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Abstract: In this study, we present a meso-scale simulation of the urban microclimate in Berlin,
Germany, using the Weather Research and Forecasting (WRF) numerical weather prediction platform.
The objective of the study is to derive an accurate estimate of the near-surface urban heat island
(UHI) intensity. The simulation is conducted over a two-week summer period. We compare
different physical schemes, different urban canopy schemes and different methods for estimating
the UHI intensity. The urban fraction of each urban category is derived using the Copernicus
Impervious Density data and the Corine Land Cover data. High-resolution City Geography Markup
Language (CityGML) data is used to estimate the building height densities required by the multi-layer
urban canopy model (UCM). Within the single-layer UCM, we implement an anthropogenic heat
profile based on the large scale urban consumption of energy (LUCY) model. The optimal model
configuration combines the WRF Single Moment Five-Class (WSM5) microphysics scheme, the
Bougeault–Lacarrère planetary boundary layer scheme, the eta similarity (Mellor–Yamada–Janjic)
surface layer scheme, the Noah Multi-Parameterization land surface model, the Dudhia and Rapid
Radiative Transfer Model (RRTM) radiation schemes, and the multi-layer UCM (including the
building energy model). Our simulated UHI intensity results agree well with measurements with
a root mean squared error of 0.86 K and a mean bias error of 0.20 K. After model validation, we
proceed to compare several UHI intensity calculation methods, including the ‘ring rural reference’
(RRR) method and the ‘virtual rural reference’ (VRR) method. The VRR mthod is also known as the
‘urban increment’ method. We suggest and argument that the VRR approach is superior.

Keywords: urban heat island; mesoscale climate model; urban canopy model; anthropogenic heat;
sensitivity analysis; WRF

1. Introduction

Until the late 1990s, the study of the urban microclimate was, to a large extent, dependent on
field experiments [1]. This could be explained in part by the inability of mesoscale numerical weather
prediction software such as Weather Research and Forecasting (WRF) [2] and COSMO [3] (Consortium
for Small-Scale Modeling) to properly model complex physical phenomena occurring within and at
the interfaces of the urban canopy. Typically, the “bulk” or “slab” approach [4] would be adopted
whereby the urban soil properties (heat capacity, thermal conductivity, surface albedo, aerodynamic
roughness length, etc.) used in the surface heat balance equation were modified in order to distinguish
the urban area from the surrounding rural area [5]. While this approach, where buildings are modeled
via increased roughness in urban areas, is associated with a low number of parameters and is easily
coupled with the atmospheric model [6], it does not properly represent the geometric characteristics
of urban areas [7]. In particular, it does not provide an accurate estimate of the conditions within
urban canyons.
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As a result, it was proposed to couple land surface models (LSM) with more sophisticated
urban canopy models (UCM) [8,9]. In particular, the single-layer urban canopy model (SLUCM) was
introduced by Masson [10] and Kusaka et al. [11] while Martilli [12] presented a multi-layer urban
canopy model (MLUCM) called building environment parameterization (BEP). SLUCM represents
shadowing, reflection and radiation trapping in the street canyon using a generic infinitely long street
canyon described by the mean building height/width and street width. Within the urban canyon,
an exponential profile is specified for the wind profile and thermal homogeneity is assumed for the
urban canopy air which only interacts with the atmosphere at the top of the urban canyon. MLUCM
accounts for the three-dimensional nature of urban surfaces and treats the buildings as sources and
sinks of heat, moisture and momentum. It allows a direct interaction with the planetary boundary
layer (PBL). Schubert et al. [13] later developed a double canyon effect parametrization (DCEP) UCM
for COSMO, based on the BEP. Salamanca and Martilli [14] added a building energy model (BEM) to
the standard BEP. An equivalent scheme in COSMO, called DCEP–BEM, was presented by Jin et al. [15].
The BEM calculates heat transfer through the building envelope and determines the cooling/heating
energy needed to maintain a certain indoor air temperature. Crucially, the impact of the waste heat of
the indoor air conditioning system, rejected into the street canyon, is accounted for.

In WRF, both SLUCM and MLUCM schemes include the impact of anthropogenic heat, albeit in
entirely different ways. In SLUCM, the anthropogenic heat or rather its average daily profile is
provided by the user. Sailor described different methods for estimating anthropogenic heat for urban
canopy models [16]. One way to estimate the average daily profiles of anthropogenic heat for SLUCM
is by using the large scale urban consumption of energy (LUCY) model [17] which derives average daily
profiles from a country-wide energy budget analysis. Although it is possible in the SLUCM scheme to
set different daily profiles for each urban category, the profiles are assumed to be constant throughout
the year; i.e., the seasonal variation is not considered. This can be problematic in low/mid-latitude
cities where the waste heat originating from air conditioning systems significantly affects urban air
temperatures, mainly in summer time [18]. In contrast, in MLCUM, the anthropogenic heat is exactly
equal to the building air-conditioning waste heat and is calculated automatically by the BEM, taking
the seasonal weather-dependent variation fully into account. However, it is, currently not possible
to add non-building related anthropogenic sources, such as heat generated by motorized vehicles or
industrial sites, to the standard WRF implementation of the BEP + BEM model.

One of the most studied aspects of the urban microclimate is the urban heat island (UHI). The UHI
phenomenon results from the entrapment of the solar radiation in street canyons, the storage of
heat in man-made structures having high thermal mass and low-albedo surfaces, the attenuation of
wind speed by buildings, the drastically reduced evaporative cooling and the anthropogenic heat
generation [19]. The UHI results in urban temperatures that are, on average, higher than rural areas
immediately surrounding the city, especially at night when the heat stored during the day is gradually
released. The urban-rural temperature differential is referred to as the UHI intensity. It is customary
to measure the accuracy of urbanized mesoscale models by their ability to predict the urban canopy
near-surface temperature and, specifically, the UHI intensity; a secondary criterion is the urban wind
flow characteristics [5,20]. Most often, the temperature of the urban area is compared to that of
one or several reference rural locations in the immediate vicinity of the city. Typically, the selected
rural sites correspond to the locations of pre-existing weather monitoring stations (e.g., airports).
In contrast, Bohnenstengel et al. [21] proposed to perform two simulations, one with the actual urban
surfaces and a second virtual simulation where the urban surfaces are replaced with a locally prevalent
vegetation type (grass, in their study of UHI in London). This approach has the advantage of not
relying on the more or less arbitrary choice of one or several reference rural sites. Furthermore, it is the
approach that is the most congruent with the theoretical definition of the UHI since it truly calculates
the impact of the so-called “urban increment” on the local meteorology. However, given that the
calculation procedure is based on a hypothetical (or virtual) rural reference, a direct validation against
measurements is impossible.
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The proper selection of the mesoscale model options is a hotly debated topic among researchers.
This selection is usually based on the comparison of simulation results to observations in different
cities. In WRF, the main options of the mesoscale model are the planetary boundary layer (PBL) physics
scheme, the microphysics scheme, the short-wave/long-wave radiation schemes, the land surface
model and the grid size. In addition, the user can decide between different land-use/land-cover
data sources and urban fraction calculation procedures. The short-wave/long-wave scheme is very
often either Dudhia/Rapid Radiative Transfer Model (RRTM) or Goddard/RRTM [2] while the lower
limit of the grid size of the innermost domain containing the urban area of interest is often 1 km in
order to avoid the “terra incognita” or “grey zone” range, where turbulence modeling can become
problematic [22]. Jänicke et al. [23] observed that, in Berlin, errors in near-surface air temperature
strongly depended on the selected PBL scheme. They tested the Bougeault-Lacarrère (BouLac)
and the Mellor–Yamada–Janjic (MYJ) PBL schemes [2] and found that the former performed better.
Nemunaitis-Berry et al. [24] compared two WRF planetary boundary schemes, the MYJ and the YSU,
in combination with the SLUCM, for the evaluation of the UHI over Oklahoma City. They observed that
regardless of the PBL scheme used, the model significantly overestimated near-surface air temperature
during daytime hours for both urban and rural grid points. Li et al. [25] evaluated the impact of
land cover data on the simulation of the UHI in Berlin by comparing up-to-date fine-resolution
CORINE (Coordination of Information on the Environment) land cover and Urban Atlas data with
older coarse-resolution USGS (US Geological Survey) data. They showed that the former simulation
approach performed better than the latter for both air and land surface temperatures. Li et al. [26]
introduced a new method to estimate UHI intensity in Berlin. Their method is based on the fitted linear
functions of simulated two-meter air temperature using the impervious surface area in WRF grids. They
compared simulation results to observations and reported an RMSE of 1.76 K. Hammerberg et al. [27]
compared the relative impact of using the WUDAPT (World Urban Database and Access Portal Tool)
methodology versus a simplified definition of the urban morphology extracted out of detailed GIS
information to initialize WRF. They conducted a case study over Vienna, Austria using the BEP+BEM
UCM scheme and demonstrated that using detailed GIS data to derive morphological descriptions of
local climate zones (LCZ) provided only a marginal overall improvement over using default WUDAPT
parameters. Wong et al. [28] evaluated WRF urbanized with BEP+BEM over the Pearl River Delta
region and determined that WUDAPT is a suitable alternative in regions where a more detailed dataset
is not available, provided that building morphology for different LCZs is estimated based on local
expertise with a subgrid-averaging approach. Salamanca et al. [29] coupled the WRF UCMs with the
new Noah multi-parameterization LSM (Noah-MP, cf. [2]) during a 15-day clear-sky summertime
period for a semi-arid urban environment. According to their results, Noah-MP is superior to Noah for
the estimation of the daily evolution of near-surface air temperature and wind speed. When it comes
to the choice of the UCM scheme, the MLUCM provides a more realistic reproduction of the daily
evolution of the near-surface wind speed.

Another active area of research is the proper choice of the UCM scheme in a mesoscale model.
In a WRF-based study of the UHI in Houston, Salamanca et al. [20] concluded that, if the purpose of
the simulation is to estimate the near-surface air temperature, a simple bulk scheme is sufficient; but if
the simulation is aimed at evaluating a UHI mitigation strategy, a more complex UCM should be used.
Studying the UHI in the Tokyo metropolitan area using WRF, Kusaka et al. [30] found clear evidence
in favor of the SLUCM when compared to the slab scheme. Schubert and Grossman-Clarke [31]
evaluated the DCEP urban canopy model (DCEP is the COSMO implementation of BEP) against data
from the Basel urban boundary layer experiment (BUBBLE). They showed that, in comparison to
the bulk approach, the application of the BEP scheme improves the sensible, latent and storage heat
fluxes at the urban and suburban stations. Jänicke et al. [23] compared near-surface air temperature
modeling error and concluded that the simple slab UCM outperformed the more elaborate UCMs.
Trusilova et al. [32], evaluated UHI intensity in Berlin using COSMO. At Alexanderplatz—the most
dense urban location—the multi-layer UCM best captured the daily evolution of the UHI in summer
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while the bulk UCM was superior in winter. Jandaghian and Berardi [33] applied different WRF UCMs
to characterize UHI in Toronto. They concluded that, although the single-layer scheme is reliable
for climate simulations, the multi-layer scheme predicts the diurnal variation of the urban ambient
temperature more precisely. Teixeira et al. [34] concluded that the multi-layer urban canopy model
improves the representation of the urban boundary layer of Lisbon in WRF compared to a single-layer
approach. In particular, the increase of vertical resolution in the multi-layer model leads to planetary
boundary layer height bias reduction compared to radiosonde observations. Wong et al. [28] concluded
that, in comparison with measurements from surface stations over an urban area, the BEP+BEM UCM
of WRF is better at simulating wind speed than the bulk UCM. Furthermore, the improvement
from a multi-layer UCM scheme is greater than that from a non-local PBL scheme over the urban
area. Jin et al. [15] compared the simulation results of the DCEP-BEM urban canopy model of
COSMO with observations of radiative and turbulent energy fluxes, near-surface air temperature,
and indoor air temperature in Berlin. They reported improved model accuracy in comparison to the
DCEP-only scheme.

Numerous studies have focused on the sensitivity of near-surface WRF model predictions to the
internal parameters of the UCM. Most of these studies aim to assess the impact of urban warming
mitigation measures such as cool/green surfaces, building envelope retrofits, etc. Typically, the UCM
(with the notable exception of the slab scheme) is configured by many parameters. For instance,
the SLUCM in WRF has approximately 30 different parameters [35]. While earlier studies tended to use
default values of these parameters [12,36], more recent studies have devoted significant effort to the
investigation of the impact of these parameters. Nemunaitis-Berry et al. [24] conducted a sensitivity of
the SLUCM scheme in WRF. They concluded that sensible heat fluxes are significantly affected by the
albedo and the thermal conductivity of building roofs. However, latent heat fluxes are only affected
by the urban fraction. Miao et al [37] analyzed the sensitivity of a WRF/Noah/SLUCM simulation
of Beijing to building heights and anthropogenic heat flux. Schubert and Grossman-Clarke [38] used
COSMO with DCEP to evaluate the influence of green areas and roof albedos on air temperatures
during extreme heat events in Berlin. Their results show that the average urban air temperature can be
reduced by up to 0.63 K for the combined vegetation and albedo case. Morini et al. [39] studied the
impact of increased urban albedo on UHI based on a simulation of the city of Terni using WRF
coupled with the BEP+BEM urban scheme. When the albedo of the roof, walls and road of the whole
urban area is increased, UHI is shown to decrease by up to 2 K. In a sensitivty study using WRF
coupled with a bulk UCM scheme, Fallmann et al. [40] showed that, in Stuttgart, a change in urban
albedo values has the highest impact on near-surface temperatures compared to an increase of urban
green areas or a decrease of building density. The UHI in the study area decreased by up to 2 K by
using high-albedo paints. Salamanca et al. [41] used WRF coupled with BEP+BEM to show that,
in Houston, the air-conditioning waste heat is responsible for an increase in the air temperature of up
to 2 K. Jin et al. [42] applied the DECP-BEM model to assess the sensitivity of the urban canopy air
temperature to air-conditioning waste heat in Berlin. Compared with a reference scenario without
air-conditioning, the scenario with air-conditioning resulted in a temperature increase of up to 0.6 K.

In this study, we present a meso-scale WRF simulation of the urban microclimate in Berlin,
Germany. The objective is to derive an accurate estimation of the near-surface urban heat island
while also retaining a good station-by-station accuracy (there are four urban and five rural stations).
In comparison to previous microclimate studies of Berlin, the manuscript contains several novelties.
In particular, (i) the use of the mid-resolution Copernicus Impervious Density data as urban fraction
and the Corine Land Cover for the mapping of the urban fractions to the urban categories, (ii)
the incorporation of a LUCY-based anthropogenic heat profile in the SLUCM, (iii) the use of
high-resolution Berlin City Geography Markup Language (CityGML) data for the estimation of
the building height densities required by the MLUCM and, finally, (iv) the comparison of several UHI
intensity calculation methods. Section 2 describes the case study and the methodology. Section 3
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contains the main simulation results and their discussion. Section 4 presents our conclusions and the
future research outlook.

2. Methodology

We used the Weather Research and Forecasting (WRF) model and the WRF Preprocessing System
(WPS), both in version 4.2, to generate locally resolved simulation data. The WRF model described
by Skamarock et al. [2] is a community atmospheric modeling system that has been used for both
atmospheric research and numerical weather prediction (NWP).

2.1. Physical Models

We first performed a preliminary selection of feasible physical models by looking at other
similar studies by Jänicke et al. [23], Li et al. [26] and Kuik et al. [43]. To then select the best
combination, we performed a small sensitivity study, in which we select an intitial configuration
and do 1–2 variations per model type out of our preliminary selection of feasible models. The physical
models available in WRF have all been described and referenced by Skamarock et al. [2].

For micro-physics, we mainly used the “WRF single-moment five-class scheme” (WSM5) and
compared the results to the “Purdue Lin scheme” (Lin). For cumulus parameterization we used the
“Kain Fritsch (new eta) scheme”, but only in the coarsest domain d01. For the planetary boundary
layer (PBL), we used the local TKE scheme “Bougeault–Lacarrére” (BouLac) and compared it to the
non-local “Yonsei University” (YSU) scheme. According to Skamarock et al. [2], the surface layer (SL)
schemes are tied to certain PBL schemes: with the Boulac PBL scheme, we used the “Eta surface layer
scheme (MYJ)” and with the YSU PBL scheme, we used the “Revised MM5 surface layer scheme”
(RMM5). We also compared the “Noah Multi-Parameterization” (Noah-MP or N-MP) land surface
model (LSM) to the classic “Noah” land surface model. For shortwave and longwave radiation,
we tested the “Dudhia” (Dud) and “Rapid Radiative Transfer Model” (RRTM) schemes, respectively,
and also compared results to using the global parameterization of the RRTM scheme (RRTMG) for both
shortwave and longwave radiation. Finally, we tested all of the available urban parameterizations:
the basic “Slab” approach, the “Single Layer Urban Canopy Model” (SLUCM) and the “Multilayer
Urban Canopy Model” (MLUCM), which consisted of the Building Effect Parameterization (BEP)
coupled to the Building Energy Model (BEM). All combinations of physical and urban models tested
in this study are shown in Table 1.

Table 1. Combinations of physical and urban parameterizations of Weather Research and Forecasting
(WRF) used in this study.

Name M-P PBL SL LSM Radiation SW/LW Urban Model

P1 WSM5 BouLac MYJ N-MP Dud/RRTM SLUCM
P2 Lin BouLac MYJ N-MP Dud/RRTM SLUCM
P3 WSM5 YSU RMM5 N-MP Dud/RRTM SLUCM
P4 WSM5 BouLac MYJ Noah Dud/RRTM SLUCM
P5 WSM5 BouLac MYJ N-MP RRTMG SLUCM
U1 WSM5 BouLac MYJ N-MP Dud/RRTM Slab
U2 WSM5 BouLac MYJ N-MP Dud/RRTM SLUCM
U3 WSM5 BouLac MYJ N-MP Dud/RRTM MLUCM

2.2. Domain and Boundary Conditions

The simulation domain consisted of a region of 1785 km × 1785 km centered on the city of Berlin
(13.44◦ E, 52.51◦ N). The city of Berlin had a population of 3.5 million inhabitants and covered an area
of 892 km2 at the time. The Lambert conformal projection with true latitudes of 52.04◦ and 52.98◦, and a
standard longitude of 13.44◦ was used to define the simulation domain. The domain decomposition
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was similar to the one by Li et al. [26] with a main domain d01 and two nested domains d02 and d03
to better resolve the urban environment. The domains are shown in Figure 1.

Figure 1. Main domain d01 and nested domains d02 and d03. The elevation is illustrated using the
“ASTER Global Digital Elevation Map” from Nasa Worldview [44] as background image.

To facilitate inter-study comparison, we simulated the summertime period from 21 June 2010 to
4 July 2010, which was originally selected by Li et al. [25] due to clear sky and calm wind situations.
The first day was disregarded in the evaluation as simulation “spin-up” time. The initial conditions
and lateral boundary conditions (forcing) were generated with the WPS from GFS analysis data with a
resolution of 0.5◦ and 6 h time intervals [45].

The domain decomposition was based on the work by Li et al. [26], who specified the lateral
grid spacing, the parent grid indices and the number of lateral grid points (which are identical for
W-E and S-N direction). While the lateral resolution is the same for all models, we had to choose
different vertical grids for the different urban models, as the Slab and SLUCM models do not resolve
the urban canopy, while the MLUCM does resolve the urban canopy. To define the vertical resolution
for the Slab and SLUCM models, we specified the first-layer thickness of 50 m and used the automatic
stretching of WRF to generate a total of 35 layers up to a top-level pressure of 5000 Pa. For the MLUCM
model, we manually specified the 51 η levels defined by Salamanca et al. [41]. These levels led to
finer vertical grid sizes with approximate thicknesses of 5 m, 15 m, 25 m, 35 m and 45 m in the first few
layers. The parameters specifying the domain decomposition are given in Table 2.

Table 2. Discretization parameters to define the three domains d01, d02 and d03. The vertical layers
vary for different urban models, as the Slab and single-layer urban canopy model (SLUCM) models do
not resolve the urban canopy, while the multi-layer urban canopy model (MLUCM) does resolve the
urban canopy.

WRF Parameter d01 d02 d03

All models
Lateral grid spacing 15 km 3 km 1 km

Starting index in parent grid 1 45 60
Number of lateral grid points 120 156 112

Slab/SLUCM
Vertical first layer thickness 50 m 50 m 50 m

Number of vertical grid points 35 35 35

MLUCM
Vertical first layer thickness 5 m 5 m 5 m

Number of vertical grid points 51 51 51
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2.3. Land Use/Land Cover

The WRF model used land use/land cover data to categorize urban and rural surface properties.
By default, the Moderate Resolution Imaging Spectroradiometer (MODIS) land use data set with 30 s
resolution was used. The 17 categories were defined by the International Geosphere–Biosphere
Programme (IGBP) and an additional category 21 for lakes was used by WRF. In addition,
we implemented the CORINE Land Cover (CLC) data 2012 with 100 m resolution from the European
Union’s Earth Observation Programme Copernicus. The CORINE Land Cover data was also used
to derive three urban categories for use with the urban models implemented in WRF. A workflow
was established using QGIS (with GRASS and GDAL libraries) and custom Python scripts to convert
the data to the format needed by WRF. Firstly, we changed the projection from the source coordinate
system (EPSG:3035) to the coordinate system used by WRF (EPSG:4326). Secondly, we converted the
classification from CORINE Land Cover into MODIS IGBP categories. Finally, we transformed the
data from the GeoTiff format into tiled binary files that can be read by WRF.

The conversion of categories from CORINE to the classification by the United States Geological
Survery (USGS) was adapted from Jänicke et al. [23], who modified the original conversion table
of Pineda et al. [46]. The conversion from USGS to MODIS IGBP was done according to the WRF
model documentation [47]. The resulting reclassification from CORINE Land Cover to MODIS IGBP
(including lakes and urban categories) is presented in Table 3. In the urbanized WRF simulations with
the SLUCM or MLUCM, the urban categories 31 to 33 allowed a more detailed description of the urban
morphology. In the Slab model, only the single urban category 13 was used.

Table 3. Reclassification from CORINE land cover to Moderate Resolution Imaging Spectroradiometer
(MODIS) International Geosphere–Biosphere Programme (IGBP) including lakes and three
urban categories).

ID CORINE Land Cover MODIS IGBP ID

1 Continuous urban fabric High intensity residential 32
2 Discontinuous urban fabric Low intensity residential 31

3–5 Industrial/commercial, road and rail networks, port areas Commercial/industrial/transportation 33
6 Airports Croplands 12
7 Mineral extraction sites Barren or sparsely vegetated 16

8,9 dump sites, construction sites Commercial/industrial/transportation 33
10,11 Green urban areas, sport and leisure facilities Cropland/natural vegetation mosaic 14
12–14 Non-irrigated, permanently irrigated land, rice fields Croplands 12
15–17 Vineyards, fruit trees, olive groves Cropland/natural vegetation mosaic 14

18 Pastures Croplands 12
19–22 Annual crops, complex cultivation, agriculture, agro forestry Cropland/natural vegetation mosaic 14

23 Broad-leaved forest Deciduous broadleaf forest 4
24 Coniferous forest Evergreen needleleaf forest 1
25 Mixed forest Mixed forests 5
26 Natural grasslands Grasslands 10

27–29 Moors, sclerophyllous vegetation, transitional woodland-shrub Open shrublands 7
30–33 Beaches/dunes/sands, bare rocks, sparsely vegetated, burnt Barren or sparsely vegetated 16

34 Glaciers and perpetual snow Snow and ice 15
35–38 Inland marshes, peat bogs, salt marshes, salines Permanent wetlands 11

39 Intertidal flats Water 17
40–43 Water courses, water bodies, coastal lagoons, estuaries Lakes 21

44 Sea and ocean Water 17

As the CLC data only covered countries of the European Union, we used WRF’s capability to
blend different data sets. This way, the default MODIS data set was used where the higher resolved
CLC data was not available. The resulting land use data of the main domain d01 and the nested
domains d02 and d03 is shown in Figure 2.

For one of our evaluation methods to determine the UHI intensity, which is described in Section 3.2,
we used a virtual rural reference simulation. In this hypthetical scenario, the urban area was replaced
by a fictitious rural area. Therefore, in the original CORINE landcover dataset, all urban categories
were replaced by rural categories as follows: Urban category 31 was remapped to rural category 12,
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category 32 was remapped to category 5 and category 33 was remapped to category 1. The resulting
land use map of the virtual rural reference simulation in domain d03 is also shown in Figure 2.

Figure 2. Land use categories using the combined MODIS and CORINE Land Cover (CLC) datasets
for the main domain d01 and the nested domains d02 and d03. For the inner domain d03, the modified
land use data for the virtual rural reference method is additionally shown, see Section 3.2.

2.4. Urban Morphology

The accuracy of the urban models additionally depends on the urban morphology of the city.
While in the Slab model the urban morphology was not included, the UCM models needed several
parameters: both the SLUCM and MLUCM needed the mean urban fraction λU , the mean building
width l̄ and the mean road width w̄. The SLUCM model also used the mean building height H̄ and its
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standard deviation σH . The MLUCM model, however, used a more detailed statistical representation
of building heights: the probability γH that a building with a certain height occurs. The urban
morphology parameters are presented in Table 4.

Table 4. Urban morphology parameters used in the urbanized WRF simulations (SLUCM or MLUCM).

Parameter Symbol Unit Value for Urban Category
31 32 33

SLUCM and MLUCM
Urban fraction λU % 45 86 75

Mean building width l̄ m 13.2 19.8 25.2
Mean road width w̄ m 17.6 12.4 27.4

SLUCM
Mean building height H̄ m 11.3 19.9 12.7

Std. dev. of building heights σH m 7.5 7.3 8.3
MLUCM

Building heights 5 m γH=5 % 37 9 27
Building heights 10 m γH=10 % 25 6 36
Building heights 15 m γH=15 % 18 8 17
Building heights 20 m γH=20 % 14 45 11
Building heights 25 m γH=25 % 4 27 6
Building heights 30 m γH=30 % 1 4 3
Building heights 35 m γH=35 % 1 1 1

To implement the detailed urban fraction map into the WRF model, we used the Copernicus
Impervious Density (IMD) 2015 data with 100 m × 100 m resolution. On the one hand, this data
was interpolated by WRF onto the grid tiles and used in the UCM simulations. On the other hand,
we derived the median urban fraction λU for each of the three urban classes of the CLC 2012 dataset
within the region of the city of Berlin.

To calculate the mean building heights H̄ and their standard deviations σH , which were needed
for the SLUCM, we used the CityGML data of Berlin rastered to a digital surface model (DSM) with a
resolution of 1 m × 1 m. This data was originally generated during the study of Heldens et al. [48].
An alternative was the coarser resolved Copernicus Urban Atlas Building Height 2012 (DHM2012)
data with 100 m × 100 m resolution, which led to similar results in preliminary tests. To obtain the
statistical representation of building heights γH for the MLUCM model, the building heights were
separated into several bins and the fraction of the occurrence of each bin was counted. We evaluated
heights in the range from 2.5 m to 37.5 m and separated them into 7 bins of 5 m width. Values smaller
than the lower bound of 2.5 m were discarded, but values larger than the upper bound of 37.5 m were
included in the last bin. The bins were then representative of the heights 5, 10, 15, 20, 25, 30 and 35 m.

To obtain the mean building widths l̄ and mean street widths w̄, we ran the Morphometric
Calculator from the Urban Multi-scale Environmental Predictor (UMEP) by Lindberg et al. [49]
as plugin in QGIS 3. This tool also used the rastered CityGML data of Berlin by Heldens et al. [48] as a
DSM. In the setup of the UMEP Morphometric Calculator, we set the wind direction search interval to
15 deg. From the output, we only evaluated the isotropic results, which were calculated by UMEP by
integrating the results of all wind directions. The Morphometric Calculator needed a user specified
vector grid. We tested three different grids with different resolutions and selected the medium grid
with 250 m × 250 m tiles. We only regarded the grid tiles that were inside the city boundary of Berlin.
Finally we disaggregated the grid into the three urban categories specified by CLC and kept only tiles,
which were fully occupied by DSM data of the currently investigated urban category. From the output,
we used the plan area index λP and the frontal area index λF to approximate the mean building widths
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l̄ and road widths w̄ on the basis of the equations introduced by Kanda et al. [50] in the form given by
Afshari and Ramirez [51]:

l̄ = H̄ · λP
λF

w̄ = l̄ · ( 1√
λP
− 1).

(1)

In addition to the urban morphology parameters, urbanized WRF simulations (using the SLUCM
or MLUCM) needed several building properties. While these properties could be specified for each
category, the values we found in the literature were independent of the urban category. The urbanized
WRF setup included default values that we partially adjusted to more realistic values for the city of
Berlin. The values we believed to be important are given in Table 5.

Table 5. Building properties used in the urbanized WRF simulations (SLUCM or MLUCM).

Parameter Symbol Value Source

Thicknesses of the 4 roof and wall layers dr and dw 0.05, 0.05, 0.1, 0.2 m Jänicke et al. [23]
Thicknesses of the 4 ground layers dg 0.05, 0.25, 0.50, 0.75 m WRF default

Vol. heat capacity of roof, wall and ground cr, cw and cg 2.3× 106 J m−3 K−1 Jänicke et al. [23]
Thermal conductivity of roof and wall kr and kw 1.54 W m−1 K−1 Jänicke et al. [23]

Thermal conductivity of ground kg 0.67 W m−1 K−1 Jänicke et al. [23]
Surface albedo of roof and wall αr and αw 0.2 Salamanca et al. [20]

Surface albedo of ground αg 0.15 Salamanca et al. [20]
Surface emissivity of roof and wall εr and εw 0.9 Martilli et al. [12]

Surface emissivity of ground εg 0.95 Martilli et al. [12]
Roughness length of roof and ground z0,r and z0,g 0.01 m Chen et al. [52]

Roughness length of wall z0,w 0.0001 m Chen et al. [52]
Lower boundary temperature for roof and wall Tb,r and Tb,w 20 ◦C WRF default

Lower boundary temperature for ground Tb,g 10 ◦C Jänicke et al. [23]

2.5. Anthropogenic Heat

To estimate the anthropogenic heat generated in the city, we ran the LUCY QF model from the
UMEP plugin for QGIS. The methodology of the model was described by Allen et al. [17]. The resulting
values of anthropogenic heat were used in the SLUCM model.

The LUCY QF model needed the mean daily temperatures for the investigated time period
specified in Section 2.2. We chose to take the mean value of the temperature measurements from the
four urban stations operated by the Deutsche Wetterdienst (DWD) listed in Table 9. We averaged
the hourly values to obtain daily values for the simulation period regarded in this work. To spatially
disaggregate the anthropogenic heat by population, the model needed the absolute population on
a vector grid in shapefile format. We defined a grid with 100 m by 100 m resolution and used the
population values from the Urban Atlas 2012 dataset. To scale this data to the desired vector grid,
we first calculated the population density per 10,000 m2 for every shape in the original Urban Atlas
data. Then, we rastered the shapes to the target grid of 100 m by 100 m resolution, which resulted in
the total population per grid tile. The LUCY model also needed several parameters from a namelist
file, where we retained the default values. Finally, the LUCY model read further values from a global
national energy use database, in which we updated the default values for Germany by publicly
available energy use data for the year 2010. The updated values are listed in Table 6.
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Table 6. Values added to the large scale urban consumption of energy (LUCY) database for Germany
for the year 2010.

Data Entry Value Source

IEA total final consumption minus transport per year 2,043,730 GW h Headline Energy Data (www.iea.org)
Number of cars owned per 1000 inhabitants 516.4 Kraftfahrtbundesamt (KBA) Germany

Number of motorcycles owned per 1000 inhabitants 46.5 Kraftfahrtbundesamt (KBA) Germany
Number of freight vehicles owned per 1000 inhabitants 58.0 Kraftfahrtbundesamt (KBA) Germany

Total population 80,827,000 United Nations Population Division

The LUCY model calculated the anthropogenic heat flux Q separated into three sources (buildings,
motorized traffic and metabolism). The model produced results for every hour of the investigated
period and every grid tile. We used the spatial resolution to aggregate the anthropogenic heat flux into
the three different urban categories specified by CLC. Then we calculated daily profiles of the mean
anthropogenic heat flux Q for each category. To prepare the data for the WRF model, we calculated the
maximum values of total anthropogenic heat Qmax for each category, see Table 7. However, the LUCY
model calculated the total anthropogenic heat flux Q for the whole area of the provided grid tiles
and, during the simulation, WRF would multiply these values by the urban fraction of the grid tile.
Hence, WRF would actually interpret the values as anthropogenic heat per urban area. For this
reason, we divided the anthropogenic heat by the values of urban fraction given in Table 4 to obtain
the anthropogenic heat per urban area Q/λU . However, we noticed that the value for category 33
was unexpectedly low. The explanation for that was that the LUCY model scaled the anthropogenic
heat mainly based on population data. The population data was based on the number of registered
inhabitants, which was understandably low in urban areas categorized as commercial, industrial or
transporation. To obtain a better representation, we would actually need the average number of people
habitually occupying each given urban region, but these numbers were not available. Consequently,
we decided to use the mean value for all urban categories, which is also provided in Table 7.

Table 7. Maximum values of total anthropogenic heat emissions disaggregated by urban category.

Parameter Unit Category 31 Category 32 Category 33 All Cat.

Total anthropogenic heat Qmax (LUCY) W m−2 24.2 59.2 5.52 14.0
Total anthropogenic heat per urban area Qmax/λU W m−2 53.8 68.8 7.4 46.7

Using the maximum values, a normalized mean profile Q/Qmax was created. The normalized
anthropogenic heat Q/Qmax is shown in Figure 3 and the numerical values used in WRF are given
in Table 8.

Figure 3. Mean normalized anthropogenic heat profile calculated by the LUCY model. The total value
as well as the contributions of buildings, traffic and human metabolism are shown.

www.iea.org
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Table 8. Normalized daily profile of total anthropogenic heat emissions from the LUCY model.

Parameter Hourly Values

t/h 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Q/Qmax/% 19 27 40 53 67 79 89 94 99 99 99 100 95 90 80 72 65 58 51 43 36 30 24 19

In the MLUCM model, only the building anthropogenic heat was considered—which was
also seen as dominant in the LUCY estimation method used above for SLUCM. However, this
anthropogenic heat in MLUCM was calculated by a dynamic building energy model (BEM). Among the
BEM parameters, we mostly retained the default values—with the exception of the fraction of
buildings equipped with airconditioning systems which were taken from a study by the German
Umweltbundesamt [53]. According to this study, approximately 1% to 2% of the residential buildings
and 50% of commercial and administrative buildings were equipped with A/C systems. We adopted
these values for setting the “building A/C fraction” for the three different categories in the BEM model:
1% for category 31, 2% for category 32 and 50 % for category 33.

3. Results and Discussion

We focused on two different investigations: (i) the first step was an assessment of the sensitivity
of model accuracy to variations of physical and urban parameterizations, which led us to select the
combination that produces the most accurate estimation of the UHI intensity; (ii) the second step was
a comparison of different UHI intensity evaluation methods.

3.1. Sensitivity Analysis

To evaluate model accuracy, we used data for the period of interest from nine meteorological
monitoring stations operated by Deutscher Wetterdienst (DWD) [54] in hourly resolution. We evaluated
temperature measurements at 2 m height (T2 m) from four urban and four rural stations, and wind
speed measurements at 10 m height (U10 m) from two urban and two rural stations. Our selection of
DWD stations is compiled in Table 9.

Table 9. Measurement stations used for determining the accuracy of our model setups. The locations
of the stations are indicated in the inner nested domain d03 on Figure 2.

Station Name Category Location Elevation Measurement Used

Alexanderplatz Urban 13.4057◦ E, 52.5198◦ N 36 m T2 m
Marzahn Urban 13.5598◦ E, 52.5447◦ N 60 m T2 m

Tegel Urban 13.3088◦ E, 52.5644◦ N 36 m T2 m, U10 m
Tempelhof Urban 13.4021◦ E, 52.4675◦ N 48 m T2 m, U10 m

Berge Rural 12.7867◦ E, 52.6198◦ N 40 m T2 m
Baruth Rural 13.4996◦ E, 52.0614◦ N 55 m T2 m

Lindenberg Rural 14.1180◦ E, 52.2085◦ N 98 m T2 m, U10 m
Müncheberg Rural 14.1232◦ E, 52.5176◦ N 63 m U10 m
Zehdenick Rural 13.3268◦ E, 52.9664◦ N 51 m T2 m

To compare the WRF model to DWD measurement data, we used the Mean Bias Error (MBE) and
the Root Mean Square Error (RMSE) as error metrics:

MBE =
1
N

N

∑
i=1

(yWRF(ti)− yDWD(ti))

RMSE =

√√√√ 1
N

N

∑
i=1

(yWRF(ti)− yDWD(ti))
2.

(2)
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To evaluate the performance of different physical and urban parameterizations, we tested several
feasible combinations. The WRF simulation results were evaluated at the nine locations of the
monitoring stations given in Table 9 and compared to their measurements. The evaluation period
starts after the first day has passed at 22 June 2010 00:00 UTC, since the first day was regarded as
spin-up period.

We tested several combinations of physical parameterization schemes by varying the microphysics
(M-P) scheme, the planetary boundary layer (PBL) and associated surface layer (SL) schemes, the land
surface model (LSM), and the shortwave (SW) and longwave (LW) radiation schemes. For this initial
sensitivity analysis, the urban canopy was parameterized using the SLUCM model. The resulting
error metrics for the different combinations are shown for T2 m and U10 m in Table 10. On the one
hand, we calculated the RMSE including all measurement stations as a primary metric. On the other
hand, we calculated the MBE separately for urban and rural stations to see if there is a difference in
bias between simulating urban and rural regions, because such a bias would wrongly increase the
UHI intensity.

Table 10. Error metrics for temperature T2 m (in K) and wind speed U10 m (in m/s) comparing several
combinations of physical models. The RMSE was calculated for all measurement stations; the MBE
was calculated separately for urban and rural stations.

Name Physical Models Variable RMSE MBE
M-P PBL/SL LSM Rad. SW/LW All Urban Rural

P1 WSM5 BouLac/MYJ N-MP Dud/RRTM T2 m 1.53 −0.70 0.0057
U10 m 1.13 −0.27 0.096

P2 Lin BouLac/MYJ N-MP Dud/RRTM T2 m 1.57 −0.69 −0.04
U10 m 1.10 −0.21 0.11

P3 WSM5 YSU/RMM5 N-MP Dud/RRTM T2 m 1.96 −1.37 −0.63
U10 m 1.06 −0.21 0.40

P4 WSM5 BouLac/MYJ Noah Dud/RRTM T2 m 2.15 −1.34 −1.22
U10 m 0.99 −0.27 0.05

P5 WSM5 BouLac/MYJ N-MP RRTMG T2 m 1.62 0.38 1.15
U10 m 1.15 −0.08 0.27

Based on the results of this first stage, we decided to retain the combination “P1” in Table 10,
because this combination led to the lowest overall RMSE and acceptable MBE for urban and rural DWD
stations. In the next stage, we analyzed different urban schemes, i.e., the slab model, the single-layer
urban canopy model (SLUCM) and the multilayer urban canopy model (MLUCM), which consisted of
the Building Effect Parameterization (BEP) coupled to the Building Energy Model (BEM). It should
be noted that the results for the urban parameterizations may differ using a different combination of
physical schemes. These results correspond to a predominantly dry and low-wind period. The error
metrics for the different urban options are shown in Table 11. Within the city, the T2 m results are best
overall for the slab scheme while all three UCMs underestimate U10 m. It should be noted that in the
multi-layer UCM case, the modeled wind speed actually corresponds to the lowest layer, i.e., in our
case, the 5 m layer. That explains, to some extent, its higher RMSE when compared to measurements
at 10 m. For comparison, Li et al. [26] obtained an overall average RMSE of 1.76 K in their simulation
of T2 m for Berlin. Despite its slight under-performance in T2 m estimations, the MLUCM performs
better than the other schemes when it comes to estimating the UHI intensity, as will be shown in
the following.
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Table 11. Error metrics for temperature T2 m (in K) and wind speed U10 m (in m/s) comparing the three
urban models: Slab, SLUCM and MLUCM (building environment parameterization (BEP)+building
energy model (BEM)). The RMSE was calculated for all measurement stations; the MBE was calculated
separately for urban and rural stations.

Name Urban Model Variable RMSE MBE
All Urban Rural

U1 Slab T2 m 1.49 −0.068 0.10
U10 m 1.04 −0.46 0.094

U2 SLUCM T2 m 1.53 −0.70 0.0057
U10 m 1.13 −0.27 0.096

U3 MLUCM T2 m 1.69 0.28 0.093
U10 m 1.23 −0.47 −0.025

Since our main focus lies on the UHI, we evaluated the model’s ability to predict the UHI intensity
variation over an average day. This was done by comparing results from the three urban models to
measurements of the DWD monitoring stations. In this analysis, the UHI intensity was assumed to
be equal to the difference between the urban T2 m (taken as the average of the 4 urban stations) and
the rural T2 m (taken as the average of the four rural stations). This corresponds to the “cardinal rural
reference” method described in the next section. Equation (6) was used to calculate the UHI intensity
profile for an average day, which is shown in Figure 4. The values of MBE and RMSE provided in the
Figure, however, are calculated for the entire simulation period and not only for the average day.

Figure 4. Urban heat island (UHI) intensity profiles for an average day comparing the three different
urban models to measurements.

With respect to the UHI intensity profile of an average day, the MLUCM model showed the best
model/measurement agreement with an RMSE of 0.86 K and an MBE of 0.20 K. The MLUCM also
showed a superior qualitative agreement with a significant change from diurnal to nocturnal UHI
intensity values. For these reasons, and although the MLUCM slightly underperformed in the error
metrics shown in Table 11, we selected this model for the UHI evaluation analysis to be performed in
Section 3.2.

In order to demonstrate the accuracy of the selected UCM for each individual station,
the simulated T2 m values were evaluated at the probe locations of the four urban DWD measurement
stations (Alexanderplatz, Marzahn, Tegel and Tempelhof) and the four rural DWD measurement
stations (Berge, Baruth, Lindenberg and Zehdenick). The comparison of T2 m for all stations is shown
in Figure 5.
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Figure 5. Comparison of simulated and measured T2 m at the probe locations of the four urban DWD
measurement stations (Alexanderplatz, Marzahn, Tegel and Tempelhof) and the four rural DWD
measurement stations (Berge, Baruth, Lindenberg and Zehdenick).
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Finally, we want to illustrate the spatial variation of temporally averaged temperatures and
wind speeds in the nested domains d02 and d03. The average T2 m using colored contours and the
average U10 m using velocity vectors are shown in Figure 6. Omitting the first day, a total of 12 days of
simulation time were averaged.

We observed higher temperatures in the city of Berlin compared to the immediate surrounding
and a predominant north-easterly wind. We would expect the warmer urban air to be advected
downstream. Indeed, in d03 the temperatures seem to be elevated downstream of the city. However,
if we take a look at d02, we can also see elevated temperatures in a large region south-west of the
city well beyond d03, which seems to be rather a synoptic weather pattern than an urban influence.
Therefore, special care has to be taken regarding the selection of a rural reference method for UHI
intensity evaluation.

Figure 6. Average T2 m contours and U10 m vectors in the nested domains d02 and d03.

3.2. UHI Intensity Evaluation

In order to compare different UHI intensity evaluation methods, we proceeded with a lapse
rate correction: temperatures were adjusted to a reference elevation of 56 m above sea level.
This corresponds to the mean elevation of all T2 m probes at the eight urban and rural DWD stations.
A dry adiabatic lapse rate of −9.8× 10−3 K m−1 was used.

To assess the UHI intensity, we tested four different methods, among which the first two (described
further down) are well known: comparing T2 m at specific urban and rural locations corresponding
to existing monitoring stations. In the third method, herein referred to as the “ring rural reference”
method, the rural reference is the spatially averaged T2 m temperature within a ring surrounding the
city and having the same area as the city. In the fourth method, herein referred to as the “virtual
rural reference” method, the rural reference is calculated from a fictitious simulation, in which the
urban surfaces were replaced with a type of vegetation that is similar to the surrounding rural area.
This means that, in contrast with methods 1 and 2, the estimation of the UHI intensity according to
methods 3 and 4 cannot be directly compared to measurements, either because it is impractical to
measure the average T2 m temperature of a large ring (method 3) or because the rural reference area
does not actually exist and corresponds to a hypothetical scenario (method 4).

Hereafter, Turban refers to T2 m at selected urban tiles while Trural refers to T2 m at selected rural
tiles. The selection of urban and rural tiles to be considered depends on the rural reference methods
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that are described below and summarized in Table 12. The spatial average of the UHI intensity is (〈·〉
represents a spatial averaging):

〈UHII(t)〉 = 〈Turban(t)〉 − 〈Trural(t)〉. (3)

According to the first method, herein referred to as the “cardinal rural reference” (CRR) method,
the rural probe locations to be averaged must be approximately in the four cardinal directions relative
to the urban area. In our case, the urban probe locations used in the calculation of Turban correspond
to the 4 DWD urban stations: Alexanderplatz, Marzahn, Tegel and Tempelhof. The four rural probe
locations used in the calculation of Trural correspond to the 4 DWD rural stations: Baruth, Berge,
Zehdenick and Lindenberg.

In the second method, herein referred to as the “upstream rural reference” (URR) method,
Turban corresponds to one representative urban reference location and Trural corresponds to one upwind
rural reference location. In our case, we used the DWD station Alexanderplatz as the urban reference
location and the DWD station Zehdenick as the rural reference location.

According to the third method, the “ring rural reference” (RRR) method, the reference rural
tiles used for calculating Trural correspond to a ring surrounding the city perimeter, while Turban is
calculated using all urban tiles within the city perimeter. The ring was specified as follows: the inner
radius of the ring was 26 km and the ring thickness was 3.765 km. This way, the ring included 565 tiles,
which was the same as the number of urban tiles within the city limits. While the spatially averaged
UHI intensity may be calculated according to Equation (3), in order to represent the UHI intensity for
each grid tile in a 2D map, we have to use the following equation:

UHII(t) = Turban(t)− 〈Trural(t)〉 (4)

According to the RRR method we display UHII, which is the time-averaged value of UHII(t)
from Equation (4), in Figure 7a.

(a) (b)

Figure 7. Time-averaged UHI intensity maps for the evaluation methods “ring rural reference” and
“virtual rural reference”. (a) Ring rural reference. (b) Virtual rural reference.
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For the fourth method, the “virtual rural reference” (VRR) method, we compared our base
simulation to an alternative simulation corresponding to a hypothetical scenario, where the urban area
was replaced by a fictitious rural area, using the modified land-use dataset described in Section 2.3.
In this method, we evaluated only the 565 urban tiles located within the city limits for both the base and
the hypothetical scenarios. Turban was calculated using the urban tiles in the base scenario. Trural was
calculated using the fictitious rural tiles from the hypothetical scenario described above. While the
spatially averaged UHI intensity may be calculated according to Equation (3), in order to represent the
UHII for each grid tile in a 2D map, we used the following equation:

UHII(t) = Turban(t)− Trural(t). (5)

According to the VRR method we display UHII, which is the time-averaged value of UHII(t)
from Equation (5), in Figure 7b. Here, we can clearly observe that the UHI intensity is only high in
urban areas, while it is low in rural surroundings. Synoptic weather phenomena do not adversely
impact the UHII evaluated according to this method, as they are included in the base case as well as in
the fictitious rural scenario.

Finally, we compared the UHI intensity profiles for an average day resulting from the four
methods described above. These were calculated by averaging the UHI intensity for every hourly time
of day t̃ = 0, 1, ..., 23 over all investigated days Nd:

UHII(t̃) =
1

Nd

Nd

∑
i=1

(〈Turban(t̃ + 24i)〉 − 〈Trural(t̃ + 24i)〉) . (6)

The resulting UHII profiles for an average day comparing the 4 methods are shown in Figure 8;
Table 12 additionally lists the mean, min and max values.

Figure 8. Comparison of the UHI intensity profiles of an average day using the four evaluation methods.

Table 12. The four different evaluation methods and the mean, min and max values of the average day
UHI intensity (in K).

Method Evaluation Method UHI Intensity
Turban Trural Mean Min Max

CRR 4 urban probes 4 rural probes 1.48 0.69 2.82
URR 1 urban probe 1 upstream rural probe 3.13 2.14 4.21
RRR 565 urban tiles in city 565 rural tiles in ring 1.30 0.38 2.44
VRR 565 urban tiles in city 565 fictitious rural tiles in city 1.74 0.21 4.10

While the UHI intensity profile produced by the ring (RRR) method is very similar to the one
calculated by the cardinal (CRR) method, with an average UHII of 1.30 K for RRR and 1.48 K for CRR,
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the upstream (URR) method delivered consistenly higher UHI intensity values throughout the day,
with a min value exceeding 2 K. The average URR UHI intensity of 3.13 K is the highest among the four
approaches. One explanation may be that the urban station Alexanderplatz, having a very high urban
density, has an overall higher UHII than the other urban locations. Moreover, the upwind rural station
could have been biased by including synoptic weather differences. In the CRR method, both these
phenomena are decreased by averaging several urban and rural probes. This averaging effect is even
stronger in the RRR method, where many more values are used. However, one advantage of the
URR method was that the upstream rural probe was not biased by the downstream advection of the
elevated urban temperatures. Finally, the virtual rural (VRR) method produced intermediate values,
nocturnal results similar to the URR method and diurnal results similar to the CRR (or RRR) method.
The average VRR UHII is 1.73 K. We believe that the VRR method is superior to the other methods,
as it removed the bias created by synoptic weather impact and also benefitted from a strong averaging
effect. Furthermore, conceptually, it corresponds more closely to the theoretical definition of the urban
heat island (i.e., the idea of the ‘urban increment’ in comparison to a pre-urban situation).

In order to assess whether the selected VRR rural cover appropriately represents the actual rural
cover observed in the area immediately surrounding the city, we looked more closely at the results of
VRR simulation, i.e., the simulation performed after replacing urban land cover with rural land cover.
Specifically, we calculated the overall average T2 m temperature within the city as well as within the
ring (defined previously for the RRR method). Similarly, we calculated the standard deviation σT2 m

of
the spatial dispersion of both temperature values in their respective regions of analysis. The results
are 20.15 ± 0.62 ◦C for the virtual rural region and 20.41 ± 0.44 ◦C for the actual rural region (ring).
This indicates that temperature and standard deviation in the two regions are close. Of course, this can
be improved since the virtual rural region’s average temperature is slightly lower and its dispersion
slightly higher. Future research is required to find an optimal approach to populating the city with the
most representative rural land cover in the VRR method.

Finally, we studied the dependence of the average UHI intensity on the urban fraction (in the
urban region) for the RRR and VRR methods. We estimated linear regression fits for different time
periods. The results are shown in Figure 9. The first row corresponds to the overall average UHII
(‘All Day’), while the second and third rows correspond to night-time (‘Nocturnal’) and day-time
(‘Diurnal’) averages. The fit of the overall average UHII is quite good for both RRR and VRR methods
with R2 values exceeding 0.80. The intercept value of the fitted regression line is almost zero for RRR.
This means that tiles with zero urban fraction (e.g., parks) located within the city are expected to have
negligible UHII. On the other hand, the intercept value of the fitted regression line is close to 0.5 K
for VRR. So, according to this method, there is a residual UHII within the city, even in tiles with zero
urban fraction. It seems reasonable to assume that the residual UHII for fully vegetated urban tiles
cannot be nil since they are surrounded by, or adjacent to, tiles with non-zero urban fraction displaying
a clearly positive UHII. This result speaks in favor of the VRR method. Interestingly, the slopes of both
lines are almost the same, meaning that, despite the differing baseline (intercept) values, the rate of
increase of UHII with the urban fraction is similar in both cases. Looking at the nigh-time data points
(second row of plots), it is obvious that there is much more dispersion around the regression line,
for both methods. However, the VRR method results in a better fit: R2 = 0.677 instead of R2 = 0.598.
The RMSE is also smaller in the VRR method. The generally higher dispersion of data points around
the regression line is indicative of the fact that the urban fraction alone does not fully explain the
nocturnal UHI. There are other parameters that should be included in the fit. For instance, the rate
of nocturnal long-wave radiative release of urban heat is highly dependent on the sky view factor
(more so than the diurnal short-wave radiative heat gain); in other words, the actual 3D configuration
of the built-up area matters more at night [55,56]. This contrasts with the diurnal regression (third
row of plots) where the dispersion is small and the R2 is high, indicating that the urban fraction is the
predominant explanatory factor.



Atmosphere 2020, 11, 1338 20 of 25

Figure 9. Linear regression correlating UHII with urban fraction (left column: RRR, right column: VRR).

4. Conclusions

We presented a meso-scale simulation of the urban microclimate in Berlin during the summer
period 21 June 2010 to 4 July 2010. The objective of our study was to derive an accurate estimate of the
UHI intensity. We compared different physical schemes, different urban canopy schemes and different
methods for estimating the UHI intensity. The urban fraction of each urban category was derived using
the Copernicus Impervious Density data and the CORINE Land Cover data. High-resolution CityGML
data was used to estimate the building height densities required by the MLUCM. Within the SLUCM,
a LUCY-based anthropogenic heat profile was implemented. The optimal model configuration was
found to be a combination of the WSM5 microphysics scheme, the Bougeault-Lacarrère planetary
boundary layer scheme, the eta similarity (MYJ) surface layer scheme, the Noah-MP land surface
model, the Dudhia/RRTM radiation schemes and the MLUCM (BEP + BEM). Our UHI intensity results
agreed well with measurements (root mean squared error of 0.86 K and mean bias error of 0.20 K).
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We compared several UHI intensity calculation methods: the “cardinal rural reference” (CRR)
method, the “upstream rural reference” (URR) method, the “ring rural reference” (RRR) method and
the “virtual rural reference” (VRR) method. The URR method delivered consistently higher UHI
intensity values throughout the day while the CRR and RRR methods were biased by the downstream
advection of the elevated urban temperatures. We concluded the superiority of the VRR method, as it
removed the bias created by synoptic weather impact and also benefitted from a strong averaging
effect. We also analyzed the dependence of UHII on urban fractions for the RRR and VRR methods.
The dependence of the overall average UHII on λU was strong with R2 values exceeding 0.80 for both
linear fits. However, in the RRR case, the linear fit implied a negligible UHII in urban tiles with zero
urban fraction while the VRR case indicated a non-zero residual UHII. We argued that this fact spoke
in favor of the VRR method, since the urban tiles with zero urban fraction are bound to be influenced
by the positive average UHI of the neighboring tiles with non-zero λU . Although the choice of the
fictitious rural vegetation type is, necessarily, somewhat arbitrary, we showed that the near-surface air
temperature and the standard deviation of its spatial dispersion calculated within the city as well as
within the ring (defined for the RRR method) are close.

Suggested future research tracks include (i) optimal approach to populating the city with the most
representative rural land cover in the VRR method, (ii) extension of the sensitivity analysis to urban
morphology and building parameters to better understand their impact on UHI intensity, (iii) inclusion
of locational urban explanatory factors other than the urban fraction (for instance, building height, the
ratio of building height over street width, proximity to the city center, average wind speed, average air
humidity, water surface area, etc.) in the regression of average UHII, (iv) improvement of the LUCY
anthropogenic heat flux estimate for the commercial/industrial urban category and (v) a more accurate
estimation of the soil moisture initial conditions.
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COSMO Consortium for Small-Scale Modeling
CRR Cardinal Rural Reference
DCEP Double Canyon Effect Parametrization
DWD Deutscher Wetterdienst
EPSG European Petroleum Survey Group Geodesy
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IGBP International Geosphere-Biosphere Programme
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LSM Land Surface Model
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MLUCM Multi-Layer UCM
M-P Microphysics
MYJ Mellor-Yamada-Janjić
Noah-MP, N-MP Noah Multi-Parameterization
NWP Numerical Weather Prediction
PBL Planetary Boundary Layer
RRR Ring Rural Reference
RRTM Rapid Radiative Transfer Model
SL Surface Layer
SLUCM Single-Layer UCM
UCM Urban Canopy Model
UHI Urban Heat Island
UHII Urban Heat Island Intensity
URR Upstream Rural Reference
USGS United States Geological Survey
USGS US Geological Survey
VRR Virtual Rural Reference
WPS WRF Preprocessing System
WRF Weather Research and Forecasting
WUDAPT World Urban Database and Access Portal Tool
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