134 gigabytes, while the total data volume of 
all the 1-km grids in Canada is 82 terabytes if each value is saved in 4 bytes. Thus, Met1km is relatively 
small comparing to the total volume of the generated data, flexible to use, and can be updated easily 
by replacing the source datasets and modifying the scripts. 

Figure 1 shows an example of air temperature and precipitation time series generated by Met1km 
for a grid at Yellowknife (62.4540 °N, 114.3718 °W), depicting both long-term increases and inter-annual 
fluctuations. From the 1900s (1901–1910) to the 2000s (2001–2010), air temperature increased 2.0 °C and 
precipitation increased 11.4%. From the 2000s to the 2090s (2091–2100), air temperature is predicted to 
increase by 4.0 and 7.8 °C under the RCP 4.5 and 8.5 scenarios, respectively. Precipitation is predicted to 
increase by 9.8% and 36.2%, respectively, under these two scenarios. Daily minimum and maximum air 
temperatures show similar patterns as that of daily mean air temperature, but the increase in daily 
minimum air temperature is about 1 °C more than that of the daily maximum air temperature. Vapor 
pressure and downward longwave radiation also show similar increasing trends as air temperature. 
Long-term changes are small for wind speed and solar radiation. 
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Figure 1. (a) Air temperature and (b) precipitation generated by Met1km for a grid at Yellowknife, 
Northwest Territories (62.4540 °N, 114.3718 °W). Black curves are for the historical period (1901–2017), 
blue and red curves are for future scenarios under RCP 4.5 and 8.5, respectively. The dash curves are 
annual values, and the bold curves are 10-year moving averages. 

Figure 2a shows the spatial distribution of mean air temperature in the 2000s. Mean air 
temperature ranges from −25 to 11 °C from the high Arctic to southern Canada. Mean annual air 
temperature can differ by several degrees in short distances due to variations in topography, 
especially in British Columbia and high arctic regions. This indicates that it is necessary to develop 
meteorological datasets at high spatial resolutions. From the 1900s to the 2000s, air temperature 
increased 1 to 2 °C in southern Canada and 2 to 3 °C in most of northern Canada (Figure 2b). Under 
the RCP 4.5 climate change scenario, air temperature is predicted to increase by 3 to 4 °C in southern 
Canada and by 4 to 7 °C in most of northern Canada (Figure 2c). Under the RCP 8.5 scenario, the air 
temperature is predicted to increase by 5 to 8 °C in most of southern Canada and by 7 to 11 °C in 
northern Canada, especially in the northwestern Arctic (Figure 2d). These spatial patterns and the 
magnitudes of future changes are similar to that of the multi-model ensembles from the fifth phase 
of the Coupled Model Intercomparison Project (CMIP5) for Canadian domain [55]. 
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Figure 2. Spatial distributions of mean air temperature and changes with time generated by Met1km. 
(a) Mean air temperature in the 2000s (averaged from 2001 to 2010), (b) changes from the 1900s 
(averaged from 1901 to 1910) to the 2000s, and changes from the 2000s to the 2090s (averaged from 
2091 to 2100) under scenarios of (c) RCP 4.5 and (d) RCP 8.5. 

4.2. Testing the Re-Baselining Spatial Downscaling Method 

We tested the re-baselining method using the second generation homogenized daily air temperature 
and precipitation data in Canada [43]. The dataset includes 338 and 463 stations across Canada for air 
temperature and precipitation, respectively. To test whether a climate variable co-varies at two sites, we 
calculated R between each pair of climate stations with distance less than 1000 km. To avoid the effects of 
seasonality, we calculated R using the deviations (using difference for air temperature and ratio for 
precipitation) from the long-term seasonal patterns, which were linearly interpolated from the long-term 
monthly averages. We used data from 1945 so that the number of years of the data used for the calculation 
was similar across the country. The calculated R for air temperature is generally higher than that of 
precipitation (Figure 3a,b). R decreases with distance between the stations for both air temperature and 
precipitation, with a near-linear decrease with distance for air temperature but a more rapid initial 
decrease for precipitation. 
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Figure 3. Correlation coefficients (R) between two climate stations for (a) daily mean air temperature 
and (b) daily precipitation and mean absolute differences between two climate stations for (c) daily 
mean air temperature and (d) daily precipitation. They were calculated using the deviations 
(differences for air temperature and ratios for precipitation) from the long-term seasonal patterns, 
which were linearly interpolated from the long-term monthly averages. 

To test whether the magnitudes of co-variation are similar at two sites, we calculated the mean 
absolute difference between each pair of stations using the daily deviations from the long-term 
average seasonal patterns (using differences for air temperature and ratios for precipitation). The 
mean absolute difference is the third term in Equation (13), and it is also the MAE of the re-baselining 
method when using the deviations of one station to estimate another station. The mean absolute 
differences increase with distance for both air temperature and precipitation, with a near-linear 
increase with distance for air temperature but a more rapid initial increase for precipitation. These 
patterns somewhat mirror that of the R (Figure 3c,d). These results indicate that a climate variable 
(daily air temperature or precipitation) co-varies, and the magnitudes of variations are similar at two 
stations when their distance is not too far. The co-variation is more consistent for air temperature 
than for precipitation. 

For each pair of stations, we also calculated the R and mean absolute differences using running 
averages over some days (Figure 4). Each curve in Figure 4 represents the median values of all the 
pair of stations within a certain range of distances. The median R increases quickly with the duration 
of the running average from 1 day to about 5–10 days. The increase of R becomes very small when 
the duration of the running average is longer than 10 days (Figure 4b). Similarly, the median mean 
absolute difference decreases quickly with the duration of the running average from 1 day to about 
5–10 days, then the decrease becomes smaller, especially when two stations are relatively close. This 
is important because the original re-baselining method was developed and tested based on monthly 
air temperature [54]. Our tests show that the errors for daily air temperature and precipitation are 
about 2.5 and 2.9–3.5 times, respectively, of the errors when the re-baselining is calculated using 
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monthly means. The errors decreased rapidly when averaged for some days. The errors for 5- to 10-
day averages are not significantly higher than the error calculated using monthly averages. For 
stations with distances less than 50 km, the median error for 10-day average air temperature is 0.6 °C. 
For precipitation, the median errors for 10-day averages are 31% and 37% of the long-term averages 
for distances <25 km and 25–50 km, respectively. Figures 3 and 4 also show that the spatial 
downscaling errors are smaller when stations are more densely distributed (or the gridded dataset 
has a higher spatial resolution). Therefore, we generally chose source datasets with high spatial 
resolutions. 

 
Figure 4. Changes of correlation coefficients (R) (a,b) and mean absolute differences (c,d) between 
climate stations with duration of running average for air temperature (a,c) and precipitation (b,d). 
They were calculated using the deviations (differences for air temperature and ratios for precipitation) 
from the long-term daily averages, which were interpolated from the long-term monthly averages. 
Each curve represents the median values calculated from all the stations within a certain distance 
range. 

4.3. Comparing Met1km with Climate Station Observations 

We compared Met1km with observations at some climate stations across Canada. Although 
most of the station observations probably were used to develop the gridded source datasets, such 
comparisons are useful to detect any technical errors and to assess the accuracy of the re-baselining 
downscaling method. Station data of daily minimum and maximum air temperatures, vapor 
pressure, wind speed, and solar radiation were derived from hourly data of CWEEDS [44]. Daily 
station precipitation data were from Environment and Climate Change Canada. 

Figure 5 shows some examples of comparison between Met1km and observed climate variables at 
the Yellowknife airport climate station for the year 1953. Met1km daily values are very close to the 
observations. Figure 6a shows the R between Met1km and observed daily values from 1948 to 2016 for 
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precipitation and from 1953 to 2005 for other variables. The R is very high for daily minimum, maximum, 
and mean air temperatures, vapor pressure, and solar radiation. The R is lower for precipitation and wind 
speed. Since strong seasonal variation could contribute to the high correlations, we also calculated the R 
after excluding the long-term average seasonal patterns. The long-term average seasonal patterns were 
calculated by linearly interpolating the long-term monthly averages. The R is still very high for daily 
minimum, maximum, and mean air temperatures (grey bars in Figure 6a). The R becomes lower for vapor 
pressure and solar radiation, indicating that Met1km captured their seasonal patterns but the day-to-day 
fluctuation was not well captured as for air temperatures. The R calculated from the original data and 
from the deviations are very similar for precipitation and wind speed. 

 

 
Figure 5. Comparisons between Met1km dataset and observations at the Yellowknife airport climate 
station in 1953 for difference climate variable. (a) Daily minimum air temperature; (b) daily maximum 
air temperature; (c) precipitation; (d) vapor pressure; (e) solar radiation; and (f) wind speed. 
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Figure 6. (a) Correlation coefficients (R) between Met1km and measurements at the Yellowknife 
airport climate station, and (b) the total error and the three error components of Met1km calculated 
by comparing to the observations at the climate station. The daily observations for precipitation are 
from 1948 to 2016, and other observations are from 1953 to 2005. 

Figure 6b shows the overall error and the three error components for each climate variable for 
the grid covering the Yellowknife airport climate station. The total error for daily mean air 
temperature is smaller than that of the daily minimum and maximum air temperatures. The error in 
daily deviations from the long-term average seasonal patterns are the major sources of the error for 
all the variables, especially for precipitation, vapor pressure, wind speed, and solar radiation. The 
errors in long-term averages are very small for daily mean air temperature, precipitation, and vapor 
pressure. For other variables, the errors in long-term averages are similar to that of the long-term 
average seasonal patterns. Although the errors in long-term averages are relatively large for daily 
minimum and maximum air temperatures, the error in long-term average is small for daily mean air 
temperature. 

Figure 7 shows the changes in errors with the duration of running average for the Yellowknife 
airport climate station. The MAE decreased quickly with the duration of running average. When 
averaged over 10 days, the MAE is about 50 to 60% of the daily errors except daily maximum air 
temperature, which is about 70% of the daily error. The reduction of MAE is small when the duration 
of running average is longer than 10 days (Figure 7a). For the deviations from the long-term average 
seasonal patterns, the reduction of MAE with duration of the running average is even more 
significant (Figure 7b). In addition, the probability distributions of Met1km are very similar to that of 
the observations for all the climate variables (Figure 8). 
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Figure 7. Changes of mean absolute error (MAE) with the duration of running average (a) for the 
original data and (b) for the error in deviations from the long-term average seasonal patterns. The 
daily observations for precipitation are from 1948 to 2016, and other observations are from 1953 to 
2005. 

 
Figure 8. Comparisons of the probability distributions of Met1km data with that of the observations 
at the Yellowknife airport climate station. The x-axis is expressed as (a–f) deviations from or (g) ratio 
to the long-term average seasonal pattern, which is interpolated from long-term monthly averages. 
The inset in panel (g) shows the same data but in different scales. The daily data are from 1948 to 2016 
for precipitation and from 1953 to 2005 for other climate variables. 

4.4. Comparing with the Homogenized Daily Air Temperature and Precipitation Station Data 

We compared Met1km with the second-generation homogenized climate dataset [43] for each 
station. Because the CRU JRA dataset from 1901 to 1957 was developed by randomly selecting a year 
between 1958 and 1967 in JRA-55 dataset that is in alignment with the CRU monthly data, the daily 
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errors decreased sharply by about a half from 1 January 1958. Therefore, we did the comparisons 
separately for the periods from 1901 to 1944 (from 1901 to 1947 in eastern Canada (east of 101 °W)) 
and from 1945 to 2014 (from 1947 to 2014 in eastern Canada). 

Figure 9a–c shows the median MAE of all the stations for the two periods, respectively. For daily 
values, the median MAE from 1901 to 1944 is 3 to 5 times of that from 1945 to 2014. The MAE 
decreases when the climate variables are averaged for a number of days, and the decrease for 
precipitation is faster than for air temperatures (daily minimum, maximum, and mean), especially 
for the period from 1901 to 1944. When averaged for 30 days, the MAE from 1901 to 1944 is about 
twice of that from 1945 to 2014 (1.6, 2.0, 2.7, and 1.8 times for minimum, maximum, and mean air 
temperatures, and precipitation, respectively). The MAE for daily mean air temperature is smaller 
than that of daily minimum and maximum air temperatures, especially from 1945 to 2014. Met1km 
and the climate station data are highly correlated for most of the stations with a linear slope close to 
1 from 1945 to 2014. This is even the case when the seasonal patterns are eliminated. However, from 
1901 to 1944, the correlations between the daily values of Met1km and the climate station 
observations are very low after eliminating the average seasonal patterns. The correlation increases 
when the daily values are averaged over more days, and the correlation reaches a similar level of the 
correlation during 1945–2014 when the daily values are averaged over 30 days. 
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Figure 9. The errors of Met1km comparing with the homogenized daily air temperature and 
precipitation station data for the period from 1945 to 2014 (1948 to 2014 in eastern Canada) and from 
1901 to 1944 (1901 to 1947 for eastern Canada). Panels (a–c) are for the MAE, and panels (b,d) are for 
the three error components (error in long-term averages (absolute of mean error), MAE in average 
seasonal patterns, and MAE for the deviations from long-term average seasonal patterns). The large 
bars and the error bars are for the median and the standard deviations of the errors of all the available 
climate stations. 

Figure 9b–d shows the median values of the three error components of all the stations for the 
two periods. From 1945 to 2014, the errors in long-term averages are small for temperatures (daily 
minimum, maximum and mean) and precipitation, as are the errors in average seasonal patterns for 
daily mean air temperature and precipitation (Figure 9b). The major error for daily mean air 
temperature and precipitation is in day-to-day fluctuations. For daily minimum and maximum air 
temperatures, the errors in average seasonal patterns and in day-to-day fluctuations are similar. The 
errors in day-to-day fluctuations decrease quickly when averaged for 5 to 10 days, and further 
reduced when averaged in 30 days (Figure 9b). From 1901 to 1944, the errors in long-term averages 
are very small, as are daily mean air temperature and precipitation. The errors in long-term seasonal 
patterns for daily minimum and maximum air temperatures are slightly larger. The major sources of 
the errors are from day-to-day fluctuations. The errors in day-to-day fluctuations decrease quickly 
and continuously when averaged up to 30 days (Figure 9d). 

4.5. Comparing with a Gridded Monthly Anomaly Time-Series Dataset 

Figure 10 shows the correlation coefficients between CANGRD and monthly anomaly calculated 
from Met1km. The R is very high for air temperatures (daily minimum, maximum, and mean). The 
R for the monthly anomalies of daily mean air temperature is slightly higher than that of daily 
minimum and maximum air temperatures in all the months, seasons, and annual averages. The R for 
precipitation is much lower than that of air temperatures and the R has a large standard deviation. 
Figure 11a shows the spatial distribution of R for the anomaly of annual mean air temperature. The 
sudden increase in R crossing latitude 60 °N is due to differences in data length (the data are from 
1948 in the north and from 1901 in the south). The R is lower in British Columbia and the eastern high 
Arctic, probably because of the complex topography in these regions. There is no obvious difference 
in R between the domain of PNWNAmet and the other areas for air temperature. The R for 
precipitation is lower than that of air temperatures and has a wider range of variation (Figure 10). R 
tends to be higher in western Canada (Figure 11b), indicating that the PNWNAmet has a higher 
accuracy than that of the NRCANmet dataset for precipitation. The correlation is very poor in one 
area in central Quebec. A close check of the data shows that the discrepancy occurs after 1992, which 
has an unusually large variation. The downscaled precipitation from the CRU JRA, Princeton and 
NRCANmet datasets all has a similar pattern for this area, probably because they used the same 
dataset, which is different from that deriving the CANGRD dataset. The slopes of the linear 
regressions are close to 1, indicating the fluctuation ranges of CANGRD and Met1km are similar. This 
comparison indicates that the temporal variation patterns of Met1km are similar to that of the 
CANGRD dataset. 
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Figure 10. Correlation coefficients between the monthly anomalies of Met1km and the CANGRD 
dataset. The daily data from Met1km were converted to monthly anomalies corresponding to the 
grids of the CANGRD dataset. The large bars and the error bars are the averages and standard 
deviations of the 4890 grids of the CANGRD dataset. 

 
Figure 11. Correlation coefficients between the CANGRD and the anomalies of Met1km datasets for 
(a) annual mean air temperature and (b) annual total precipitation. The daily data from Met1km were 
converted to anomalies corresponding to the CANGRD dataset. The data were from 1901 in southern 
Canada (south of 60 °N) and from 1948 in northern Canada. 

4.6. Comparing the Accuracy of Met1km and the Source Datasets 

Figure 12 shows the errors of Met1km and the source datasets and the effects of downscaling by 
comparing with the second generation homogenized daily air temperature and precipitation dataset 
[43]. The errors of the source datasets were calculated by directly comparing the grid values with the 
station data. The downscaling effects on the errors were calculated by comparing the station data 
with the source data downscaled to 1-km resolution using the re-baselining method. For the CRU 
JRA and the Princeton datasets, spatial downscaling reduced the mean error (absolute value of the 
error in long-term average) by about a half for daily mean, minimum, and maximum air 
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temperatures, and by about 30% for precipitation. Downscaling also significantly reduced the 
standard deviation of the mean errors for these two datasets. For daily mean, minimum, and 
maximum air temperatures, the mean errors of the CRU JRA dataset in 1948–2014 are slightly smaller 
than that in 1901–1947, and the mean errors are even smaller for the Princeton dataset. The mean 
errors of precipitation are similar for the CRU JRA dataset in 1901–1947 and 1948–2014, and for the 
Princeton dataset. For the NRCANmet and PNWNAmet datasets, the effects of downscaling on the 
mean errors were small and mixed. However, downscaling reduced the standard deviation of the 
mean errors for air temperatures, especially for the daily means. 

 
Figure 12. Comparisons of the errors of the source datasets, the spatially downscaled source datasets 
and Met1km (the three bars in each group respectively) (a–p). The errors were calculated by 
comparing with the homogenized daily climate station data [43]. The four rows are for different 
climate variables, and the four columns are for the errors in long-term averages and the mean absolute 
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errors for daily values, 10-day averages and 30-day averages. The large bars and the error bars are the 
averages and the standard deviations of the errors of all the climate stations. The errors of Met1km 
(the red hatched bars) are different in each panel due to differences in periods of the datasets and 
spatial domains of the NRCANmet and PNWNAmet datasets. 

Downscaling slightly reduced the MAE for daily air temperature and precipitation for the CRU JRA 
and Princeton datasets. The daily MAE from 1901 to 1947 is larger than the later period because the data 
for this period was estimated using an analogy method based on the JRA-55 from 1958 to 1967 and 
the CRU monthly data [36]. The MAE from 1901 to 1947 decreased quickly when the data were 
averaged for some days, and the MAE became close to that of CRU JRA in 1948–2014 when averaged 
for 30 days, especially for daily maximum air temperature. The MAE also reduced for other datasets 
when the data were averaged for some days. The MAE of the Princeton dataset is slightly smaller 
than that of CRU JRA in 1948–2014 for daily mean air temperature, but their MAE is similar for daily 
minimum and maximum air temperatures and precipitation. The MAE of the NRCANmet and 
PNWNAmet datasets is smaller than that of the CRU JRA and Princeton datasets because the 
NRCANmet and PNWNAmet datasets were directly interpolated from the climate station data and 
have fine spatial resolutions. For the NRCANmet and PNWNAmet datasets, downscaling slightly 
increased the MAE for daily minimum and maximum air temperatures. However, downscaling 
slightly reduced MAE of daily mean air temperature for the PNWNAmet and reduced the standard 
deviation of MAE of daily mean air temperature for both the NRCANmet and PNWNAmet datasets. 
That means downscaling reduced the errors in daily mean air temperature and made it spatially more 
consistent. The effects of downscaling on precipitation were small for both the NRCANmet and 
PNWNAmet datasets. 

Figure 12 shows that the PNWNAmet dataset had slightly larger errors than that of the 
NRCANmet dataset. However, their spatial domains were different. For the spatial domain of 
PNWNAmet, where most of the area is mountainous, the errors of NRCANmet and PNWNAmet 
were similar but the standard deviation of the errors of PNWNAmet was smaller than that of the 
NRCANmet, probably because the spatial resolution of PNWNAmet is finer than that of 
NRCANmet. 

5. Discussion 

This study developed a long-term (from 1901 to 2100), high-resolution (1 km) daily near-surface 
meteorological dataset in Canada. Met1km has several advantageous features compared to existing 
meteorological datasets (Table A1). 

It has a high spatial resolution and covers a long-time period at a daily time step for the entire 
Canadian landmass. It can therefore be used to model long-term dynamics of permafrost and ground 
thermal conditions at high spatial resolutions. The dataset can also be used for other national-scale 
modeling and climate impact analysis. 

Met1km includes eight climate variables and they are generally consistent in related 
atmospheric physical processes as they are generated directly from observations or from climate 
model reanalysis. Therefore, the dataset can be used to drive process-based models and to integrate 
the effects of these variables through energy and water dynamics. 

The dataset is relatively small and flexible to use. Instead of saving the 1-km resolution data for 
each grid, we developed two scripts to generate spatial and time series data as needed. This treatment 
significantly reduces the volume of the dataset. 

Met1km integrates deemed suitable datasets presently available in term of temporal coverages, 
spatial resolutions, and data availability. Met1km can be updated easily when better source datasets 
become available. 

The method to generate Met1km for Canada can be used to develop similar datasets for other 
regions or even to cover the global landmass as the WorldClim2, CRU JRA and Princeton datasets 
have global coverage. 
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Comparing to the 1-km daily time series dataset Daymet [19], Met1km integrates more datasets, 
especially those developed for Canadian domain, and covers a longer time period. The WorldClim2 
dataset [29] that we used for re-baselining includes some remote sensing products, which would be 
very useful to improve the accuracy in high arctic, where climate stations are sparsely distributed 
[56]. Therefore, Met1km is more suitable for modeling permafrost in Canada. The software toolkit, 
GlobSim [21], is very useful to improve the applications of climate reanalysis data. However, 
reanalysis datasets usually have some biases [21,22]. Re-baselining method is very useful to reduce 
the long-term mean errors (Figure 12). Met1km can be updated to integrate some of the reanalysis 
datasets, such as the version 5 of the European Centre for Medium-Range Weather Forecasts Re-
Analysis (ERA5), if they are deemed better than the ones we used now. 

Our tests show that the re-baselining method is useful for spatial downscaling of meteorological 
data, especially for downscaling coarse gridded datasets. Way and Bonnaventure [54] tested the 
method for monthly air temperature in northeastern Canada. Our assessment suggests that the 
method is useful for precipitation as well when distance between two stations is less than 50 km or 
the resolution of gridded datasets is finer than 0.5° latitude/longitude. The accuracy in 5- to 10-day 
averages are similar to that of the monthly averages. As precipitation is usually more spatially 
variable than other climate variables, the re-baselining method may be useful for other climate 
variables as well. Karger et al. [57] used a similar approach to downscale the 0.5° latitude/longitude 
CRU monthly air temperature and precipitation to about 1-km resolution. A similar approach was 
used in three areas in Canada, where the monthly baseline data were from spatially interpolated 
gridded data (long-term monthly averages) while the daily anomalies were from climate station 
observations [15–17]. Verdin et al. [56] also used a similar method to develop a 5-km resolution daily 
air temperature dataset by combining 5-km resolution monthly maximum air temperature and the 
ERA5 dataset. Verdin et al. [56] demonstrate that remotely sensed temperature estimates may more 
closely represent true conditions than those that rely on interpolation, especially in regions with 
sparse in situ data. 

Our assessments show that the accuracy of Met1km is similar to or better than other gridded 
datasets (Section 4.6). Our analysis indicates that the major source of errors is due to day-to-day 
fluctuations. When averaged over 5–10 days, the error is reduced significantly. Since permafrost is 
not very sensitive to short-term fluctuations in meteorological conditions [43], the effects of short-
term errors on modeled permafrost conditions will be limited. For the period from 1901 to 1944, the 
monthly MAE is about twice of that of 1945–2017. The MAE for daily values is 3–5 times of that of 
1945–2017 because the daily data are estimated using an analogy approach [36]. Therefore, the data 
at the sub-monthly scale is not very reliable for this period. In addition, we used NRCANmet and 
PNWNAmet datasets to replace air temperature and precipitation because they better mimicked 
station observations than the CRU JRA and the Princeton datasets (Section 4.6). However, such 
replacement could cause some inconsistency with other climate variables. 

We assessed the accuracy of Met1km mainly by comparing with station observations. Such 
assessments have some limitations. First, most of the climate station observations may have been 
used to generate the source datasets. Thus, the observations used for validating Met1km are not 
completely independent. Second, climate stations are sparsely distributed in northern Canada. The 
accuracy of the source datasets and thus the generated Met1km dataset can be low in this region due 
to lack of observations. The error is usually larger for precipitation than for air temperatures, 
especially over a short time (1 to 10 days). Although we compared with the gridded dataset 
CANGRD, its spatial resolution (50 km) is coarse. We will continue to update Met1km as new and 
better source datasets are available, especially the periods before the 1940s and for future projections. 
Several studies extended the dataset to the beginning of the 20th century (Table A1), and the 
Twentieth Century Reanalysis project even dated back to middle of the 19th century [58]. These 
datasets may be useful to improve the accuracy of the data before 1944 and even to extend Met1km 
back to the end of the Little Ice Age. 
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6. Conclusions 

This study developed a long-term, 1-km resolution daily meteorological dataset in Canada. The 
dataset includes eight climate variables; therefore, it can be used to drive process-based models for 
high resolution permafrost modeling and mapping. It can also be used for other land-surface 
modeling and climate impact studies in Canada. 

Met1km dataset is generated based on four coarser gridded meteorological datasets for the 
historical period: CRU JRA, PNWNAmet, NRCANmet, and the Princeton dataset. The future climate 
scenarios are from the output of a new Canadian regional climate model under medium-low and 
high emission scenarios (RCP 4.5 and 8.5). These datasets were downscaled to 1-km resolution using 
the re-baselining method based on the WorldClim2 dataset as spatial templates. The future scenarios 
were bias-corrected before re-baselining to 1-km resolution. The accuracy of Met1km is similar to or 
better than those of the coarse gridded source datasets. The errors in long-term averages and average 
seasonal patterns are small. The error mainly occurs in day-to-day fluctuations, which decreases 
quickly when averaged over 5 to 10 days. The error in daily values is large for the period 1901–1944 
because the source dataset CRU JRA is developed using an analogy approach based on monthly 
values. The Met1km, as a data generating system, is relatively small comparing to the total data 
volume of the 1-km daily time series in Canada, flexible to use for generating spatial and time-series 
data for applications, and easy to update when new or improved source datasets are available. The 
methodology of this study can also be used to develop similar datasets for other regions, even the 
global landmass as most of the source data are in global coverage. 
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Appendix A 

Table A1. A list of the gridded historical meteorological datasets covering Canada (Pure model 
reanalysis data are not included except for the datasets that cover the periods before the 1940s). 

Dataset 
Name 

Spatial 
Coverage 

Spatial 
Resolution Time Period Climate 

Variables * 
Methods and 

References 

CANGRD 
Canada 

landmass 
50 km 

1900–2017 
(south) 

1948–2017 
(North) 

Monthly 
anomalies of Tn, 

Tx, Ta, and P. 

Interpolated using 
the adjusted and 

homogenized 
climate station data. 

NRCAN met 
dataset 

North 
America 
landmass 

5 arc 
minutes (~10 

km) 

1901–2013 for 
monthly, 

1950-2013 for 
daily. 

Monthly and 
daily Tn, Tx, Ta, 

and P. 

Interpolated from 
climate station data 

[40,59]. 
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ClimateBC/ 
WNA/NA 

North 
America 
landmass 

2.5 arc 
minutes (~5 
km) or any 

point 

1901–2014, and 
future scenarios 

Monthly Tn, Tx, 
Ta, and P. 

Interpolated from 
climate station data. 
Software packages 

were developed [60]. 

PNWNA met 

North 
western 
North 

America 

3.75 arc 
minutes (~6 

km) 
1945–2012 

Daily Tn, Tx, Ta, 
P, and Wind. 

Interpolated based 
on the adjusted and 

homogenized station 
data [41].  

WFDEI-
GEM-CaPA 

Mackenzie 
River Basin 

0.125°  1979–2100 
3-hourly T, P, 
Pa, SR, LwR, 

SH, and Wind. 

Blended three 
datasets together 

[61]. 

CHIRTS-
daily 

60° S-70° N 
global land 

0.05° (~5 km) 1983–2016 
Daily Tn and 

Tx. 

Combined satellite 
infrared product, 

station observation, 
and ERA5 [56]. 

BEST 
Global land 
and oceans 

0.25° for the 
U.S.A. and 
Europe, 1° 

global 

1701–recent 
(monthly) 1880–

recent (daily)  

Monthly and 
experimental for 

daily Tn, Tx, 
and P. 

Interpolated based 
on 5000–7000 climate 

station data [62]. 

CRU datasets 
Global 

landmass 
0.5° 1901–2014 

Monthly 
Ta, dT, P, WetD, 
Vap, and Cloud. 

Interpolated based 
on climate station 

data [37]. 

CHELSA, 
CHELSA 

cruts 

Global 
landmass 

30 arc s (~1 
km) 

CHELSA: 1979 
to 2013, 

CHELSAcruts: 
1901–2016 

Monthly Tn, Tx 
and P. 

CHELSA: down-
scaled from the ERA 

interim reanalysis 
data. CHELSAcruts: 

downscaled from 
CRU data [57]. 

WorldClim2 
Global 

landmass 
30 arc s (~1 

km) 
Averages in 
1970–2000 

Monthly Tn, Tx, 
Ta, P, SR, Vap, 

and Wind. 

Interpolated based 
on climate station 
data and satellite 

derived covariates 
[29]. 

METEO 1KM 
Global 

landmass 
1 km 2011 Daily Ta. 

Combining climate 
station data, 

topographical and 
satellite images 

[30,31]. 

Terra 
Climate 

Global 
landmass 

2.5 arc m (~4 
km) 

1958–2019 
Monthly Tn, Tx, 
Ta, P, SR, Vap, 

and Wind. 

Combining CRU, 
WorlClim, and JRA-

55 [63].  

Princeton 
dataset 

Global 
landmass 

0.5°(V2) 
0.25°(V3) 

1901–2012 (V2) 
1948–2016 (V3) 

3-hourly, daily, 
monthly Tn, Tx, 
Ta, P, SR, LwR, 
Vap, and Wind.  

Combining 
observation-based 

datasets with a 
climate reanalysis 

dataset [39]. 

CRU JRA 
Global 

landmass 
0.5° 1901–2017 

6-hourly T, P, 
SH, Pa, Wind, 
SR and LwR. 

Combining CRU 
data with JRA-55 

[36]. 

WATCH 
Forcing Data 

(WFD) 

Global 
landmass 

0.5° 1901–2001 
3- or 6-hourly T, 

P, SH, Pa, SR, 
LwR, Wind. 

ERA-40 for 1958–
2001 and re-ordering 
the ERA-40 for 1901–

1957 [64]. 

WFDEI 
Global 

landmass 
0.5° 1979–2016 

3-hourly T, P, 
SH, Pa, SR, 
LwR, Wind. 

Similar to WED but 
using ERA-Interim 

[65]. 
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20th century 
reanalysis 

(20CR) 
Global 2° 1871–2012 

Multiple 
variables (6-
hourly) from 

model 
reanalysis. 

Model reanalysis 
mainly constrained 
by surface pressure 

[57,66]. 

ERA-20C Global 
About 125 

km 
1900–2010 

Multiple 
variables (6-
hourly) from 

model 
reanalysis. 

Model reanalysis 
constrained by 

surface pressure and 
marine wind [67]. 

Daymet 

North 
America, 

Puerto Rico, 
and Hawaii 

1 km 1980–2017 
Daily Tn, Tx, P, 

SR, Vap, and 
Snow. 

Interpolated based 
on climate station 

data [19]. 

GlobSim Global Any location 
Same as the 
reanalysis 
datasets 

Same as the 
reanalysis 
datasets. 

A software toolkit to 
generate time series 

data for any sites 
from several 

reanalysis datasets 
[21]. 

* T is the mean air temperature for a define period (at sub-daily scales). Ta, Tn, and Tx are daily mean, 
minimum and maximum air temperatures, respectively, dT is diurnal air temperature range, P is 
precipitation, Pa is atmospheric pressure, Vap is vapor pressure, SH is specific humidity, WetD is 
wet-days, Cloud is cloud cover, SR is solar radiation, LwR is downward longwave radiation, Snow is 
snow water equivalent. 

Appendix B 

Calculating Monthly Mean Downward Longwave Radiation 

We estimated monthly mean downward longwave radiation corresponding to the time scale 
and spatial resolution of the WorldClim2 dataset (monthly average from 1970 to 2000 at resolution of 
30 arc seconds latitude/longitude) [29]. Based on the assessment of different methods conducted by 
Flerchinger et al. [68], especially the accuracy in cold regions, we estimated downward longwave 
radiation using the method of Kimball et al. [69] with clear-sky downward longwave radiation 
estimated by the method of Dilley and O’Brien [70]. 𝐿 = 𝐿௖௟௥ + 𝜏଼ ∙ 𝑐 ∙ 𝑓 ∙ 𝜎 ∙ 𝑇௖ସ, (A1) 

where 𝐿௖௟௥ = 59.38 + 113.7ሺ𝑇଴ 273.16⁄ ሻ଺ + 96.96ሺ𝑤 25⁄ ሻ଴.ହ, (A2) 𝑤 = 4650 𝑒଴ 𝑇଴⁄ , (A3) 𝜏଼ = 1 − 𝜀଼௭ሺ1.4 − 0.4𝜀଼௭ሻ, (A4) 𝜀଼௭ = 0.24 + 2.98 ∙ 10ି଺𝑒଴ଶ ∙ 𝑒𝑥𝑝ሺ3000 𝑇଴⁄ ሻ, (A5) 𝑓 = −0.6732 + 0.6240 ∙ 10ିଶ ∙ 𝑇௖ − 0.9140 ∙ 10ିହ ∙ 𝑇௖ଶ, (A6) 

where L is all sky downward longwave radiation (in W/m2), Lclr is downward longwave radiation for 
clear sky, c is the fraction of cloud cover, T0 is air temperature observed at about 2 m above the land 
surface (in K), and Tc is the temperature on the base of the cloud (in K), which is assumed 9 K lower 
than the T0. σ is the Stefan-Boltzmann constant (5.67 × 10−8 W/m2/K4), e0 is the vapor pressure observed 
about 2 m above the surface (in kPa). The equations and parameters are from Flerchinger et al. [69]. 
We calculated monthly mean downward longwave radiation for each 1-km grid based on the 
monthly mean air temperature and vapor pressure of the corresponding WorldClim2 grid. As high 
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arctic regions receive very low and even no solar radiation in winter months, we estimated the cloud 
cover fraction based on CRU TS data [37]. 
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