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Abstract: In New York State (NYS), episodic high fine particulate matter (PM2.5) concentrations
associated with aerosols originated from the Midwest, Mid-Atlantic, and Pacific Northwest states
have been reported. In this study, machine learning techniques, including multiple linear regression
(MLR) and artificial neural network (ANN), were used to estimate surface PM2.5 mass concentrations
at air quality monitoring sites in NYS during the summers of 2016–2019. Various predictors
were considered, including meteorological, aerosol, and geographic predictors. Vertical predictors,
designed as the indicators of vertical mixing and aloft aerosols, were also applied. Overall, the ANN
models performed better than the MLR models, and the application of vertical predictors generally
improved the accuracy of PM2.5 estimation of the ANN models. The leave-one-out cross-validation
results showed significant cross-site variations and were able to present the different predictor-PM2.5

correlations at the sites with different PM2.5 characteristics. In addition, a joint analysis of regression
coefficients from the MLR model and variable importance from the ANN model provided insights
into the contributions of selected predictors to PM2.5 concentrations. The improvements in model
performance due to aloft aerosols were relatively minor, probably due to the limited cases of aloft
aerosols in current datasets.
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1. Introduction

Fine particulate matter (PM2.5) (particulate matter with aerodynamic diameter less than 2.5 µm)
is one of the criteria of air pollutants because of its detrimental impacts on human health and the
environment [1,2]. Previous studies have reported that the exposure to high PM2.5 concentrations can
increase the risk of respiratory diseases and mortality [3,4]. Many processes can affect ground-level
PM2.5 concentrations, including emissions, removal (e.g., deposition), transport, aerosol physical
processes (e.g., nucleation), and atmospheric chemistry [5–9]. These processes are potentially affected by
meteorological conditions (e.g., surface temperature and horizontal winds) [10–14]. Yu et al. (2008) [9]
used the Eta-Community Multiscale Air Quality (CMAQ) coupled model to estimate the surface PM2.5

concentrations over the eastern United States (US) during the summer of 2004, and indicated that aerosol
physical and chemical processes dominated PM2.5 concentration. Dawson et al. (2007) [10] analyzed
the sensitivities of PM2.5 concentrations to meteorological variables, and showed that temperature,
absolute humidity, wind speed, mixing layer height, and precipitation had the strongest effects on PM2.5
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concentrations. Additionally, atmospheric vertical mixing has been shown to significantly impact PM2.5

concentrations [7,15–19]. In Zhang et al. (2020) [19], the radar wind profiler measurements showed
weak vertical wind shears at a shallower planetary boundary layer (PBL) under polluted conditions,
as evidence of weak vertical mixing leading to strong PM2.5 accumulation in the PBL. They indicated
that strong vertical wind shears were associated with strong vertical mixing and often accompanied
with low PM2.5 concentrations. Strong winds above the PBL were also favorable for the transport of
aerosols, which could potentially affect surface PM2.5 concentrations through vertical mixing.

Various approaches have been applied for surface PM2.5 estimation, including chemistry transport
models (CTMs) [9,20,21] and land use regression (LUR) models [22,23]. Statistical approaches based on
the relationships between satellite aerosol optical depth (AOD) and surface PM2.5 concentrations have
also been applied [24–26]. Recently, machine learning (ML), an application of artificial intelligence
(AI), has become an increasingly popular approach for PM2.5 estimation [27–29]. ML also provides
insights into contributions of different influencing factors to PM2.5 concentrations. For instance,
Reid et al. (2015) [29] estimated the PM2.5 concentrations during the Northern California wildfires
in 2008. Various predictors were used in ML training, including meteorological variables, such as
temperature and humidity, land use variables, such as the distance to the nearest emission source,
geographic variables, such as site location and Julian date, satellite AOD measurements, and CTM
simulated PM2.5 concentrations. Meteorological, land use, and geographic variables provided the
baseline PM2.5 estimation. The application of AOD and CTM products further improved model
performance by providing the estimation of total-column aerosol loading and prior knowledge of the
aerosol physical processes and chemical reactions, respectively. Furthermore, several studies focused
on the influence of AOD on PM2.5 estimation and indicated that AOD could improve the accuracy of
PM2.5 estimation with increased correlation coefficients and decreased model errors [30–33]. However,
Yao et al. (2018) [34] reported an unchanged model performance when using AOD in ML training,
probably due to complex terrain, uncertainties of cloud filtering and the presence of aloft aerosols.

In New York State (NYS), the PM2.5 concentrations have been decreasing continuously over the past
decades [35–38]. Rattigan et al. (2015) [37] analyzed the 2000–2014 observed PM2.5 concentrations at 16
air quality monitoring sites across the state and reported a downward trend with decreases of 4–7µg m−3

on annual scale. The annual average PM2.5 concentrations at 15 sites were 9–17 µg m−3 and 6–10 µg m−3

in 2000 and 2014, respectively, while the annual average PM2.5 concentration at the Whiteface Mountain
site decreased from about 6 µg m−3 in 2000 to 4 µg m−3 in 2014. In addition, according to the New York
State Ambient Air Quality Report for 2019 (https://www.dec.ny.gov/docs/air_pdf/2019airqualreport.pdf),
the 2019 PM2.5 annual averages ranged from 5 to 9 µg m−3, except for the Whiteface Mountain site
with an annual average around 3 µg m−3.

However, episodic high PM2.5 concentrations across NYS have been reported. During wintertime,
the high PM2.5 concentrations have been attributed to local heating sources and lower mixing
layer heights [36,38]. As for summer, the high PM2.5 concentrations have been attributed to
local emissions [39,40], anthropogenic aerosols transported from the Midwest and the Great Lake
region [39–43], and long-range transported smoke aerosols from the western US and Canada [44–48].
Climatically, NYS is affected by the prevailing westerlies. Additionally, the Bermuda High locating
over the western Atlantic Ocean introduces southerly and southwesterly winds along the east coast in
summertime. Under the influences of synoptic flows, air masses could transport aerosols from the
polluted areas to NYS. These aerosols could be potentially transported from free troposphere to the
surface, resulting in increased PM2.5 concentrations. In Dutkiewicz et al. (2004) [43], 1-year observations
of the concentrations of PM2.5 sulfate showed that more than 40% of the high sulfate concentrations were
associated with westerly flows and around 20–30% were associated with southwesterly flows, reflecting
the influences of transported pollutants from the Midwest and Mid-Atlantic states, respectively.
The contribution of such transported pollutants was more significant at rural sites, as up to 60%
of PM2.5 sulfate was associated with transported pollutants on annual basis. On the other hand,
a statewide event of high PM2.5 concentrations in August 2018 caused by transported smoke aerosols
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was investigated in Hung et al. (2020) [45]. Multi-platform measurements and model simulations
demonstrated the long-range transport of smoke aerosols from the western states to NYS. These smoke
aerosols transported in free troposphere before reaching NYS and descended to around 2 km a.g.l.
driven by synoptic downward mixings. The PBL entrainment further brought these aloft aerosols to
the surface, resulting in a threefold increase (from 8 to 24 µg m−3) in the average PM2.5 concentrations.

Since transported aerosols make significant contributions to the high PM2.5 concentrations
in NYS, understandings of the relationships between the vertical mixing of these aloft aerosols
and surface PM2.5 concentrations are critical for air quality forecast, monitoring and management.
Additionally, studies exploring the roles of vertical mixing in PM2.5 estimation are needed. In this
study, ML techniques were used to estimate the PM2.5 mass concentrations at air quality monitor sites
in NYS during summer seasons (July, August and September, JAS) of 2016–2019. Multiple predictors
were applied, including meteorological, aerosol and geographic variables. Predictors associated with
vertical mixing and aloft aerosols were also considered. The statistical correlations between selected
predictors and PM2.5 concentrations were investigated. Additionally, to understand the influences of
predictors on the PM2.5 concentration in NYS, the results at monitoring sites with different ambient
conditions were discussed.

2. Experiments

2.1. Datasets

The variables used in this study are summarized in Table 1 and are briefly described in this section.
Details can be found in the cited references.

Table 1. List of variables used in this study.

Variable Source Level Spatial
Resolution

Temporal
Resolution

Target
PM2.5 observation (µg m−3) EPA AQS 1 Surface Hourly

Meteorological predictors
Surface pressure (Pa) HRRR 2 Surface 3 km 3-hourly

Temperature (K) HRRR 2 m a.g.l. 3 km 3-hourly
Relative humidity (%) HRRR 2 m a.g.l. 3 km 3-hourly

U-component of horizontal wind (m s−1) HRRR 10 m a.g.l. 3 km 3-hourly
V-component of horizontal wind (m s−1) HRRR 10 m a.g.l. 3 km 3-hourly

Planetary boundary layer height (m) HRRR 3 km 3-hourly

Aerosol predictors
Aerosol optical depth VIIRS 3 Total column 0.25◦ × 0.25◦ Daily

PM2.5 concentration (µg m−3) MERRA-2 4 Surface 0.5◦ × 0.625◦ Hourly

Geographic predictors
Latitude EPA AQS

Longitude EPA AQS
Altitude (m) EPA AQS

Vegetation index VIIRS 5 Surface 0.05◦ × 0.05◦ Monthly
Weekday Daily

Vertical predictors

Wind shear (s−1) HRRR
Surface—850 hPa

850—700 hPa
700—500 hPa

3 km 3-hourly

Average vertical velocity (Pa s−1) HRRR Surface—500 hPa 3 km 3-hourly
Ratio of AOD change rate to PM change rate VIIRS 0.25◦ × 0.25◦ Daily

EPA AQS Daily

Note: 1 https://aqs.epa.gov/aqsweb/documents/data_api.html;
2 http://home.chpc.utah.edu/~u0553130/Brian_Blaylock/cgi-bin/hrrr_download.cgi;
3 https://www.star.nesdis.noaa.gov/smcd/emb/viirs_aerosol/products_gridded.php;
4 https://disc.gsfc.nasa.gov/datasets/M2T1NXAER_5.12.4/summary;
5 https://lpdaac.usgs.gov/products/vnp13c2v001/.

https://aqs.epa.gov/aqsweb/documents/data_api.html
http://home.chpc.utah.edu/~u0553130/Brian_Blaylock/cgi-bin/hrrr_download.cgi
https://www.star.nesdis.noaa.gov/smcd/emb/viirs_aerosol/products_gridded.php
https://disc.gsfc.nasa.gov/datasets/M2T1NXAER_5.12.4/summary
https://lpdaac.usgs.gov/products/vnp13c2v001/
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2.1.1. Surface PM2.5 Observations

The US Environmental Protection Agency (EPA) collects real-time air quality measurements
from over 2000 surface monitoring sites nationwide maintained by state or local air quality agencies.
In NYS, air quality data are collected and quality controlled by the NYS Department of Environmental
Conservation (NYSDEC). In this study, hourly PM2.5 mass concentrations from 21 monitoring sites
across NYS were used (Figure 1; Table 2). According to the US EPA and Squizzato et al. (2018) [38],
these sites consisted of 18 urban/suburban sites and 3 rural sites. The urban/suburban sites were
divided into New York City (NYC) metropolitan sites and upstate NY (UNY) sites based on their
locations defined by the US EPA core based statistical areas (CBSA). As a result, in this study, 21 selected
sites were categorized into: (1) 5 UNY sites, which is a group of sites in Buffalo, Rochester, and Albany
areas, (2) 3 rural sites, and (3) 13 NYC sites, which located in the New York–Newark–Jersey City area.
The PM2.5 concentration measurements at three sites (marked with asterisks in Table 2) are based on
the Federal Equivalence Method (FEM), while others are based on the Tapered Element Oscillating
Microbalances (TEOM) technology.
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Figure 1. Topographic map with the PM2.5 monitoring sites used in this study. Orange, blue and red
circles are UNY, rural and NYC sites, respectively. Site labels are referred from Table 2.

Table 2. List of PM2.5 monitor sites in NYS used in this study. Site labels are referred to in Figure 1.
Sites using Federal Equivalence Method (FEM) are marked with asterisks *. Sites 1–5, 6–8 and 9–21 are
UNY, rural and NYC sites, respectively.

Label Name ID Number Latitude Longitude Altitude (m) Type

1 Albany 360010005 42.64 −73.75 7 UNY
2 Buffalo 360290005 42.88 −78.81 185 UNY
3 Tonawanda II 360291014 43 −78.9 182 UNY
4 Rochester * 360551007 43.15 −77.55 137 UNY
5 Utica 360652001 43.1 −75.22 139 UNY

6 Whiteface Mountain 360310003 44.36 −73.9 599 Rural
7 Rockland County 360870005 41.18 −74.03 140 Rural
8 Pinnacle State Park * 361010003 42.1 −77.21 507 Rural
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Table 2. Cont.

Label Name ID Number Latitude Longitude Altitude (m) Type

9 Bronx 360050112 40.81 −73.89 20 NYC
10 PS 314 360470052 40.64 −74.02 26 NYC
11 PS 274 360470118 40.69 −73.93 18 NYC
12 Esienhower Park 360590005 40.74 −73.59 27 NYC
13 IS 143 360610115 40.85 −73.93 0 NYC
14 Division St. 360610134 40.71 −73.99 17 NYC
15 CCNY 360610135 40.82 −73.95 45 NYC
16 Newburgh 360710002 41.5 −74.01 127 NYC
17 Maspeth 360810120 40.73 −73.89 31 NYC
18 Queens * 360810124 40.74 −73.82 25 NYC
19 FKILL 360850111 40.58 −74.2 3 NYC
20 Holtsville 361030009 40.83 −73.06 45 NYC
21 White Plain 361192004 41.05 −73.76 64 NYC

2.1.2. Meteorological Predictors

Several meteorological predictors were obtained in this study, including 2 m temperature (T), 2 m
relative humidity (RH), surface pressure (PS), planetary boundary layer height (PBLH), and the
u and v components of 10 m horizontal winds (U, V). These variables were taken from the
analysis fields of the High-Resolution Rapid Refresh (HRRR) [49], which is an atmospheric model
developed by the NOAA/Earth System Research Laboratories (ESRL)/Global Systems Laboratory
(GSL). HRRR has 3 km horizontal resolution and 51 vertical levels in hybrid coordinates, and provides
hourly analysis over the contiguous US (CONUS) and Alaska. Details about HRRR can be found at
https://rapidrefresh.noaa.gov/hrrr/ and http://www.nco.ncep.noaa.gov/pmb/products/hrrr/.

2.1.3. Aerosol Predictors

AOD measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor onboard
the Suomi National Polar-orbiting Partnership (S-NPP) satellite, launched in October 2011, were used.
VIIRS measures 22 spectrum channels in the range of 412–12,050 nm, including imagery bands,
moderate resolution bands (M-bands) and the day–night band. The wide spectral range allows
VIIRS to provide multiple land and atmosphere products and the M-bands are mainly used for
aerosol retrieval [50]. VIIRS provides daily global coverage with 750 m resolution and only daytime
measurements are used for AOD retrieval. In this study, level 3 Environmental Data Record (EDR)
daily gridded AOD at 550 nm products were used.

In addition, surface PM2.5 mass concentrations from the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2) [51] were used. MERRA-2 is a global atmospheric
reanalysis developed by the National Aeronautics and Space Administration’s (NASA’s) Global
Modeling and Assimilation Office (GMAO). MERRA-2 uses the Goddard Earth Observing System,
Version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM) coupled with the Goddard
Chemistry Aerosol Radiation and Transport (GOCART) model [52]. Aerosol and meteorological
observations are jointly assimilated in MERRA-2. MERRA-2 aerosol reanalysis considers aerosol
emissions, transport, removal processes, and chemistry. Details can be found in Buchard et al. (2017) [53]
and Randles et al. (2017) [54]. A brief comparison between HRRR and MERRA-2 meteorological fields
(T, RH, PS, U and V) showed that two models are in good agreement with correlation coefficients
higher than 0.7 (Appendix A).

2.1.4. Geographic Predictors

In this study, the monthly enhanced vegetation index (VI) [55,56] products from VIIRS S-NPP were
used as terrestrial vegetation estimation. Weekday and geographic information (latitude, longitude
and altitude) of selected monitor sites, referred from EPA AQS database, were also used.

https://rapidrefresh.noaa.gov/hrrr/
http://www.nco.ncep.noaa.gov/pmb/products/hrrr/
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2.1.5. Vertical Predictors

To describe the atmospheric vertical mixing, vertical wind shears (VWS) of three layers, including
surface—850 hPa (Low-Level; L-VWS), 850–700 hPa (Mid-Level; M-VWS) and 700–500 hPa (High-Level;
H-VWS) from HRRR analysis, were used in this study. VWS were defined as the gradients of horizontal
winds between the top and bottom model levels. Note that this study only considered the magnitude
of VWS, which was computed from the u and v components of VWS. The average vertical velocities of
the layer of surface to 500 hPa (W_avg) were also used.

Furthermore, to indicate the presence of aloft aerosols, the daily change rates (R) of AOD and
PM2.5 concentrations at monitor sites were calculated as follows:

RAOD, d =
AODd − AODd−1

AODd−1
(1)

RPM2.5, d =
PM2.5d − PM2.5d−1

PM2.5d−1
(2)

where d is date. The day-by-day variation of AP_ratio reflects the change in aerosol vertical distribution.
Since AOD and PM2.5 concentrations present the aerosol loadings in the total-column atmosphere and
near the surface, respectively, their daily change rates should be comparable if most of the aerosols are
near the surface. RAOD should be higher than RPM2.5 if there are aerosols aloft. In contrast, under weak
advection with no change in aloft aerosols, RPM2.5 could be higher than RAOD, since surface PM2.5

concentration is mainly determined by local emissions. In this study, the ratio of RAOD to RPM2.5

(AP_ratio) was used as the indicator of aloft aerosols.

2.1.6. Data Processing

Datasets in the domain of 40.5◦N –45.5◦ N, 72◦ W–80◦ W during the summer seasons (JAS) of
2016–2019, 368 days in total, were used. Four data processing steps were taken prior to training.
First, spatial linear interpolations were applied for MERRA-2 data, and 3 × 3 grid averages were
computed for satellite AOD and VI as the representative at the location of selected air quality sites.
Second, the averages of daytime data during 0700–1800 LT (1200–2300 UTC), except for AOD and
VI, were calculated. Afterward, days with missing data were removed. The outliers (i.e., values
beyond average ±3 standard deviations) of PM2.5 observation and AOD were also removed to exclude
extreme cases (about 1.5% of the data). Lastly, aerosol predictors were transformed to become Gaussian
distribution by taking square roots on PM2.5 observation and AOD and taking a log of MERRA-2
PM2.5 concentration.

The assumption of independence of predictors, required for ML algorithms, is examined by
correlation matrix (Appendix B). While the assumption is not strictly met, the impact on training results
may not be significant given only one pair exceeding 0.8. It is worth mentioning that, although some
variables may be connected physically (e.g., T and PBLH), the correlations between these variables are
relatively weak.

2.2. Model Configuration

Two ML algorithms were used in this study: multiple linear regression (MLR) and artificial
neural network (ANN). MLR is a statistical technique which estimates the relationships between
several explanatory variables (i.e., predictors) and a response variable (i.e., target) by fitting a linear
regression to the ground truth (PM2.5 observations in this study). It generates a linear regression
of given variables, including the coefficients for predictors and intercept. In this study, the Python
Scikit-Learn package [57] was used to build the MLR models.

An artificial neural network (ANN), one of the most popular ML algorithms, is effective for
handling complex nonlinear problems, particularly in classification and prediction [58,59]. An ANN
model consists of a set of layers, including the input layer, multiple hidden layers, and the output
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layer. There is no specific rule to decide how many hidden layers an ANN model should have but
one hidden layer with abundant neurons usually provides good results [58]. In addition, previous
studies showed that ANN models performed better with the number of neurons in a range of
(2
√

n + ϕ,2n + 1), where n and ϕ are the numbers of predictors and targets, respectively [60]. In this
study, the Python Keras and Tensorflow packages [61] were used. Back-propagation models with
one hidden layer obtaining 20 neurons were applied. The maximum number of iterations was set
to 1000 and an EarlyStopping function (https://keras.io/api/callbacks/early_stopping/) was used to
avoid overfitting. Variables were randomly split into the training set (80%) and validation set (20%) in
the training process, and an additional testing set, which will be described in the following section,
was applied for model evaluation.

To investigate the influence of vertical mixing and aloft aerosols on surface PM2.5 concentration,
two sets of predictors were applied. Set 1 contained meteorological, aerosol, and geographic predictors,
while set 2 contained the same predictors as set 1 but also included vertical predictors. Therefore,
four models were applied in this study:

• MLR model with set 1 predictors (MLR-1);
• MLR model and set 2 predictors (MLR-2);
• ANN model with set 1 predictors (ANN-1);
• ANN model with set 2 predictors (ANN-2).

2.3. Statistical Analysis

In this study, leave-one-out cross validation (LOOCV) [62] was used for model performance
evaluation. All four models were trained on data from all monitor sites but one and were tested on the
leave-out site. This process was repeated until all 21 sites served as the test site once. Therefore, LOOCV
ensured independent evaluation of the trained model via comparison of the predicted and observed
values at the locations that did not participate in the training. The involvement of spatial dependence
allowed LOOCV to provide more reliable estimations of model performance [63]. Three statistical
scores were used for model evaluation, including mean bias (MB), coefficient of determination (R2),
and root mean square error (RMSE). These scores were calculated as follows:

MB =
1
n

n∑
i

Yi − Xi (3)

R2 =


∑n

i

(
Yi − Y

)∑n
i

(
Xi − X

)
√∑n

i

(
Yi − Y

)2
√∑n

i

(
Xi − X

)2


2

(4)

RMSE =

√√
1
n

n∑
i

(Yi − Xi)
2 (5)

where n is number of data points, X is observation, Y is prediction, and X and Y are the averages of
observation and prediction, respectively. The scores at test sites were then averaged as the estimated
model errors. Although LOOCV is beneficial for estimating the spatial dependence within trained
models, the imbalanced site distribution in NYS (over 60% of the sites are in NYC region) may introduce
representativeness issues in the model performance.

To understand the relationships between predictors and PM2.5 concentrations, the regression
coefficients from the MLR models and permutation importance estimated from the ANN models were
analyzed. The values of regression coefficients explained the change in target when applying one unit
of change in predictors, and the signs explained the direction of such a change. Permutation importance
is an approach for ranking variable importance [64,65]. The goal of this approach is to estimate how

https://keras.io/api/callbacks/early_stopping/
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model performance changes when breaking the correlations between predictors and target. This is
done by randomly shuffling one predictor in the test data, and comparing the statistical scores of
the shuffled model and unshuffled model. Larger percentage errors indicate higher importance.
This process is repeated until all predictors have been shuffled once. In this study, the percentage
error of the RMSE values of two models was regarded as the estimation of variable importance and is
calculated as follows.

Variable importance =
RMSEshu f f led − RMSEunshu f f led

RMSEunshu f f led
× 100% (6)

3. Results and Discussion

3.1. Model Performance

Figure 2 illustrates the LOOCV testing results at selected monitoring sites of the four models.
The averages of statistical scores are shown in Table 3, and the statistical scores at individual sites are
shown in Appendices C and D. Overall, the ANN models performed better than the MLR models with
higher R2 and lower RMSE, and the ANN models showed larger cross-site variations compared to
the MLR models. The absolute values of averaged MB of the ANN models (0.63 and 0.29 µg m−3)
were higher than the MLR models (0.03 and 0.06 µg m−3). However, the MBs at individual sites of the
four models had a similar range of 2 µg m−3, except for the MLR-2 model which had a wider range of
±3 µg m−3. In addition, the near-zero averaged MBs compared to RMSEs indicated that there were
negative and positive biases and those non-systemic biases cancelled out in averaging for the MLR and
ANN models.
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Figure 2. Statistical scores of the testing results of the (a-1,a-2) MLR and (b-1,b-2) ANN models with
(1) set 1 and (2) set 2 predictors. Site labels are referred from Table 2. Diamonds, crosses and circles are
UNY, rural and NYC sites, respectively.

For the MLR models, the application of vertical predictors introduced a neutral impact to the
model performance since the differences of averaged statistical scores between MLR-1 and MLR-2
were relatively minor. The RMSE at two rural sites (sites 6 and 8) even increased by 0.5–1 µg m−3 when
applying vertical predictors (Figure 2a), resulting in a slightly increased averaged RMSE (Table 3).
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In contrast, the improvement due to vertical predictors was more significant for the ANN models
(Figure 2b). The application of vertical predictors slightly increased the averaged MB for the MLR
models (from 0.03 to 0.06 µg m−3), while it reduced the averaged MB for ANN models (from −0.63
to −0.29 µg m−3) (Table 3). Additionally, the range of RMSE changed from (1.92 to 3.89 µg m−3) for
the ANN-1 model to (1.64 to 3.32 µg m−3) for the ANN-2 model (Appendix D), showing a general
improvement in model performance. It is worth mentioning that the MB and RMSE at sites 6 and 8
decreased by around 2 µg m-3, showing contrary results to the MLR models.

Table 3. Averaged statistical scores of four models at 21 selected sites.

Model Bias (µg m−3) R-Squared RMSE (µg m−3)

MLR-1 0.03 ± 1.14 0.51 ± 0.06 2.96 ± 0.26
MLR-2 0.06 ± 1.31 0.52 ± 0.06 3.01 ± 0.39

ANN-1 −0.63 ± 0.99 0.65 ± 0.09 2.59 ± 0.45
ANN-2 −0.29 ± 0.88 0.67 ± 0.10 2.42 ± 0.37

3.2. The Site-Variations of Model Performance

The model performance with the influence of vertical predictors on PM2.5 prediction at different
category of sites were investigated. Figure 3 demonstrates the differences in statistical scores between the
models using set 1 and set 2 predictors at selected air quality sites. Table 4 shows the averages of statistic
scores of each category of sites. The statistical scores at each site are listed in Appendices C and D.
Overall, the results showed variations in model performance across the state, reflecting the different air
quality characteristics.

For rural sites, the RMSEs of the MLR-2 model at site 6 and 8 increased from 3.22 and 3.29 µg m−3

to 4.13 and 3.65 µg m−3, respectively, compared to the MLR-1 model. The MBs at the two sites also
increased, showing that the model performance degraded when applying vertical predictors to the
MLR model. In contrast, the performance of the ANN models at three rural sites showed significant
improvement with increased R2 and decreased MB and RMSE. The contrasting performance of the
MLR and ANN models could be attributed to the complexity and nonlinearity of the influences
of vertical predictors on PM2.5 concentrations, which could not be learned by the MLR models.
Additional predictors could even reduce the significance of the correlations between other predictors
and PM2.5 concentrations in the MLR models. It is worth noting that the testing results at site 6
(Whiteface Mountain site, the fifth highest mountain in NYS) showed the most significant differences
after applying vertical predictors for both the MLR and ANN models. This is probably because the
PM2.5 concentrations at Whiteface Mountain are mainly affected by meteorological conditions and
transported aerosols [43].

For NYC sites, both the averaged values (Table 4) and testing results at individual site (Appendix C)
showed comparable statistical scores for two MLR models. Although the performance of the ANN
models showed neutral to positive impacts when applying vertical predictors, the differences in
statistical scores were less significant than those at rural sites. This is probably because the air quality
of NYC sites is influenced by local anthropogenic emissions and photochemical reactions near the
surface, and thus the influence of vertical mixing is limited.

For UNY sites, the statistical scores of the MLR models were comparable, showing limited
influence of vertical predictors. As for the ANN models, model performance showed degradation
with increased MB at most of the sites after applying vertical predictors (Appendix D). The reductions
in RMSE at three sites were relatively minor compared to the increases at two sites, resulting in
an increased average value. This may be due to the spatial variability among UNY sites. Unlike NYC
sites, UNY sites are a group of urban/suburban sites across the state influenced by different local
emissions. The influences of vertical mixing varied among these sites, leading to the degraded testing
results on average.
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were defined as the statistical scores of set 2 model minus those of set 1 model.

Table 4. Averaged statistical scores of four models at rural, NYC and UNY sites.

Model Bias (µg m−3) R-Squared RMSE (µg m−3)

Rural sites

MLR-1 −0.15 ± 2.04 0.55 ± 0.01 3.11 ± 0.20
MLR-2 0.07 ± 2.67 0.54 ± 0.02 3.53 ± 0.54

ANN-1 −2.10 ± 1.00 0.61 ± 0.04 3.25 ± 0.51
ANN-2 −1.02 ± 0.70 0.64 ± 0.06 2.40 ± 0.12

NYC sites

MLR-1 0.09 ± 0.80 0.53 ± 0.05 2.85 ± 0.16
MLR-2 0.10 ± 0.80 0.54 ± 0.05 2.84 ± 0.15

ANN-1 −0.42 ± 0.76 0.68 ± 0.09 2.42 ± 0.33
ANN-2 −0.19 ± 0.89 0.71 ± 0.09 2.31 ± 0.38

UNY sites

MLR-1 −0.04 ± 1.09 0.45 ± 0.04 3.13 ± 0.35
MLR-2 −0.05 ± 1.12 0.44 ± 0.04 3.15 ± 0.36

ANN-1 −0.31 ± 0.70 0.59 ± 0.05 2.66 ± 0.29
ANN-2 −0.13 ± 0.76 0.58 ± 0.05 2.71 ± 0.24
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Additionally, to better understand the influence of vertical predictors on PM2.5 prediction at each
category of sites, the testing results at three sites with the lowest RMSEs were analyzed. The PS 314,
Rockland County, and Rochester sites were selected as the representatives of NYC, rural and UNY sites,
respectively. Additionally, since vertical predictors showed limited contributions in the MLR models
in previous discussions, only the results from the ANN models were discussed. Figure 4 illustrates the
scatter plots between observed and predicted PM2.5 concentrations from the ANN models and the
corresponding data plots at selected sites. For PS 314 site (Figure 4a), data plots showed that the ANN-2
model had better performance in predicting spikes with smaller differences between observations
and predictions, compared to the ANN-1 model. Although the differences were small, the positive
effects of vertical predictors on PM2.5 concentrations at NYC sites were not neglectable. Similarly,
the testing results of the ANN models at Rockland County site (Figure 4b) showed that the ANN-2
model had better capability of predicting spikes. Although the ANN-2 model still showed outliers
in the scatter plot, it provided more accurate estimations with higher R2 and lower RMSE. On the
other hand, the testing results from two ANN models at Rochester site (Figure 4c) were comparable,
showing a limited influence of vertical mixing.
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with available data point as x-axis and PM2.5 concentration as y-axis, of the testing results of the ANN
models at (a-1,a-2) PS 314, (b-1,b-2) Rockland County and (c-1,c-2) Rochester sites. The data point in
data plots are composited from four summers and each point represents one day.
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3.3. The Contributions of Predictors to Surface PM2.5 Concentrations

In this section, the regression coefficients generated by the MLR models and variable importance
estimated from the ANN models were investigated. Figures 5–7 show the signs of regression coefficients
and variable importance at the PS 314, Rochester, and Rockland County sites, respectively. Note that
Lat, Lon, and Alt are fixed values at each site, thus shuffling them did not affect the results. The values
of regression coefficients are listed in Appendix E.Atmosphere 2020, 11, 1303 13 of 22 
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coefficients in the MLR models.

For all sites, MERRA-2 PM2.5 concentration and T showed the highest importance. The positive
regression coefficients of MERRA-2 PM2.5 concentration were related to the positive effects of aerosol
removal processes and chemical reactions on PM2.5 concentrations. The positive coefficients of
T were consistent with previous studies [10,11], which showed warm condition was conductive
for photochemical formation of secondary aerosols. Thus, the high importance of two predictors
collectively indicated that aerosol removal processes and chemical reactions played a dominant role in
PM2.5 concentration during the daytime. Furthermore, the high importance of PBLH at the PS 314 and
Rochester sites indicated the significant dispersion effect in the PBL. During the daytime, radiative
heating on the surface led to a sharp increase in PBLH, resulting in decreasing the PM2.5 concentration
due to stronger dispersion. The weekday also showed significant importance at all sites. The negative
coefficients between weekday and PM2.5 concentrations may be associated with the anthropogenic
emissions from industries and traffic during weekdays.

Additionally, surface wind fields, U and V, and VWSs showed moderate importance. The positive
coefficients of U and V indicated the positive effects of westerly (positive U) and southerly (positive
V) winds, respectively. This was consistent with previous studies, which showed that high PM2.5

concentrations were associated with transported aerosols driven by westerly and southwesterly
flows [41,42]. Moreover, the negative coefficients of M-VWS and L-VWS showed that weak air mass
exchanges above the PBL and stable conditions in the PBL potentially led to high PM2.5 concentrations,
respectively. These results could be associated with the frontal systems caused by the westerly
mid-latitude cyclones, which are common during summer in the Northeast US [42,66]. Additionally,
the strong VWS at higher troposphere could be beneficial for the downward transport of long-range
transported aerosols (e.g., smoke aerosols), resulting in the positive correlation between H-VWS and
PM2.5 concentrations.

At the PS 314 site (Figure 5), the VWS at three levels played a relatively weak role in PM2.5

concentrations compared to the surface conditions. This was consistent with previous discussion,
which mentioned that the influence of local ambient conditions on PM2.5 concentrations were more
significant than vertical mixing at NYC sites. In contrast, M-VWS and L-VWS at the Rochester
site (Figure 6) showed comparable importance with surface winds and RH, indicating a similar,
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even stronger, influence of vertical mixing than surface ambient conditions. Similar phenomenon was
also found at Rockland County site (Figure 7), with higher importance of M-VWS and H-VWS than
surface winds, RH and PBLH. In addition, the low importance of PBLH and L-VWS at the Rockland
County site may indicate a weak PBL-PM2.5 correlation, since the PM2.5 concentrations at rural sites
are relatively low and not dominated by local emissions.

The positive correlation between AOD and PM2.5 concentrations was expected. Since AOD is
an indicator of total-column aerosol loadings, higher AOD represents higher PM2.5 concentration
particularly when most of the columnar aerosol loading is present in the PBL. According to previous
studies, AOD showed significant impacts on PM2.5 concentrations with high variable importance [32].
However, in this study, AOD had moderate importance and relatively weak influence compared to most
of the other predictors. This could be due to the application of MERRA-2 PM2.5 concentration. MERRA-2
is an aerosol reanalysis, which consists of both model simulations and observation assimilation.
Therefore, MERRA-2 PM2.5 concentration already includes AOD information from the assimilated
AOD measurements. The AOD assimilation in MERRA-2 could contribute to the high importance of
MERRA-2 PM2.5 concentration. Since aerosol removal processes and chemical reactions were dominant
during the daytime, MERRA-2 PM2.5 concentration showed higher importance than AOD alone.
The model results without MERRA-2 PM2.5 concentration (not shown) also indicated the significant
contributions of aerosol photochemical reactions with the highest importance of T.

Based on the definition, high AP_ratio reflects the presence of aloft aerosol layers and positive
W_avg represents the atmospheric downward mixing. With strong downward mixings, aloft aerosols
could descend to the surface, resulting in increasing the surface PM2.5 concentrations. The positive
coefficients at all sites indicated the positive effects of aloft aerosols on PM2.5 concentrations. However,
the low importance of the two predictors showed that the influence of aloft aerosols was relatively
minor. It was probably because of the limited cases of the presence of high PM2.5 concentrations
and aloft aerosols, and the capability of AP_ratio in representing aloft aerosols. In addition, the low
importance of PS could be due to its dependence on Alt. Atmospheric pressure provides information
about circulation patterns, synoptic weather systems, and atmospheric stability conditions. Since PS
decreases with height, such relation may dilute the connection between PS and meteorology, and the
correlation between PS and PM2.5 concentrations, especially for UNY and rural sites with a wide range
of Alt values.

4. Conclusions

In NYS, episodic high PM2.5 concentrations due to transported aerosols have been reported in
summer. Driven by synoptic downward mixing and PBL entrainment, pollutants potentially transport
from free troposphere into the PBL and affect PM2.5 concentrations near the surface. In light of the
contributions of transported aerosols to high PM2.5 concentrations in NYS, understandings of the
relationships between the vertical mixing of aloft aerosols and PM2.5 concentrations are important.
This study investigated the influences of various factors on the PM2.5 concentrations in NYS by
analyzing the testing results of multiple linear regression (MLR) and artificial neural network (ANN)
models trained with two sets of predictors. Overall, the ANN models performed better than MLR
models. Additionally, for the ANN models, the predictors of vertical mixing and aloft aerosols
improved the MB, R2 and RMSE by 0.34, 0.02 and 0.17 µg m−3, respectively, on average. Although
RMSEs around 3 µg m−3 were relatively high for NYS, as the RMSEs were one-third and/or close
to the annual PM2.5 average concentrations of 2019, the improvements in model performance were
non-negligible. The leave-one-out cross-validation results showed significant site-variations and
were able to differentiate predictor-PM2.5 correlations at sites with different air quality characteristics.
The model improvement due to vertical mixing and aloft aerosols was more significant at rural
sites, where the PM2.5 concentrations are mainly affected by meteorology and transported aerosols.
The changes in model performance at UNY sites varied among sites, probably due to the spatial
variability within a wide region of UNY. In addition, a joint analysis of regression coefficients
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and variable importance provided insights into the contributions of selected predictors to PM2.5

concentration. The aerosol removal process and chemical reactions showed the highest importance
at three categories of sites (UNY, NYC and rural), and the contribution of vertical mixing was more
significant at UNY and rural sites. However, the influence of aloft aerosols was limited in the current
results. Identifying the cases of high PM2.5 concentrations associated with transported aerosols prior to
training may provide more significant results and better understanding of the influence of aloft aerosols.
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Appendix B

Table A1. Correlation coefficients (R) between variables.

U V RH T PBLH PS MERRA2_PM Lat Lon VI

U
V −0.04

RH −0.22 0.30
T 0.17 0.24 −0.14

PBLH 0.34 −0.32 −0.66 0.21
PS −0.23 −0.10 −0.19 0.32 0.08

MERRA2_PM −0.03 0.26 0.19 0.39 −0.12 0.16
Lat 0.17 0.04 0.14 −0.35 −0.05 −0.70 −0.27
Lon −0.15 −0.05 −0.02 0.13 0.00 0.25 0.15 −0.60
VI 0.10 0.00 0.11 −0.20 0.04 −0.54 −0.18 0.62 −0.21
Alt 0.15 0.07 0.16 −0.38 −0.06 −0.92 −0.23 0.70 −0.40 0.63

Weekday −0.01 0.08 0.03 −0.03 0.00 −0.03 0.08 −0.01 0.01 0.00
H-VWS 0.14 −0.26 −0.18 −0.32 0.22 −0.02 −0.13 0.03 0.01 0.02
M-VWS 0.18 −0.22 −0.19 −0.20 0.20 −0.08 −0.24 0.07 −0.04 0.04
L-VWS 0.14 0.35 0.25 0.06 −0.28 0.02 0.16 −0.09 0.07 −0.11
W_avg 0.15 0.02 −0.04 0.14 0.05 0.29 0.09 −0.23 −0.07 −0.21

AP_ratio −0.01 0.00 0.02 0.00 −0.01 0.00 0.04 0.00 −0.01 0.00
AOD −0.08 0.24 0.27 0.31 −0.10 0.15 0.61 −0.30 0.20 −0.26

Obs_PM 0.06 0.38 0.19 0.49 −0.16 0.04 0.57 −0.05 −0.05 −0.12

Alt Weekday H-VWS M-VWS L-VWS W_avg AP_ratio AOD

U
V

RH
T

PBLH
PS

MERR2A_P
M
Lat
Lon
VI
Alt

Weekday 0.00
H-VWS 0.01 −0.01
M-VWS 0.06 −0.05 0.22
L-VWS −0.11 −0.04 −0.11 0.08
W_avg −0.27 0.01 −0.01 0.04 0.21

AP_ratio 0.00 −0.01 0.01 0.02 0.01 0.00
AOD −0.23 0.09 −0.15 −0.20 0.14 0.07 0.00

obs_PM −0.09 0.02 −0.22 −0.26 0.13 0.06 0.03 0.40

H-VWS, M-VWS and L-VWS are the vertical wind shears of 700–500 hPa, 850–700 hPa and surface –850 hPa,
respectively. W_avg is the average vertical velocity between surface and 500 hPa. AP_ratio is the ratio of AOD
change rate to PM2.5 change rate.
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Appendix C

Table A2. LOOCV testing results of the MLR models at selected air quality sites.

Label Name ID Number
Bias (µg m−3) R-Squared RMSE (µg m−3)

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2

1 Albany 360010005 −1.93 −2.01 0.39 0.40 3.63 3.66
2 Buffalo 360290005 0.37 0.45 0.47 0.47 2.64 2.66
3 Tonawanda II 360291014 0.67 0.72 0.50 0.49 3.33 3.37
4 Rochester 360551007 −0.51 −0.53 0.45 0.45 2.83 2.83
5 Utica 360652001 1.19 1.12 0.41 0.40 3.22 3.21

6 Whiteface Mountain 360310003 2.36 3.47 0.54 0.52 3.22 4.13
7 Rockland County 360870005 −0.18 −0.19 0.55 0.56 2.83 2.82
8 Pinnacle State Park 361010003 −2.64 −3.06 0.56 0.55 3.29 3.65

9 Bronx 360050112 0.32 0.32 0.58 0.58 2.83 2.82
10 PS 314 360470052 1.11 1.08 0.56 0.57 2.68 2.65
11 PS 274 360470118 1.08 1.09 0.55 0.56 2.95 2.93
12 Esienhower Park 360590005 0.49 0.52 0.55 0.56 2.91 2.89
13 IS 143 360610115 −0.93 −0.92 0.58 0.59 2.94 2.92
14 Division St. 360610134 −0.40 −0.41 0.52 0.53 2.83 2.80
15 CCNY 360610135 −0.64 −0.64 0.50 0.51 2.88 2.86
16 Newburgh 360710002 0.69 0.65 0.45 0.46 2.65 2.63
17 Maspeth 360810120 0.84 0.84 0.54 0.55 2.88 2.87
18 Queens 360810124 −0.74 −0.76 0.59 0.60 2.74 2.72
19 FKILL 360850111 −1.06 −1.06 0.41 0.42 3.26 3.25
20 Holtsville 361030009 1.03 1.09 0.54 0.54 2.64 2.67
21 White Plain 361192004 −0.59 −0.52 0.54 0.54 2.91 2.88

Appendix D

Table A3. LOOCV testing results of the ANN models at selected air quality sites.

Label Name ID Number
Bias (µg m−3) R-Squared RMSE (µg m−3)

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2

1 Albany 360010005 −1.42 −1.52 0.57 0.55 2.97 3.07
2 Buffalo 360290005 −0.12 0.66 0.62 0.62 2.24 2.61
3 Tonawanda II 360291014 0.23 0.37 0.62 0.64 2.88 2.79
4 Rochester 360551007 −0.75 −0.26 0.63 0.62 2.40 2.33
5 Utica 360652001 0.51 0.12 0.50 0.50 2.79 2.75

6 Whiteface Mountain 360310003 −2.99 −1.16 0.57 0.57 3.89 2.38
7 Rockland County 360870005 −0.71 −0.10 0.66 0.71 2.63 2.26
8 Pinnacle State Park 361010003 −2.60 −1.80 0.60 0.63 3.22 2.55

9 Bronx 360050112 −0.60 0.72 0.73 0.75 2.35 2.24
10 PS 314 360470052 0.28 0.31 0.73 0.81 1.92 1.64
11 PS 274 360470118 1.25 1.28 0.73 0.79 2.47 2.27
12 Esienhower Park 360590005 0.21 0.34 0.69 0.71 2.47 2.44
13 IS 143 360610115 0.13 −0.16 0.69 0.74 2.38 2.20
14 Division St. 360610134 −0.87 −0.56 0.74 0.76 2.27 2.07
15 CCNY 360610135 −0.98 −1.01 0.70 0.75 2.40 2.25
16 Newburgh 360710002 −1.74 −0.70 0.46 0.49 3.10 2.59
17 Maspeth 360810120 0.14 0.14 0.76 0.79 2.05 1.89
18 Queens 360810124 −0.83 −1.36 0.78 0.78 2.09 2.38
19 FKILL 360850111 −1.15 −2.00 0.54 0.57 2.97 3.32
20 Holtsville 361030009 −0.39 −0.21 0.61 0.62 2.25 2.21
21 White Plain 361192004 −0.88 0.73 0.66 0.68 2.71 2.46
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Appendix E

Table A4. Regression coefficients from the MLR models at PS 314, Rochester and Rockland County sites.

Site U V RH T PBLH
(10−3)

PS
(10−4) MERRA2_PM Lat Lon VI Alt

MLR-1
PS 314 0.088 0.246 0.012 0.437 −1.587 3.611 0.277 1.025 0.068 −5.370 0.007

Rochester 0.101 0.248 0.009 0.424 −1.556 3.568 0.289 0.982 0.075 −4.764 0.007
Rockland County 0.114 0.236 0.012 0.431 −1.586 3.444 0.277 1.018 0.055 −4.851 0.006

MLR-2
PS 314 0.109 0.264 0.012 0.437 −1.678 3.269 0.271 1.005 0.063 −5.298 0.006

Rochester 0.122 0.271 0.010 0.427 −1.689 3.239 0.283 0.959 0.071 −4.715 0.006
Rockland County 0.137 0.257 0.013 0.430 −1.690 3.040 0.272 0.997 0.052 −4.790 0.006

Site Weekday AOD H-VWS M-VWS L-VWS W_avg AP_ratio

MLR-1
PS 314 −0.008 1.342

Rochester −0.008 1.062
Rockland County −0.004 1.111

MLR-2
PS 314 −0.015 1.357 91.666 −118.698 −83.530 0.625 0.009

Rochester −0.015 1.080 105.872 −105.617 −102.905 0.452 0.007
Rockland County −0.012 1.125 88.544 −117.948 −100.918 0.945 0.010
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