
atmosphere

Article

Sensitivity of Surface Fluxes in the ECMWF Land
Surface Model to the Remotely Sensed Leaf Area
Index and Root Distribution: Evaluation with
Tower Flux Data

David Stevens 1,* , Pedro M. A. Miranda 1 , René Orth 2 , Souhail Boussetta 3,
Gianpaolo Balsamo 3 and Emanuel Dutra 1,4

1 Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
pmmiranda@fc.ul.pt (P.M.A.M.); emanuel.dutra@ipma.pt (E.D.)

2 Department for Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07743 Jena, Germany;
rene.orth@bgc-jena.mpg.de

3 European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, UK;
Souhail.Boussetta@ecmwf.int (S.B.); gianpaolo.balsamo@ecmwf.int (G.B.)

4 Instituto Português do Mar e Atmosfera, IPMA, 1749-077 Lisbon, Portugal
* Correspondence: sdann@fc.ul.pt

Received: 11 November 2020; Accepted: 12 December 2020; Published: 16 December 2020 ����������
�������

Abstract: The surface-atmosphere turbulent exchanges couple the water, energy and carbon budgets
in the Earth system. The biosphere plays an important role in the evaporation process, and vegetation
related parameters such as the leaf area index (LAI), vertical root distribution and stomatal resistance
are poorly constrained due to sparse observations at the spatio-temporal scales at which land surface
models (LSMs) operate. In this study, we use the Carbon Hydrology Tiled European Center for
Medium-Range Weather Forecasts (ECMWF) Scheme for Surface Exchanges over Land (CHTESSEL)
model and investigate the sensitivity of the simulated turbulent fluxes to these vegetation related
parameters. Observed data from 17 FLUXNET towers were used to force and evaluate model
simulations with different vegetation parameter configurations. The replacement of the current
LAI climatology used by CHTESSEL, by a new high-resolution climatology, representative of the
station’s location, has a small impact on the simulated fluxes. Instead, a revision of the root profile
considering a uniform root distribution reduces the underestimation of evaporation during water
stress conditions. Despite the limitations of using only one model and a limited number of stations,
our results highlight the relevance of root distribution in controlling soil moisture stress, which is
likely to be applicable to other LSMs.

Keywords: root distribution; leaf area index; evaporation; land surface model

1. Introduction

The water, energy, and carbon exchanges between the land surface and the atmosphere are key
components of the Earth system. These exchanges are crucial for the understanding of the Earth
system’ response to the increase in greenhouse gas concentration and climate change. The variety and
complexity of the underlying processes driving these exchanges (from boundary layer turbulence to
plant physiology) are challenging both to observe and to model. From a modelling perspective,
these fluxes provide boundary conditions to numerical weather prediction models (NWP) and
earth system models (ESM). The longer time scales of some of the land surface processes [1,2],
when compared with the atmosphere, are crucial for sub-seasonal to seasonal predictability [3–5] and
to represent climate feedbacks [6,7].

Atmosphere 2020, 11, 1362; doi:10.3390/atmos11121362 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
https://orcid.org/0000-0003-4261-4476
https://orcid.org/0000-0002-4288-9456
https://orcid.org/0000-0002-9853-921X
https://orcid.org/0000-0002-1745-3634
https://orcid.org/0000-0002-0643-2643
http://dx.doi.org/10.3390/atmos11121362
http://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/2073-4433/11/12/1362?type=check_update&version=3


Atmosphere 2020, 11, 1362 2 of 19

The turbulent exchanges of latent heat flux (Qle), or evaporation, couples the surface water,
energy and carbon budgets. Evaporation requires available water and energy [8]. Additionally,
a significant part of evaporation is due to plant transpiration [9–11], which is coupled with vegetation
photosynthesis and carbon exchanges, with a key role for soil moisture [12]. From an atmospheric
perspective, the partition of the net surface energy into Qle and sensible heat flux (Qh) modulates
the atmospheric boundary layer evolution with implications ranging from convection and cloud
evolution [13] to the amplification of extremes [14,15]. Vegetation transpiration and carbon uptake for
photosynthesis are mediated by stomatal opening. Therefore, stomatal conductance is an essential
component in the representation of evaporation in land surface models (LSMs). Stomatal conductance
is modulated by environmental factors (e.g., water stress) [16], and the leaf-to-canopy upscaling,
dependent on the vegetation characteristics [17].

In this study, we focus on the impact of the representation of canopy resistance on the Qle and Qh
fluxes in the European Center for Medium-Range Weather Forecasts (ECMWF) land surface model
(LSM) Carbon Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (CHTESSEL) [18,19].
This study is motivated by the results of the Land Surface Model Benchmarking Evaluation Project
(PLUMBER [20]), in which CHTESSEL participated, and by Ukkola et al. [21], which focused on
seasonal-scale evaporative droughts. These studies compared the performance of several LSMs
using atmospheric forcing from several FLUXNET towers. Best et al. [20] benchmarked the LSMs
against simple physically based models and empirical relationships. The striking results showed that
all participating LSMs were outperformed by an out-of-sample linear regression against downward
shortwave radiation for the simulation of sensible heat flux and by a three-variable nonlinear regression
that uses instantaneous atmospheric humidity and temperature in addition to downward shortwave
radiation for the simulation of latent heat flux. Another key finding in PLUMBER was that LSMs had
difficulties in simulating latent heat flux at sites with low annual precipitation, suggesting that this
could be associated with the representation of water stress conditions in the models. The follow-up
study of Ukkola et al. [21] found systematic biases across the LSMs, including CHTESSEL, in the
simulation of energy and water fluxes under water-stressed conditions. Despite these limitations,
Best et al. [20] also found that LSMs performed well, compared with the empirical benchmarks,
when considering metrics for the extremes of the distributions. Therefore, the physical constraints in
the LSMs and their continued development are paramount to simulate conditions outside of training
conditions, as is the case for climate change scenarios [22].

Canopy resistance in CHTESSEL follows an empirical multiplicative formulation describing
the effects of different environmental variables [23], which is a common approach in several LSMs.
Another approach is to couple net photosynthesis with canopy resistance [24]. CHTESSEL also has
a module to compute natural land carbon exchanges, but the carbon exchanges are decoupled from
evaporation due to conflicting results in NWP [25], justifying the focus on Qle and Qh in this study.
In the resistance approach used by CHTESSEL, vegetation characteristics are considered via the use of
the leaf area index (LAI). The environmental factors account for water stress, which is dependent on soil
moisture content varying linearly between unstressed vegetation and the wilting point. In this study,
we address these two components of the canopy resistance formulation in CHTESSEL: (i) vegetation
characteristics and (ii) water stress.

Vegetation characteristics are investigated by testing the use of a high-resolution LAI climatology
based on the Moderate Resolution Imaging Spectroradiometer (MODIS) product. The impact of
a high-resolution albedo climatology is also investigated. The use of this high-resolution data is
motivated by the increased quality and amount of available Earth observations (EO) [26]. Here, we aim
at evaluating the impact of using location specific LAI data when compared with the common LAI data
that have been spatially aggregated to a coarse grid for NWP applications. The water stress representation
is investigated by testing a uniform root distribution with an associated maximum rooting depth. This is
compared with the current formulation in CHTESSEL that assumes an exponential root distribution [27].
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The root distribution defines the maximum amount of water that is reachable by the plants, modulating
the response of transpiration to moisture stress [12,28].

As in Best et al. [20], observed data from 17 stations of the FLUXNET global network of
micrometeorological flux measurements are used to carry out offline simulations with CHTESSEL and
evaluate sensible and latent heat fluxes, with particular emphasis on the representation of evaporation
and its relation with water stressed conditions. The main objective of the study is to evaluate the
representation of canopy resistance by testing (i) the added value of the high-resolution LAI and albedo
to represent local station conditions and (ii) the impact of root distribution on soil moisture stress.
The data and methods are described in the next section, followed by the presentation of the results.
The results are discussed in Section 4 followed by the main conclusion of this study in Section 5.

2. Data and Methods

2.1. Data

2.1.1. Tower Flux Data

Observed data from 20 FLUXNET towers were initially considered in this study as in Best et al. [20].
These stations are widely used since they present a variety of vegetation types and climates [20,29,30].
The Spanish stations of ElSaler and ElSaler2 were removed due to the presence of large water bodies
nearby and irrigated agricultural fields. The Canadian station of Merbleue was also problematic and
thus removed since this tower is in the middle of a wetland, which is difficult to correctly model.
This corroborates Haverd et al. [31], who also removed these three stations from their study, resulting
in the 17 stations described in Table 1. The data include gap-filled half-hourly driving data for the LSM
(air temperature and humidity, surface pressure, wind speed, precipitation and downward solar and
thermal radiation) and surface sensible and latent heat flux used for model evaluation.

Table 1. FLUXNET tower flux stations used in this study.

Station Country Latitude Longitude Plant Functional Type Time Period

Amplero Italy 41.9041 13.6052 Grassland 2003–2006
Blodgett U.S. 38.8953 −120.633 Evergreen needleleaf 2000–2006
Bugac Hungary 46.6917 19.6017 Grassland 2002–2006
Espirra Portugal 38.6394 −8.6018 Evergreen broadleaf 2001–2006
Fort Peck U.S. 48.3077 −105.102 Grassland 2000–2006
Harvard U.S. 42.5378 −72.1715 Deciduous broadleaf 1994–2001
Hesse France 48.6742 7.0656 Deciduous broadleaf 1999–2006
Howard Australia −12.4943 131.152 Woody savannah 2002–2005
Howlandm U.S. 45.2041 −68.7402 Evergreen needleleaf 1996–2004
Hyytiala Finland 61.8474 24.2948 Evergreen needleleaf 2001–2004
Kruger South Africa −25.0197 31.4969 Savannah 2002–2003
Loobos The Netherlands 52.1679 5.744 Evergreen needleleaf 1997–2006
Mopane Botswana −19.9165 23.5603 Woody savannah 1999–2001
Palang Indonesia −2.345 114.036 Evergreen broadleaf 2002–2003
Sylvania U.S. 46.242 −89.3477 Mixed forest 2002–2005
Tumbarumba Australia −35.6557 148.152 Evergreen broadleaf 2002–2005
University of Michigan U.S. 45.5598 −84.7138 Deciduous broadleaf 1999–2003

2.1.2. Satellite Albedo and Leaf Area Index

In this study, we use the combined Moderate Resolution Imaging Spectroradiometer (MODIS)
LAI and fraction of photosynthetically active radiation (FPAR) product (MCD15A3H.006). This is a
4 day composite dataset with a spatial resolution of 500 m available since July 2002 to the present.
This MODIS product has been validated in different studies [32,33] reporting uncertainties in the order
of 1 m2/m2. In addition to the MODIS LAI product, the Copernicus Global Land Service (CGLS)
LAI was also used in this study. The product was obtained from SPOT-VGT and PROBA-V satellite
observations with 1 km resolution using a neural network algorithm [34] and has been available since
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1999. A comparison between MODIS and CGLS (a new version with a 300 m resolution) LAI products
with ground based observations over North America reported root mean squared differences of 0.57
for the CGLS product and 0.81 to 0.89 for MODIS [35].

In addition to the LAI product, we also use the Combined MODIS bidirectional reflectance
distribution function (BRDF) and Albedo products (MCD43A4.006) [36]. This product has been
available since February 2000 with a 500 m resolution. Wang et al. [37] reported root mean squared
errors ranging between 0.02 for forest regions and 0.03 for agricultural/grassland regions.

In this study, we apply the most restrictive quality control (QC) criteria in order to select only the
best quality data. In the case of the albedo product, the model requires snow-free albedo. Therefore,
the MODIS snow products (MOD10A1.006 and MYD10A1.006) were used to mask the albedo data
when snow was present. A less restrictive quality filtering was applied for LAI [32], and good
quality data were also selected (QC < 64—highest and good quality). A similar quality control data
filtering was also applied to the CGLS data (only QC = 0 (land pixel clear observations) or QC = 512
(high latitude (lat) > 55◦ and solar zenith angle > 70)).

MODIS LAI and albedo, as well as the CGLS LAI were extracted for the 17 FLUXNET stations
(see Table 1) by averaging the data of the central pixel with the four other pixels in the direct vicinity.
Monthly means were first computed and the monthly climatology computed excluding months with
more than 50% of missing data, for the full available period until 2018 (since 1999 for the CGLS LAI,
since 2003 for the MODIS LAI and since 2000 for the MODIS albedo).

The quality based data screening was too restrictive for the northern latitude stations, especially
during the winter when satellite products are subjected to cloud contamination. In Hyytiala,
Loobos and Palang, the MODIS albedo product has a large amount of cloud contamination, and not
enough data are available to calculate the monthly climatology. The quality control data filtering
was therefore relaxed and changed not only to the best quality data, but also to good quality data
(QC <= 1). After this processing, Hyytiala presented high albedo values in January, associated with
snow contamination. January’s albedo was replaced by a linear interpolation between December and
February. This shows the difficulty in generating snow-free albedo data [38], particularly in regions
and during seasons that are predominantly snow (and cloud) covered. However, this is not expected
to influence the model simulations as during January, the surface albedo has a small impact due to the
reduced amount of available solar radiation in Hyytiala.

2.2. CHTESSEL Model

CHTESSEL is the land surface scheme of the ECMWF model [18,25]. In CHTESSEL, each grid-box
is divided into up to 6 land fractions representing vegetation, soil, snow and interception. Surface fluxes
are calculated separately for the different subgrid surface fraction (or “tile”), leading to a separate
solution of the surface energy balance and skin temperature for each of these tiles, which are then
aggregated in each grid-box. In each grid-box, two vegetation types can coexist (high and low
vegetation) controlled by four parameters: dominant high and low vegetation type and the area
fraction for the high and low vegetation. Each vegetation type is characterized by a series of fixed
parameters: (i) minimum canopy resistance rsmin, (ii) vegetation coverage density Cveg, (iii) coefficient
GD, for the dependence of the canopy resistance on water vapour pressure deficit, and (iv) the root
distribution over the soil layers, specified by an exponential profile modulated by the coefficients ar

and br. The numerical values for the parameters (see Table S1 in the Supplementary Material) are
based on the literature [27,39–44] and on expert decisions in the context of the performance of the
model in NWP. For example, the introduction of a seasonally variable LAI was accompanied with a
revision of the minimum canopy resistance [25]. A detailed description of CHTESSEL can be found in
the Integrated Forecasting System (IFS) documentation [45] and here, the details of the evaporation
calculation are presented due to its relevance in the results’ interpretation and discussion.
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For high and low vegetation, the turbulent flux of water is given by:

E =
ρa

ra + rc
(qL − qsat(Tsk)), ra = (|UL|CH)

−1 (1)

where ρa is the air density, UL and qL are the wind speed and humidity at the lowest atmospheric
model level, qsat(Tsk) the saturation humidity at skin temperature (Tsk) and CH the turbulent exchange
coefficient (depending on the atmospheric stability). In addition to the aerodynamic resistance (ra),
the canopy resistance (rc) [23] is calculated as:

rc =
rsmin
LAI

× f1(Rs)× f2(θ)× f3(Da) (2)

where rsmin is the minimum stomatal resistance (see Table S1), f1 is a function of downward short-wave
radiation (Rs), f3 a function of the atmospheric water vapour deficit (Da) and f2 the soil moisture
resistance given by:

1/ f2(θ) =


0 θ < θpwp

(θ − θpwp)/(θcap − θpwp) θpwp ≤ θ ≤ θcap

1 θ > θcap

(3)

where θpwp and θcap are the soil moisture at the permanent wilting point and at field capacity,
respectively, and θ is a weighted average of the unfrozen soil water computed using the fraction
of roots in each layer (Rk) [27] using the ar and br coefficients (in Table S1):

Rk = 0.5 [exp (−arzk−1/2) + exp (−brzk−1/2)− exp (−arzk+1/2)− exp (−brzk+1/2)] (4)

where zk+1/2 is the depth of the bottom layer k in m and z1/2 is = 0. In CHTESSEL, the soil is
discretized into four layers with thicknesses of 0.07, 0.21, 0.72 and 1.89 m, with lower bounds at 0.07,
0.28, 1 and 2.89 m.

In CHTESSEL, the state of vegetation is given by the LAI, entering the canopy resistance
calculation normalizing rsmin (Equation (2)). In the current operational NWP configuration, a satellite
observation based climatology is considered for the representation of LAI. It is based on Collection 5
of MODIS (product MOD15A2). The climatology was derived from 9 years of data (2000 to 2008) and
rescaled to a previous LAI static field used at ECMWF before 2012 [19].

2.3. Simulation Setup

Offline point simulations were performed using CHTESSEL driven by the meteorological data
observed at the towers. The model is initialized with soil moisture at field capacity and runs once for
the full length of the available forcing period for each station. The state at the end of the simulation
is then used to provide initial conditions to start the main simulation. For most sites, this procedure
guarantees enough time for spin-up, in particular for the deeper soil moisture. The exceptions are
Palang and Kruger with only two years. In both cases, the top meter soil moisture in the two years of
simulation does not show a significant drift. In Palang, there is an increase of the deep soil moisture
during the simulation (see Figure S1 in the Supplementary Material), but still within the inter-annual
variability. At each site, only one dominant high or low vegetation type is allowed, defined according to
the plant functional type (PFT). Howard, Kruger and Mopane stations report PFTs that are not available
in CHTESSEL (woody savannah and savannah). These stations were set as tall grass vegetation type
(see Table 2), as this is the closest vegetation type in the vicinity of the stations in the global land cover
dataset used by the model.
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Table 2. Control (CTR) rsmin and optimal rsmin and RDMAX used in MLAI_RSMINand MLAI_ROOT,
respectively (L defines low and H high vegetation types).

Station Vegetation Type rsmin CTR rsmin Optimal RDMAX Optimal

Amplero L, short grass 100 100 2
Bugac L, short grass 100 175 0.5
Fort Peck L, short grass 100 25 0.5
Howard L, tall grass 175 125 2
Kruger L, tall grass 100 300 2
Mopane L, tall grass 175 300 1
Blodgett H, Evergreen needleleaf 250 150 3
Espirra H, evergreen broadleaf 240 75 3
Harvard H, deciduous broadleaf 175 250 1
Hesse H, deciduous broadleaf 175 175 2
Howlandm H, evergreen needleleaf 250 275 0.5
Hyytiala H, evergreen needleleaf 250 225 0.5
Loobos H, evergreen needleleaf 250 150 2
Palang H, evergreen broadleaf 240 275 2
Sylvania H, interrupted forest 175 400 3
Tumbarumba H, evergreen broadleaf 240 225 2
University of Michigan H, deciduous broadleaf 175 400 3

Several model configurations were tested and are resumed in Table 3. These configurations aim at
investigating the role of (i) high-resolution remote sensing LAI and albedo and (ii) model formulation
and parameters. The first configuration, labelled as “CTR” for control, used CHTESSEL original input
data with the ECMWF Integrated Forecasting System (IFS). The monthly climatologies of snow-free
albedo and LAI were extracted from the nearest grid-point of operational NWP fields with a 9 km
resolution. This model configuration serves as a reference against which other model configurations
will be compared and was the same as used in [20]. The second experiment, labelled as “MALB ”,
uses the MODIS extracted high-resolution albedo monthly climatology over the stations. The third
configuration, labelled as “MLAI” uses the MODIS extracted high-resolution LAI monthly climatology
over the station. In both cases, the albedo and LAI data represent the nearest five MODIS pixels from
the station (as described in Section 2.1.2).

Table 3. Model simulations acronyms and detailed configuration. CHTESSEL.

Simulation Details

CTR Control simulation with default CHTESSEL parameters
and input LAI and Albedo

MALB Same as CTR, but replacing the input albedo climatology
with the new high-resolution MODIS climatology

MLAI Same as CTR, but replacing the input LAI climatology
with the new high-resolution MODIS climatology

MLAI_NOSMS Same as MLAI, but removing the soil moisture stress function from the canopy resistance
(setting f2 = 1) when the soil moisture is above the wilting point in Equation (3)

MLAI_RSMIN Same as MLAI, but selecting the optimal rsmin for each station from a set of
simulations with varying rsmin between 25 and 500.

MLAI_ROOT Same as MLAI, but using a uniform root distribution (Equation (5)) and selecting the optimal
RDMAX for each station from a set of simulations with RDMAX of 0.5, 1, 2, and 3 m.

Two additional model configurations were tested to investigate the role of rsmin and root
distribution, both using the MODIS LAI high-resolution data. For rsmin, a set of simulations varying
rsmin between 25 and 500 with a step of 25 was performed for each site. For the root distribution,
a uniform root distribution was adopted up to a maximum rooting depth (RDMAX m) by changing the
computation of the root fraction in each layer in Equation (4) to:
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Rk =
max

[
0, min

(
RDMAX,zk+1/2

)
− zk−1/2

]
RDMAX

(5)

In this configuration, four maximum rooting depths were tested: 0.5, 1, 2 and 3 m. The CTR root
distribution for each vegetation type and for the tested uniform rooting depths are given in Table S1
(in Supplementary Material). The root density distribution and root depth are poorly constrained at
large spatial scales as they vary between individual species and climate factors [46–48]. Therefore,
in this study, a uniform distribution is a simple and straightforward first-order assumption.

An optimal model simulation for each site was then selected and labelled MLAI_RSMINfor the
optimal simulations with varying rsmin and MLAI_ROOT for the optimal simulations with varying
the maximum rooting depth RDMAX. The selection of the optimal configuration is described in the
following section. Finally, an idealized experiment removing the soil moisture stress function from
the canopy resistance (MLAI_NOSMS, setting f2 = 1 in Equation (2) when soil moisture is above the
wilting point) was performed. This idealized experiment provides an estimate of evaporation in a
situation of soil moisture at field capacity.

2.4. Evaluation

The simulated Qle and Qh are compared with the tower measurements using 4 metrics (i) the mean
bias error (MBE), standard deviation difference (SD), correlation coefficient r , and normalized mean
error (NME). The SD is computed as the absolute difference between 1.0 and the ratio between the
simulated and observed standard deviation. The NME is the mean absolute error normalized by
the mean absolute observed deviations from the mean. These metrics follow Best et al. [20] and are
detailed in Appendix A. The calculations were performed on daily simulated and measured fluxes.

For the selection of the optimal simulations with varying rsmin or maximum rooting depth,
a ranking approach considering the four metrics for both Qh and Qle was considered. For each metric
and flux, each simulation was ranked in ascending order from 1 to 20 in the case of rsmin and 1 to 4 in
the case of RDMAX . This resulted in rankings that were then added, and the simulation with the lowest
rank was selected as the optimal simulation. This process was performed independently for each site
and assumed that the metrics for Qle and Qh were of equal weight, and it did not distinguish between
larger or smaller differences between metrics in the ranking. The use of the rankings of each metric
without considering the actual metric value or the differences between simulations is a limitation as
simulations ranked differently can be actually very close. This approach can be interpreted as a simple
optimization strategy to select the optimal rsmin or RDMAX for each site. However, it is not intended
to be a proper model calibration as it is site specific and considers the entire set of observations.
The search for the optimal simulations at each site by changing rsmin or RDMAX was designed to
provide an estimate of the upper bound on the best achievable performance of the model. It is a
benchmark to determine if the model could be improved just by changing the particular parameter.
The reduced number of stations (only 17) and sampling of vegetation types imposed limitations in
performing a proper out-of-sample calibration to provide estimates of rsmin and RDMAX for each of the
vegetation types.

3. Results

3.1. Comparison of LAI and Albedo

In this section, we compare the LAI and high-resolution albedo (station) with the original CHTESSEL
input data. The high-resolution MODIS data for each tower are compared with the original CHTESSEL
input data in terms of the mean and root mean squared differences (RMSD), which are computed
for the mean annual cycle. The MODIS albedo is very close to CTR in all stations (see Table 4) with
most of the stations with RMSD around 0.03. There are two exceptions, Fort Peck and Loobos with an
RMSD of 0.07 mostly due to lower values in ALB when compared with CTR during winter, which are
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associated with snow contamination. Despite the importance of albedo in the surface energy balance,
these results suggest that for these 17 stations, we should expect a small impact on the CHTESSEL
simulation due to the update of the CTR albedo by the high-resolution MODIS albedo.

Table 4. Comparison between the CTR and MODIS ALB (MALB) for each tower. The root mean
squared difference is computed for the mean annual cycle.

Station Mean
CTR

Mean
MALB

RMSD
MALB vs. CTR

Amplero 0.16 0.15 0.03
Blodgett 0.13 0.1 0.02
Bugac 0.18 0.16 0.03
Espirra 0.16 0.14 0.02
Fort Peck 0.25 0.18 0.07
Harvard 0.11 0.13 0.03
Hesse 0.13 0.15 0.03
Howard 0.15 0.13 0.02
Howlandm 0.11 0.12 0.01
Hyytiala 0.12 0.11 0.02
Kruger 0.17 0.16 0.03
Loobos 0.17 0.11 0.07
Mopane 0.16 0.17 0.01
Palang 0.14 0.13 0.01
Sylvania 0.11 0.13 0.04
Tumbarumba 0.16 0.12 0.04
University of Michigan 0.11 0.13 0.03
Median 0.15 0.13 0.03

The comparison of CTR and MLAI in Table 5 depicts comparatively large differences in several
stations with the RMSD above one in Bugac, Hesse, Howland and Palang. The time series of the
climatological LAI of CTR, MODIS and CGLS are shown for all stations in the Supplementary
Material (Figures S1–S17). The large differences in the climatology are mostly in the seasonal cycle
amplitude, with MLAI presenting a more pronounced seasonal phenology. These results show some
uncertainty in mapping LAI between the different earth observation products. Despite the differences
between MODIS and CGLS, our results show a larger discrepancy between the products and the CTR
climatology used in CHTESSEL with a median RMSD of 0.86 between CTR and MLAI when compared
with a median RMDS of 0.43 between MODIS and CGLS LAI. While the CTR LAI is also based on
MODIS data, it was derived from a shorter time period (2000–2008) and was rescaled to match a
previous LAI field used at ECMWF [19]. These LAI differences, both in the mean and in the annual
cycle, are expected to impact the model simulations, which are investigated in the following section.

3.2. Fluxes Evaluation

The use of the high-resolution MODIS albedo had a negligible impact on model performance
(not shown). This was expected due to the similarity between the albedo climatologies. Therefore,
the MALB simulations are not shown nor further explored in this study. Figure 1 shows the distribution
of the different metrics for Qh and Qle comparing the CTR and MLAI simulations (among other model
configurations to be discussed in the next section). In the MLAI simulation, the Qle MBE is reduced
from a median value of –3.02 W/m2 in CTR to –2.19. Similarly, the Qh MBE is reduced from 12.08 W/m2

in CTR to 8.48 W/m2 in MLAI. The standard deviation ratio (SD) is also improved with a reduction
from 0.26 and 0.17 for Qle and Qh, respectively, in CTR to 0.19 and 0.14 in MLAI. This improved
variability is also seen in the temporal correlation with an increase from 0.79 to 0.83 in the Qle from
CTR to MLAI and from 0.77 to 0.80 in Qh. Finally, the normalized mean error (NME) has a slight
reduction in Qh from 0.78 in CTR to 0.75 in MLAI and slightly increases for Qle (0.62 in CTR and 0.64
in MLAI). We note that the statistical significance of the changes in the model performance were not
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assessed because of the small sample size. Despite the small sample, only 17 stations, these results
suggest a modest, but positive impact of replacing CTR LAI by the high-resolution MODIS data for
the station.

Table 5. Comparison between CTR and MODIS LAI (MLAI) for each tower. The root mean squared
difference is computed for the mean annual cycle. CGLS, Copernicus Global Land Service.

Station Mean
CTR

Mean
MLAI

Mean
CGLS

RMSD MLAI
vs. CTR

RMSD MODIS
vs. CGLS

Amplero 2.43 1.7 1.51 0.9 0.29
Blodgett 3.08 2.28 2.98 0.87 0.47
Bugac 1.93 0.92 1.04 1.04 0.17
Espirra 2.38 1.42 1.13 0.97 0.20
Fort Peck 0.89 0.35 0.34 0.54 0.08
Harvard 3.14 2.45 2.78 0.75 0.58
Hesse 2.35 2.66 2.27 1.65 0.52
Howard 1.76 1.55 1.58 0.28 0.47
Howlandm 3.08 2.40 2.83 1.04 0.82
Hyytiala 2.12 1.69 1.73 0.50 0.51
Kruger 1.76 0.98 0.93 0.80 0.16
Loobos 2.21 1.87 1.87 0.53 0.43
Mopane 1.59 0.87 0.65 0.73 0.25
Palang 5.59 4.42 4.01 1.20 0.40
Sylvania 2.63 1.73 2.24 0.91 0.62
Tumbarumba 3.60 4.31 3.09 0.83 0.72
University of Michigan 2.42 2.11 1.76 0.86 0.25
Median 2.38 1.73 1.76 0.86 0.43

It was not possible to identify a systematic improvement in model performance associated with
the use of the high-resolution LAI dataset. Each station reacts differently, depending on the time period
considered. Some stations in some years benefit from the MODIS product, while other stations or time
periods show a deterioration of model performance. Moreover, the impacts of the high-resolution
LAI dataset on model performance could not be generalized or classified by plant functional type
(PFT) as stations within the same PFT do not react similarly to LAI changes. Stations with a good
performance in CTR (Fort Peck, Harvard, Howard, Howlandm, Hyytiala, Loobos, University of
Michigan) are not impacted by the LAI changes. Additionally, the large differences between the CTR
and LAI climatologies are not reflected in the changes in model performance in some stations like
Hesse or Howlandm. However, some stations suffering from poorer performances in CTR benefit
from MLAI as for example Bugac, Espirra, Palang, Sylvania and Tumba. Considering the four metrics
used to characterise model performance, the temporal correlation benefits the most from the use of the
high-resolution LAI since this product has a larger inter-seasonal variability than CTR.

LAI enters the canopy resistance formulation normalizing the minimum stomatal resistance
(rsmin in Equation (2)). It is therefore expected that changes in the LAI climatology would benefit
from an adjustment of the rsmin parameter. Such an adjustment could be achieved by constraining
rsmin so that the ratio rsmin/LAI would stay unchanged for each PFT. However, due to the small
sample of stations for each PFT, such an approach is not feasible. A set of simulations with varying
rsmin was performed to select an optimal rsmin with the best model performance for each station,
as described in Section 2.4. The optimal rsmin for each site is presented in Table 2. The simulations
with the optimal rsmin (MLAI_RSMIN) have a negligible impact on model performance (see Figure 1,
comparing MLAI and MLAI_RSMIN). The only noteworthy impact is a clear reduction of the SD for
Qle (see Figures 1 and S2), with the remaining performance metrics unchanged when compared with
MLAI. These results show that rsmin acts primarily on the seasonal amplitude of Qle, explaining the
large impact on SD, but neutral in the remaining performance metrics for Qle and Qh. In particular,
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the neutral impact on Qh SD highlights that the improved seasonal variability in Qle does not
necessarily lead to an improved Qh seasonality.
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Figure 1. Latent (a–d, top panels) and sensible (e–h, bottom panels) heat flux evaluation in terms
of mean bias error (MBE), SD, normalized mean error (NME) and r for CTR, LAI, LAI_RSMIN and
LAI_ROOT. The boxplots represent each metric’s distribution for the 17 towers showing the percentiles
of 25, 50 and 75. Symbols denote outliers for values greater than 1.5 times the interquartile range from
the nearest 25th or 75th percentile.

There are three sites with a large increase of rsmin from CTR to MLAI_RSMIN: Kruger (100 to 300),
Mopane (175 to 300) and Sylvania (175 to 400). In all three cases, the mean LAI decreases from CTR to
MLAI (see Table 2). This suggests that an adjustment that would keep the ratio rsmin/LAI unchanged
with changes in LAI would not be optimal or an indication that the default rsmin parameters are not
optimal. At these three stations, the increased rsmin results in a reduction of evaporation, as expected,
which is clearly seen in Sylvania (see Figure S3). However, the Qle reduction in Sylvania is associated
with an unusually large rsmin of 400 sm−1, suggesting that this might be compensating missing
processes in the model and/or errors in the driving/observations data (Ukkola et al. [21] reported
that Sylvania was excluded from their study due to precipitation problems). There are three sites
with a large decrease of rsmin: Fort Peck (100 to 25), Blodgett (250 to 150) and Espirra (240 to 75).
At these stations, there is also a reduction of the LAI from CTR to MLAI. From these three stations,
Espirra stands out with the largest reduction of rsmin, resulting in an increase of Qle and a decrease
of Qh, particularly during spring (see Figure S4). We note that Qle in Espirra was underestimated in
CTR and was further reduced in MLAI due to the reduction of the LAI (mean LAI changed from 2.38
in CTR to 1.42 in MLAI). The optimal rsmin change from 240 to 75 acts to reduce the rsmin/LAI ratio
from 100 sm−1 to 52 sm−1. We also note that the other two evergreen broadleaf tree stations, Palang
and Tumba, have a mean LAI of about 4.4 m2/m2 with an rsmin/LAI ratio of 54 sm−1. These results
suggest that the high-resolution MODIS LAI extracted for Espirra station underestimates the station
vegetation LAI [49].
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The metric distributions in Figure 1 show some dispersion, associated with the occurrence of
a few outliers. The detailed results for each station and score are presented in the Supplementary
Material, in Figures S18–S25. It is possible to identify five stations with recurrent problematic results
for Qh/Qle in different metrics: Blodgett, Espirra, Mopane, Palang and Kruger. In Kruger, CHTESSEL
overestimates substantially the Qle after rainfall events, followed by an underestimation of the Qle
and an overestimation of the Qh (see Figure S5). Kruger is a very dry station with soil moisture
below the wilting point, and the peak evaporation following rainfall events is mainly driven by bare
soil evaporation. The remaining four stations, Blodget, Espirra, Mopane and Palang, share a similar
problem of an early evaporative reduction associated with dry soil moisture conditions resulting in the
overestimation of Qh. Although not seen clearly in the evaluation metrics, Amplero and Tumba also
show similar Qle temporal error patterns. This early evaporation reduction, or evaporative droughts,
as proposed by Ukkola et al. [21], is further investigated in the following section.

3.3. Soil Moisture Stress

Ukkola et al. [21] identified a systematic overestimation of evaporative droughts in several
LSMs, including CHTESSEL, which is consistent with the results in this study mainly in Amplero,
Blodget, Espirra, Howard, Mopane, Palang and Tumba. In this study, evaporative drought refers
to the regular dry season evaporation reduction, as well as anomalous dry periods as defined by
Ukkola et al. [21]. Figure 2 shows the time series of Qle and soil moisture for Amplero, Blodgett
and Espirra (time series for all stations are provided in the Supplementary Material). In these three
examples, it is possible to identify the early reduction of evaporation associated with the drop of soil
moisture (Figure 2: compare Qle reduction in blue with top soil moisture reduction in red). At these
stations, the evaporation starts to diverge from the observations when soil moisture in the top meter
(where most of the roots are present in CTR; Table S1) falls below field capacity and approaches
the wilting point. During this period, the deep layer soil moisture (dashed red line in Figure 2) is
above or close to field capacity. This is further illustrated by comparing the MLAI Qle simulations
with LAI_NOSMS in Figure 2 (blue vs. dashed-blue line). These idealized simulations, without soil
moisture stress, differ from MLAI exactly during the dry-down period, being closer to the observed
Qle. The LAI_NOSMS simulations present some unrealistic Qle variations (see for example 2003 in
Amplero in Figure 2) associated with the drop of soil moisture below the wilting point that stops
evaporation to avoid water conservation problems that could result in numerical instabilities. Despite
this limitation, the LAI_NOSMS simulations suggest that the evaporative drought in CHTESSEL is
tightly associated with the soil moisture stress formulation. The discrepancy between soil moisture
conditions in the top meter versus the bottom layer during the dry-down and associated evaporative
drought (Figure 2) motivated the exploratory revision of the root distribution.

The root distribution with the uniform formulation (Equation (5)) for the different maximum
rooting depths (0.5, 1, 2 and 3 m) is presented in Table S1, allowing the comparison with the CTR
root fraction for each layer and vegetation type. The main changes of the uniform rooting depth
are a decrease of the roots fraction in the top layer(s) and an increase of root fraction in the deeper
layers. This will give more weight to the deeper layers when computing the root zone soil moisture.
The optimal maximum rooting depth for each station (see Section 2.4) in MLAI_ROOT is shown
in Table 2.

Of the three short grass stations, Bugac and Fort Peck show an optimal RDMAX of 0.5 m with
negligible differences for MLAI, while Amplero shows a RDMAX of 2 m with an increase of the Qle in
late spring and summer. The increased Qle in Amplero in August/September 2005 (Figure 3) partially
reduces the evaporative drought in MLAI, but results is an overestimation of the Qle in June/July.
A closer investigation of the full time series of simulated fluxes and the high-resolution MODIS LAI
(Figure S6) identifies an LAI drop during the 2005 summer, which cannot be represented when using
a climatology. A similar behaviour is also seen in the 2004 summer. Despite the reduction of the
evaporative drought in late summer in Amplero with the uniform root distribution, other factors
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influence the inter-annual and inter-seasonal variability of the Qle and Qh, which are not captured
by CHTESSEL, as well as observational errors and scale mismatches. Inter-annual variability is also
seen in Howard with a negligible impact of the uniform root distribution in 2005, but with a positive
impact in 2002, 2003 and 2004 (see Figure 3 for 2004 and Figure S7 for the full time series). Mopane
also displays evaporative drought events, but with very dry soil moisture conditions (see Figure S8),
the impact of the uniform root distribution is negligible.

x 10

x 10

x 10

Figure 2. Latent heat flux (Qle) and soil moisture in Amplero (a), Blodgett (b) and Espirra (c).
For the Qle (left axis), the observations are in grey and the simulations from MLAI in blue and
from MLAI_NOSM in orange. The soil moisture (right axis) for MLAI simulation is shown for the top
3 layers (red solid) and deep layers (red dashed). The light dotted red and blue lines represent soil
moisture at field capacity and the wilting point, respectively.

In the forest sites, all RDMAX are between 2 and 3 m, with the exception of Harvard with 1 m and
Howland and Hyytiala with 0.5 m. These three forest sites, plus Loobos and University of Michigan,
are among the best performing in CTR and MLAI. The impact of the uniform root distribution is small
since all five sites have abundant precipitation and soil moisture conditions that are close to field
capacity. Hesse station is the only case of a consistent deterioration of Qle with the uniform rooting
depth and RDMAX of 2 m, mainly due to a considerable overestimation, contrasting with a reduction of
the Qh bias. This mixed effect in the Qh and Qle justifies the use of several metrics and joint Qh and Qle
in the model evaluation. Other processes and/or driving/observation limitations are likely responsible
for the errors. The remaining four forest sites Blodget, Espirra, Palang and Tumba (see Figure 3)
all display excessive evaporative drought associated with soil moisture dry-down. At these sites,
the experimental formulation of uniform rooting depth with the optimal RDMAX partially reduces the
excessive evaporative drought. The largest impact is seen in Palang and Blodgett, which are among
the sites with the worst Qle and Qh correlations. From these sites shown in Figure 3, the uniform root



Atmosphere 2020, 11, 1362 13 of 19

distribution has the largest impact on Qle, while rsmin and MLAI changes only show minor differences
for CTR in Espirra.
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Figure 3. Simulated and observed latent heat flux during one example year with a 14 day running
mean smoothing. Observations are in grey, CTR in black, MLAI in blue, MLAI_ROOT in green and
MLAI_RSMIN in red.

4. Discussion

The systematic underestimation of the Qle and overestimation of the Qh for CTR (see Figure 1)
is opposite the findings of Martens et al. (2020) [50], who compared ERA5 data against observations
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from 143 FLUXNET sites. Similar biases in CHTESSEL considering a subset of 51 FLUXNET stations
were also found [51]. The differences of these studies compared to our results are likely associated
with the different sampling of stations. It is also worth noting that the energy budget closure of eddy
covariance sites can induce systematic errors [52,53]. Therefore, the interpretation of the systematic
biases in the simulated Qle and Qh must be cautious. In this study, the use of several evaluation
metrics that account for both mean biases and variability, with equal weights, partially mitigates the
problems that could arise from systematic observation errors.

Despite the availability of long-term EO records of LAI, in this study, we considered only the
high-resolution LAI climatology. This was driven by two reasons: (i) several stations encompass
periods before the EO record were available (before 1999 in the case of CGLS or 2002 in the case
of MODIS), and (ii) we considered that the first step was to evaluate the impact of the high-resolution
station location conditions, neglecting inter-annual variability. However, our results suggest that the
lack of inter-annual variability in the vegetation state might be responsible for some of the model
problems. Amplero station is an example where we observed some relation between the time-varying
high-resolution LAI (see Figure S6, bottom panel, dotted blue line) and the Qle inter-annual variability.
There is robust evidence of the added value of assimilating LAI in land-surface models, enhancing
their capabilities to monitor vegetation phenology and fluxes [54–57]. This is particularly relevant in
models that have a prognostic evolution of vegetation phenology.

The soil moisture resistance, or water stress factor, in CHTESSEL has two components:
(i) the derivation of the root zone soil moisture content (using an exponential root distribution)
and (ii) a linear transformation between field capacity (unstressed vegetation) and the wilting point. In this
study, we focused only on the derivation of the root zone soil moisture content, testing a new uniform
root distribution and the associated maximum rooting depth. There are different approaches to relate
root zone soil moisture and the water stress factor, such as curvilinear relationships or the use of soil
matric potential [58,59]. Such approaches, combined with the rooting depth distribution, are likely to
further enhance the model capability to represent root water uptake. Moreover, Liu et al. [12] reported
that a dynamical rooting depth evolution improved the performance of the Noah-MP-Crop model
under drought-like situations. Additionally, vapour pressure deficit and stem xylem conductance are
also known to influence stomatal regulation [60,61], but were not considered in this study. The presence
of a shallow water table could also influence latent heat flux during drought periods [62]. The water
table is not represented in CHTESSEL, and we are not aware of such effects at the 17 sites considered.

Finally, the metrics distribution for MLAI_ROOT (in Figure 1) showed more potential to reduce
the Qle and Qh bias and NME and increase the correlation than the calibration of rsmin alone. This is
achieved by partially addressing the excessive evaporative drought at Blodget, Espirra, Palang and
Tumba stations. A joint optimization of both rsmin and maximum rooting depth is likely to further
improve the model simulations. However, it was not the aim of this study to optimize/calibrate
CHTESSEL for these stations, but to investigate in the current model formulation which aspects
require further attention. The use of the subset of FLUXNET stations to evaluate land surface models’
performance is a common practice [20,21,31,63,64].

5. Conclusions

This study focused on the impact of the representation of canopy resistance on the simulations
of latent and sensible heat fluxes by the CHTESSEL model. Observed data from 17 FLUXNET
towers were used to carry out offline simulations with a particular emphasis on the representation of
evaporation and its relationship with water stress conditions. Three constraints of canopy resistance
were evaluated: (i) the role of vegetation characteristics via the use of high spatial resolution LAI
representing local station conditions; (ii) the impact of the minimum canopy resistance; and (iii) the
impact of a uniform root distribution on soil moisture stress. The replacement of the current LAI
climatology used by CHTESSEL, based on an older MODIS climatology with a coarse resolution,
by a new high-resolution climatology representative of the stations locations did not significantly affect
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the simulated surface fluxes. The close relationship between LAI and the minimum canopy resistance
was investigated showing some potential to improve the latent heat flux variability via an adjustment
of this parameter. However, these changes did not impact the excessive evaporative drought at
several stations, as reported by Ukkola et al. [21]. In CHTESSEL, we found that this limitation was
tightly associated with the depletion of the top meter soil moisture, while water was still available
at deeper layers. However, the current model formulation for root distribution was not capable of
reaching this deeper reservoir, resulting in an early reduction of evaporation, when compared with the
observations. The replacement of the current exponential roots’ profile by a uniform root distribution
and associated maximum rooting depth reduced the underestimation of evaporation during water
stress conditions. Despite the limitations associated with a reduced number of stations, our results
highlight the importance of root distribution in controlling soil moisture resistance in water stress
conditions. However, root distributions are weakly constrained observationally on the global scale.
Therefore, research is necessary to understand the implications of these changes on the global water
and energy budgets, as well as in the coupling with the atmosphere. The proposed uniform root
distribution with a single associated parameter, the maximum rooting depth, is also appealing for
a parameter optimization. These could be further addressed along with the revision of land cover
and vegetation recently proposed for CHTESSEL [65], which identified the necessity to calibrate
vegetation related parameters [51]. Considering the coupled nature of the surface water and energy
cycles and the relevance of land-atmosphere coupling, a calibration methodology considering multiple
observational datasets, covering different water/energy components and temporal time-scales, should
be favoured [66], also to possibly include some indirect information of poorly constrained parameters
through variables coupled with them.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/12/1362/s1,
Table S1: CHTESSEL vegetation types and associated parameters. R1 to R4 denote the root fraction in Layers 1 to
4. The final 4 lines indicate the root fraction when considering a uniform rooting depth with a maximum rooting
depth RDMAX of 0.5, 1, 2 and 2.89 m. Figure S1: Time series of Sensible heat flux, latent heat flux, soil moisture and
LAI in Palang. The turbulent fluxes’ time series compare the observations (grey) with the simulations: CTR (black),
LAI (blue), LAI_RSMIN (red), LAI_ROOT (green) and LAI_NOSMS (dashed blue). The soil moisture time series
shows the CTR the top 3 layers’ meter soil moisture (top meter, solid back) and the bottom layer soil moisture
(dashed black), as well as the soil moisture at the wilting point (blue) and field capacity (red). The LAI time
series compares CTR (black) with the high-resolution MODIS LAI time series (dotted blue), the high-resolution
MODIS climatology (blue), the climatology of MODIS considering the 0.25◦ bounding box (dashed blue) and
the CGLS LAI climatology (grey). Figure S2: Latent heat flux SD at the 17 stations for each simulation: CTR,
MLAI, MLAI_RSMIN and MLAI_ROOT. Figure S3: Same as Figure S1, but for Sylvania station. Figure S4: Same
as Figure S1, but for Espirra station. Figure S5: Same as Figure S1, but for Kruger station. Figure S6: Same as
Figure S1, but for Amplero station. Figure S7: Same as Figure S1, but for Howard station. Figure S8: Same as
Figure S1, but for Mopane station. Figure S9: Same as Figure S1, but for Blodgett station. Figure S10: Same as
Figure S1, but for Bugac station. Figure s11: Same as Figure S1, but for Fort Peck station. Figure S12: Same as
Figure S1, but for Harvard station. Figure S13: Same as Figure S1, but for Hesse station. Figure S14: Same as
Figure S1, but for Howlandm station. Figure S15: Same as Figure S1, but for Hyytiala station. Figure S16: Same as
Figure S1, but for Loobos station. Figure S17: Same as Figure S1, but for Tumbarumba station. Figure S18: Same as
Figure S1, but for University of Michigan station. Figure S19: Sensible heat flux MBE at the 17 stations for each
simulation: CTR, MLAI, MLAI_RSMIN and MLAI_ROOT. Figure S20: Latent heat flux MBE at the 17 stations
for each simulation: CTR, MLAI, MLAI_RSMIN and MLAI_ROOT. Figure S21: Sensible heat flux NME at the
17 stations for each simulation: CTR, MLAI, MLAI_RSMIN and MLAI_ROOT. Figure S22: Latent heat flux NME
at the 17 stations for each simulation: CTR, MLAI, MLAI_RSMIN and MLAI_ROOT. Figure S23: Sensible heat flux
SD at the 17 stations for each simulation: CTR, MLAI, MLAI_RSMIN and MLAI_ROOT. Figure S24: Sensible heat
flux correlation at the 17 stations for each simulation: CTR, MLAI, MLAI_RSMIN and MLAI_ROOT. Figure S25:
Latent heat flux correlation at the 17 stations for each simulation: CTR, MLAI, MLAI_RSMIN and MLAI_ROOT.
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Appendix A

The statistical metrics used in this study follow [20]: the mean bias error (MBE), normalized mean
error (NME), standard deviation difference (SD) and correlation coefficient (r) were computed using
daily values with M, O and n representing the model data, observed flux tower data and the number
of days, respectively.

MBE =
∑n

i=1(Mi −Oi)

n
(A1)

NME =
∑ |Mi −Oi|
∑ |Ō−Oi|

(A2)

SD = |1−

√
∑ Mi−M̄2

n−1√
∑ Oi−Ō2

n−1

| (A3)

r = ∑n
i=1(Mi − M̄)(Oi − Ō)√

∑n
i=1(Mi − M̄)2

√
∑n

i=1(Oi − Ō)2
(A4)
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