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Abstract: Volatile organic compounds (VOCs), ozone (O3), nitrogen oxides (NOx), carbon monoxide
(CO), meteorological parameters, and total non-methane hydrocarbons (NMHC) were analyzed from
simultaneous measurements at the MSU-IAP (Moscow State University—Institute of Atmospheric
Physics) observational site in Moscow from 2011–2013. Seasonal and diurnal variability of the
compounds was studied. The highest O3 concentration in Moscow was observed in the summer
daytime periods in anticyclonic meteorological conditions under poor ventilation of the atmospheric
boundary layer and high temperatures (up to 105 ppbv or 210 µg/m3). In contrast, NOx, CO, and
benzene decreased from 8 a.m. to 5–6 p.m. local time (LT). The high positive correlation of daytime
O3 with secondary VOCs affirmed an important role of photochemical O3 production in Moscow
during the summers of 2011–2013. The summertime average concentrations of the biogenic VOCs
isoprene and monoterpenes were observed to be 0.73 ppbv and 0.53 ppbv, respectively. The principal
source of anthropogenic VOCs in Moscow was established to be local vehicle emissions. Yet, only
about 5% of the observed isoprene was safely attributed to anthropogenic sources, suggesting
significant contribution of biogenic sources into the total levels of ozone precursors. The non-linear
O3–NOx dependence shows a decrease in ground-level O3 with an increase in NOx during the
summers of 2011–2013, which is typical for the VOC-sensitive photochemical regime of O3 formation.
Nevertheless, during the elevated ozone episodes in July 2011, the photochemical regime of ozone
production was either transitional or NOx-sensitive. Contribution of various anthropogenic and
biogenic VOCs into the measured ozone values was evaluated. The ozone-forming potential (OFP) of
total VOCs was 31–67 µg/m3 on average and exceeded 100 µg/m3 in the top 10% of high ozone events,
reaching 136 µg/m3. Acetaldehyde, 1.3-butadiene, and isoprene have the highest ozone production
potential in Moscow compared to that of other measured VOCs.
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1. Introduction

Ozone (O3) is one of the most important secondary pollutants of the atmosphere for a variety of
environmental conditions ranging from heavily polluted urban atmospheres to remote areas subjected
to the impact of regional (biomass burning) and distal sources of ozone precursors through long-range
transport [1,2]. In cities, O3 is mainly formed from complex photochemical interactions of volatile
organic compounds (VOCs) and nitrogen oxides (NOx) [3–6]. VOCs help in oxidizing primary NO
released from various sources to form NO2 and in retaining the existing ozone by competing with
ozone to react with NO [6]. Reductions in VOCs emissions from local and/or upwind sources will
decrease ambient ozone formation (and ground-level ozone concentrations) in VOC-sensitive areas
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but increase ozone production in NOx-sensitive areas. On the other hand, controls of NOx emissions
will decrease ozone formation in areas with the NOx-sensitive regime but increase ozone formation in
VOC-sensitive areas [6–11].

Downwind from climatically important atmospheric pollution sources, ozone production is
largely NOx-sensitive at a regional scale, though urban areas with high NOx emissions are frequently
VOC-sensitive [10,12]. However, some observation-based studies [4,6,10,11,13] have shown that O3

production in an urban environment can also be NOx-sensitive or at least have a mixed (transitional)
regime [5,6,8,12–18]. The latter may indicate that ozone production in cities is sensitive to specific
meteorological conditions affecting a VOC/NOx ratio through a vertical mixing in the planetary
boundary layer for a given strength of ozone precursor emission sources. Hence, a closer study of
high ozone events in large cities is important for choosing an effective ozone control strategy through
reduction of VOCs and/or NOx emissions [10,12].

Ozone concentrations higher than 50 ppbv have a detrimental effect on plants, and levels higher
than 100 ppbv cause irreversible changes in the human respiratory system [19]. High air temperature
and low wind speeds create the most favorable conditions for ozone photochemical production in
Moscow, as in other world megacities, with the daytime ozone levels frequently exceeding its maximum
allowable concentration (MAC = 80 ppbv or 160 µg/m3). Ozone concentrations exceeding the MAC
were recorded in Moscow under strong anticyclonic conditions [20–26].

Despite a significant reduction of industrial plants in Moscow over recent decades, the problem of
air pollution continues to be urgent due to the rapid and steady growth of the city’s car fleet and the
expansion of the motorway area. Hence, understanding the relationship between ozone production and
its precursors as well as their impact on ozone generation is important for development of an effective
ozone control strategy. We studied diurnal and seasonal variability of ozone and its precursors in the
surface air in Moscow; determined the regime of ozone generation; and quantified the contribution of
anthropogenic and biogenic VOCs to O3 generation in polluted urban air.

2. Experiments

Ground level concentrations of various species including VOCs (acetaldehyde, ethanol,
1.3-butadiene, acetone, acetic acid, isoprene, MVK + MACR (isoprene products), benzene, 2-methyl-3-
buten-2-ol (MBO), toluene, phenol, styrene, C8-aromatics, C9-aromatics, and monoterpenes) and
meteorological parameters (air temperature, atmospheric pressure and humidity, solar radiation, wind
speed and direction, cloud height, and rainfall amount) were simultaneously measured (Table 1) at the
joint ecological station of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences,
and the Geographic Faculty of Moscow State University (MSU-IAP) [20]. The site is located in the
southwestern part of Moscow (about 8 km away from the city center) in the green area of the Botanical
Gardens of Moscow State University. The nearest roads with intense traffic are about 300–450 m away
from the site.

Table 1. The compounds measured at the Institute of Atmospheric Physics, Russian Academy of
Sciences, and the Geographic Faculty of Moscow State University (MSU-IAP) site. NOx: nitrogen
oxide; O3: ozone; CO: carbon monoxide; NMHC: non-methane hydrocarbons; VOCs: volatile
organic compounds.

Compound Instrument Response Time, s Range Limits

NOx, ppbv TE42C-TL (Thermo Inc., USA) 60 0.05–200
O3, ppbv 1008AH (Dasibi Inc., USA) 60 1–1000
CO, ppmv TE48S (Thermo Inc., USA) 60 0.05–10
NMHC, µ/m3 APHA-360 (Horiba Inc., Japan) 60 0.1–100
VOCs, ppbv Compact PTR-MS (Ionicon Analytic GmbH, Austria) 0.5/each comp. 0.05–1000

The measurements at the MSU-IAP site corresponded to the State Standards [27] and satisiued the
international requirements for measuring systems operating at the Global Atmospheric Watch network
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of the World Meteorological Organization (GAW WMO) (see [28,29] for the complete description
of the measurement devices). One-hour averages of the measured compounds are used in the
subsequent discussion.

3. Results

3.1. Diurnal and Seasonal Variability of Inorganic and Organic Species

According to Figure 1a, the highest daytime ozone levels in Moscow were observed from April
to August, following closely the annual cycle of the total intensity of solar UV radiation measured
at the MSU-IAP site [30–32]. The observed abrupt increase of ozone levels in early spring, peaking
in April, is a general feature of ozone climatology over the continent as evidenced from a variety of
ozone measurements in both polluted and background environments [33,34]. It has been suggested
previously that the accumulation of ozone precursors during the cold season at northern latitudes
provides a great potential for intense production of ozone under rapid increases of solar UV radiation
in late winter and into early spring (see more discussion in [20,34,35]). It is likely that the observed
springtime ozone maximum at MSU-IAP has two primary contributions, which are the large-scale
tropospheric chemistry and local ozone photochemical production in the polluted boundary layer
under sufficient abundance of odd nitrogen species. Another distinct feature of the MSU-IAP ozone
seasonal cycle is a prolonged spring–summer maximum [28,35,36], which undoubtedly reflects the
primary contribution of large local sources of ozone precursors in the photochemically active period
(April–September) [34] and not the downward ozone flux from the stratosphere and continental-scale
transport from other potentially important areas of net photochemical production of ozone in the
western part of North Eurasia. Over the whole observation period, the highest ozone levels were
observed in July 2011, when daytime O3 mixing ratios exceeded the short-time MAC (80 ppb or
160 µg/m3). These episodes are described in detail below.
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Figure 1. Seasonal variation of daytime O3 (a) and NOx (b) concentrations in Moscow from 2011 to
2013 (MSU-IAP data).

Seasonal daytime NOx variation is opposite to that of O3 (Figure 1b) with the highest values being
observed in winter (up to 130 ppbv). In summer, NOx levels usually did not exceed 30 ppbv. Evidently,
the observed four-fold increase in wintertime NOx levels with respect to the summer values is a local
manifestation of seasonal variations in vertical mixing intensity and associated atmospheric residence
times of pollutants in the lower troposphere over the continent.

Since the origin of the observed enhanced levels of ozone in Moscow during the summer months
is photochemical generation, we focus below on the summertime period of the observations to explore
some basic features of the urban ozone photochemistry.

Meteorological observations at the MSU-IAP site during the summers of 2011–2013 (Figure 2) show
favorable conditions for accumulation of ozone precursors in the surface air and active photochemistry
during a substantial part of the summer months. In the observed period, daytime air temperature
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often reached 25–30 ◦C. Wind speeds were ≤2 m/s on average and exceeded 3 m/s only in 5% of the
whole observation time, thus evidencing generally stagnant meteorological conditions. The prevailing
wind directions were from W and NW to N, which correspond to the transport of relatively clean air,
subjected to a limited impact of regional pollution sources.
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Figure 2. Wind speed, wind rose and maximum daytime air temperature from 3-h MSU-IAP
observations during the summers of 2011–2013. Down arrows are elevated ozone (>80 ppbv) episodes.

According to Figure 3, O3 mixing ratio increases monotonically from early morning, reaching its
maximum value of 34 ppbv (sample mean) at ~4 p.m. LT The diurnal variations of NOx, CO, and
benzene, the latter being an important ozone precursor with anthropogenic origin, are opposite to
that of O3 and characterized by a stable decrease from their morning peak values at 8 a.m. to late
afternoon minimums at ~3–4 p.m. LT. Thus, the observed diurnal variation of the secondary pollutants
was strongly and negatively correlated in the day time hours with the depth of the convective mixing
layer, and the associated changes with vertical mixing intensity, over Moscow, which peaks at 1–3 p.m.
LT, following a daily cycle of radiation and heat balance [37]. Additionally, chemical distraction
of the primary emitted VOCs, with benzene as an example, may contribute to their late afternoon
decrease accompanied by significant accumulation of ozone and other secondary pollutants (Figure 4).
According to Figure 4, the maximum O3 production rate is observed during the late morning hours
(10–12 a.m. LT), which also coincides with diurnal peaks of the most abundant secondary VOCs
(acetaldehyde, acetone, and acetic acid). The origin of the observed late morning maximum of the
above species can be attributed to both photochemical oxidation of primary emitted VOCs after sunrise
and entrainment of partially oxidized products from the upper layers under development of the
convective boundary layer. The latter may be especially efficient for ozone accumulation in prolonged
stagnation conditions leading to overnight retention of secondary organics above a nocturnal inversion
layer [38]. All compounds discussed except for O3 are not normally distributed (see Figure S1 in the
Supplementary Materials). Thus, we calculated the nonparametric Spearman’s correlation coefficients
(Rs) to measure the strength of association between maximal afternoon O3 (3–5 p.m. LT) and maximal
morning (10–12 a.m. LT) mixing ratios of some secondary VOCs during the summer months from
2011–2013. High correlations were found between acetaldehyde, ethanol, acetone, and acetic acid
(Rs = 0.55–0.91) as well as between the above species and the products of isoprene oxidation, MVK
and MACR (Rs = 0.67–0.81) (Table 2). The positive correlation of daytime O3 (Rs = 0.45–0.52) with
secondary VOCs affirms an important role of photochemical O3 production in Moscow during the
summers of 2011–2013.
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Table 2. Daytime summer nonparametric Spearman’s correlation coefficients (Rs) of O3 and its
precursors from 1-h data. Significant at the 0.05 level.

Acetaldeh. Acetone Acet.acid Ethanol MVK +MACR O3 CO NOx

Acetaldeh. 1.00 0.91 0.62 0.55 0.81 0.47 0.00 0.00
Acetone 0.91 1.00 0.58 0.45 0.82 0.45 0.11 0.00
Acet.acid 0.62 0.58 1.00 0.82 0.75 0.60 −0.09 0.00
Ethanol 0.55 0.45 0.82 1.00 0.67 0.52 −0.16 −0.09
MVK + MACR 0.78 0.82 0.75 0.67 1.00 0.49 0.00 0.00
O3 0.47 0.45 0.60 0.52 0.49 1.00 −0.39 −0.49
CO 0.00 0.11 −0.09 −0.16 0.00 −0.39 1.00 0.82
NOx 0.00 0.00 0.00 −0.09 0.00 −0.49 0.82 1

According to the MSU-IAP observations, the toluene to benzene ratio (T/B) was mainly in the
range of 1–2 (mean = 1.39; P75 = 1.50; P90 = 1.89) (Figure 5). This ratio is known to be a safe indicator
of vehicle pollution as well as proximity of the sampled air to the associated pollution sources [39–43].
A T/B ratio approaching 1 indicates traffic-originated emission sources, and the value increases with
the closeness of the pollution source [44]. It suggests that the dominated anthropogenic VOCs source
in the region of the MSU-IAP site during the summers of 2011–2013 was local vehicle emissions.
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Figure 5. Toluene to benzene ratio (T/B) ratio in Moscow from daytime summer values.

The diurnal cycles of biogenic VOCs, isoprene, and monoterpenes were generally weak (Figure 3),
which can be explained by the direction of the prevailing winds (Figure 2) blowing mainly from
areas with highly limited vegetation. Isoprene levels are the highest during the morning hours
(07:00–10:00 a.m.) whereas monoterpenes increase during evening and nighttime hours owing to their
emissions at these hours and accumulation in the stable atmosphere.

Since motor vehicle emissions dominate over other pollution sources in urban environments,
VOCs primarily produced by motor vehicles (benzene, 1.3-butadiene etc.) are commonly used as
suitable exhaust tracers. This allows for quantifying the traffic contributions to ambient isoprene and
then separating biogenic isoprene from traffic emissions [45–47]. The nighttime isoprene/anthropogenic
VOC ratio in a vehicle-polluted atmosphere is supposed to characterize vehicle exhaust [46,48]. We
then used benzene concentration to estimate the traffic contribution to isoprene at the MSU-IAP
site. Since biogenic isoprene emissions are strongly dependent on air temperature and the amount
of local vegetation, nighttime winter isoprene concentrations are supposed to be of anthropogenic
origin. Consequently, the monthly mean diurnal isoprene/benzene ratio was lowest during the
cold season and reached its maximum during the summer months (mean = 0.94), thus following a
seasonal cycle of biogenic isoprene emissions (Figure 6). Yet, the observed high positive nonparametric
Spearman’s correlation between isoprene and benzene on summer days (Rs = 0.69) clearly indicates
significant contribution of the anthropogenic signal in isoprene data during the warm season as well. A
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somewhat better correlation is observed for nighttime winter values (Rs = 0.75). The nighttime winter
isoprene/benzene ratio in the observed site was calculated to be 0.7 on average (see scatter diagram on
Figure 6). It was about 5% of the summer daytime isoprene/benzene ratios. Thus, we suppose that
about 5% of the daytime summer isoprene in Moscow had an anthropogenic origin, presumably from
vehicle exhaust.
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Figure 6. Monthly mean isoprene/benzene ratio from 2011 to 2013 and isoprene versus benzene (black
circles: winter nighttime values; white circles: summer daytime values).

3.2. Ozone Generation in Moscow

Although mean daytime summer O3 concentration at the MSU-IAP was ~30 ppbv (Figure 7),
about 5% of the observed hourly mean ozone mixing ratios exceeded 80 ppbv, marking severe pollution
events in Moscow under favorable weather conditions.

Atmosphere 2020, 11, x FOR PEER REVIEW 8 of 17 

 

  

Figure 7. Frequency distribution and percentiles of O3 daytime (10 a.m.–6 p.m. LT) values during the 
summers of 2011–2013. 

According to Figure 8, ground-level O3 mixing ratios decreased with increasing NOx, which is 
typical for VOC-sensitive urban conditions [5,6]. Since the ozone photochemical production rate 
depends strongly on temperature (Figure 8b), the highest O3 concentrations were observed at air 
temperatures >25 °C under low-NOx conditions (Figure 8a). 

 
 

Figure 8. O3–NOx daytime dependence (a) and O3 versus air temperature (b) from summer daytime 
(10 a.m. –  6 p.m. LT) measurements (R2: determination coefficient; R: Pearson’s correlation 
coefficient). 

According to the authors of [10], efficiency of ozone photochemical production depends on the 
relationship between VOCs and NOx, with an increase in the VOCs/NOx causing an increase in O3 
production per NOx molecule and, consequently, to an increase in O3 ground level concentration. 
Such behavior is clearly evidenced from our data (Figure 9), showing an ozone production efficiency 
value ranging from 1 to 6 ppb O3 per mol NOx based on all summertime measurements. 

Figure 7. Frequency distribution and percentiles of O3 daytime (10 a.m.–6 p.m. LT) values during the
summers of 2011–2013.

According to Figure 8, ground-level O3 mixing ratios decreased with increasing NOx, which
is typical for VOC-sensitive urban conditions [5,6]. Since the ozone photochemical production rate
depends strongly on temperature (Figure 8b), the highest O3 concentrations were observed at air
temperatures >25 ◦C under low-NOx conditions (Figure 8a).
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Figure 8. O3–NOx daytime dependence (a) and O3 versus air temperature (b) from summer daytime
(10 a.m.–6 p.m. LT) measurements (R2: determination coefficient; R: Pearson’s correlation coefficient).

According to the authors of [10], efficiency of ozone photochemical production depends on the
relationship between VOCs and NOx, with an increase in the VOCs/NOx causing an increase in O3

production per NOx molecule and, consequently, to an increase in O3 ground level concentration. Such
behavior is clearly evidenced from our data (Figure 9), showing an ozone production efficiency value
ranging from 1 to 6 ppb O3 per mol NOx based on all summertime measurements.
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Figure 9. Ozone production per molecule of NOx at different VOC/NOx ratios from summer daytime
measurements at the MSU-IAP from 2011 to 2013 (Rs: Spearman’s correlation coefficient).

3.3. High O3 Episodes in Moscow

In summer 2011, two high O3 concentration episodes at the MSU-IAP site were observed, these
were from the 27 July (3–5 p.m. LT) and 28 July (2–5 p.m. LT) pollution events. In these events, hourly
O3 mixing ratios exceeded 80 ppbv, which is well above the short-time MAC value (Figure 10).

Both episodes were observed in the period of hot weather (daytime air temperature >30 ◦C).
During the first episode (27.07), the daytime O3 mixing ratio increased stably and peaked at 4–5 p.m.
LT whereas the observed non-methane hydrocarbons (NMHC) and NOx mixing ratios increased along
with O3 until 4 p.m. LT with a subsequent decrease throughout late afternoon. During the second
episode (28.07), a simultaneous increase in O3 with a decrease in NMHC and NOx, changed by some
outliers, in the concentration graphs of all compounds was observed (Figure 10, right graph) from 3:30
to 5 p.m. LT.
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Figure 10. High O3 episodes in Moscow in July 2011 ((a): 27 July, (b): 28 July) from 1-min measurements
at the MSU-IAP site.

According to the meteorological data (Figure 11), in July 2011 there was hot and dry weather
because of strong anticyclonic conditions. From 27 to 28 July, the anticyclone decayed, which
was accompanied by the respective drop in atmospheric pressure. In the evening (6–9 p.m. LT),
thunderstorms with heavy rain (about 14 mm of precipitations) and squall winds were observed,
accompanied by a change in wind direction from west to east.
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Figure 11. Maximum air temperature, atmospheric pressure at SL (sea level), and speed and wind
direction at the MSU-IAP site from 26 to 27 July 2011.

The observed drop in the concentrations of the species at 28 July.2011 is assumed to be connected
with the change in the weather conditions and ventilation of the boundary layer through the passage
of the front system.

Some studies reported that daytime NMHC/NOx ratios lower than 10 are associated to
VOC-sensitive ozone production regimes whereas daytime NMHC/NOx ratios greater than 20
correspond to NOx-sensitive ozone photochemistry [10,12]. Figure 12 shows that during the first high
ozone episode, the NMHC/NOx ratio was in the range of 10–20, which points to photochemical ozone
production. During the second episode, O3 was produced mainly in NOx-sensitive (~in 80% of cases)
and transitional (~in 20% of cases) regimes.
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Figure 12. Ozone production per molecule of NOx with different photochemical regimes during the
episodes of elevated ozone (Rs: Spearman’s correlation coefficient).

There was no significant increase in the concentrations of VOCs measured on 27 and 28 July
2011 compared to that of other days of the month, except for two compounds: acetone and acetic
acid (Figure 13). During the high ozone episodes, acetone, acetic acid, and isoprene concentrations
exceeded their averages in July 2011 by 5.0, 4.6, and 0.3 ppbv, respectively. Acetone and acetic acid can
be both biogenic and anthropogenic. This is confirmed by the high Spearman’s correlation of these
compounds with biogenic isoprene (Rs = 0.7–0.8), 2-methyl-3-buten-2-ol (MBO) (Rs = 0.8–0.9), and
anthropogenic benzene (Rs = 0.5–0.6) according to our data.
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3.4. VOCs Impact on O3 Generation in Moscow

To estimate the impact of the measured VOCs on ground-level ozone production in Moscow, we
employed the widely used quantity, ozone-forming potential (OFP) [49]:

OFP[µg/m3] = CVOC ×MIRVOC,

where CVOC is a VOC concentration having the dimension of µg/m3 and MIRVOC is a maximum
incremental reactivity, a dimensionless quantity defined as grams of O3 produced per gram of the
VOC [50]. The method allows for estimating the maximum ozone concentration produced from the
chemical destruction of the given VOC based on predefined MIRVOC values.
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For all the measured VOCs in Moscow during the summers of 2011–2013, the OFP values did
not exceed 115 µg/m3 for 90% of the measurement time (Figure 14), with the highest OFP values
observed during the summer of 2011 (mean 67.3 µg/m3, 90-th percentile 103 µg/m3). Acetaldehyde,
1.3-butadiene, and isoprene were found to play the leading roles in O3 generation, whereas benzene,
styrene, phenol, and monoterpenes made a minor contribution to O3 formation in the city (Tables 3
and 4).

During the high July 2011 ozone events, the 90th percentile of OFPs for the total observed VOCs
reached 110–136 µg/m3 (55–68 ppbv), with acetaldehyde (42–60 µg/m3 in 90% of cases) and 1.3-butadien
(16–19 µg/m3 in 90% of cases) making the highest contribution to ozone generation. At the same
time, the estimated inputs of acetone, acetic acid, and isoprene, which increased during the high
O3 episodes (Figure 13), to ozone production were about 2 times less than that of acetaldehyde and
1.3-butadien. The highest O3 production was found during the first episode on 27 July, when the
anticyclonic meteorological conditions were not yet changed, as those changes took place during the
second episode.Atmosphere 2020, 11, x FOR PEER REVIEW 12 of 17 

 

 
Figure 14. Ozone formation potentials in Moscow (summers of 2011–2013). 

Table 3. Daytime ozone-forming potentials (OFPs) (in μg/m3) for VOCs measured at the MSU-IAP 
site during the summers of 2011–2013 (from 1-h VOCs data). 

VOC N Total Mean Standard Deviation P10 P90 
Acetaldehyde 2416 20.39 14.71 4.82 39.84 
Ethanol 2422 4.74 3.12 1.65 9.89 
1.3-Butadiene 2424 13.86 9.73 6.74 28.87 
Acetone 2424 1.45 0.96 0.23 2.71 
Acetic acid 2418 2.91 1.69 1.04 5.33 
Isoprene 2424 9.58 12.06 3.53 26.20 
MVK + MACR 2424 3.57 1.16 2.53 5.14 
Benzene 2424 0.28 0.08 0.20 0.36 
MBO 2424 1.88 0.49 1.44 2.50 
Toluene 2424 1.86 0.80 1.22 2.73 
Phenol 2424 0.87 0.39 0.62 1.22 
Styrene 2424 0.43 0.07 0.36 0.51 
C8-aromatics 2424 2.71 1.17 1.77 4.03 
C9-aromatics 2424 2.24 0.84 1.50 3.02 
Terpenes 2424 0.78 0.25 0.52 1.03 
Total VOCs 2424 67.27 27.04 38.13 102.90 

Table 4. OFPs (in μg/m3) for the high ozone episodes on July 27 and 28, 2011 based on 1-h VOCs 
data. 

VOC 
N Total Mean Standard Deviation P10 P90 
1 2 1 2 1 2 1 2 1 2 

Acetaldehyde 207 264 49.92 33.08 8.76 7.04 39.54 24.6 60.29 42.06 
Ethanol 207 264 14.43 13.39 1.16 1.45 12.88 11.35 15.97 15.07 

1.3-Butadiene 207 264 15.73 12.92 2.15 2.11 13.08 10.39 18.60 15.47 
Acetone 204 264 4.23 3.87 0.40 0.46 3.71 3.38 4.78 4.45 

Acetic acid 182 263 7.27 6.78 0.95 0.90 6.09 5.67 8.59 7.98 
Isoprene 207 264 7.98 6.93 1.64 1.57 5.95 4.85 10.20 8.85 

MVK + MACR 207 264 7.76 6.03 1.39 1.02 5.90 4.73 9.46 7.42 
Benzene 207 264 0.42 0.31 0.06 0.06 0.35 0.23 0.51 0.39 

MBO 207 264 3.25 2.96 0.51 0.53 2.66 2.33 3.95 3.67 
Toluene 207 264 3.03 2.09 0.59 0.45 2.30 1.55 3.91 2.66 
Phenol 207 264 0.81 0.91 0.18 0.18 0.57 0.67 1.06 1.15 
Styrene 207 264 0.37 0.43 0.09 0.08 0.25 0.32 0.48 0.54 

C8-aromatics 207 264 3.57 3.01 0.94 0.65 2.52 2.20 4.85 3.79 

Figure 14. Ozone formation potentials in Moscow (summers of 2011–2013).

Table 3. Daytime ozone-forming potentials (OFPs) (in µg/m3) for VOCs measured at the MSU-IAP site
during the summers of 2011–2013 (from 1-h VOCs data).

VOC N Total Mean Standard Deviation P10 P90

Acetaldehyde 2416 20.39 14.71 4.82 39.84
Ethanol 2422 4.74 3.12 1.65 9.89
1.3-Butadiene 2424 13.86 9.73 6.74 28.87
Acetone 2424 1.45 0.96 0.23 2.71
Acetic acid 2418 2.91 1.69 1.04 5.33
Isoprene 2424 9.58 12.06 3.53 26.20
MVK + MACR 2424 3.57 1.16 2.53 5.14
Benzene 2424 0.28 0.08 0.20 0.36
MBO 2424 1.88 0.49 1.44 2.50
Toluene 2424 1.86 0.80 1.22 2.73
Phenol 2424 0.87 0.39 0.62 1.22
Styrene 2424 0.43 0.07 0.36 0.51
C8-aromatics 2424 2.71 1.17 1.77 4.03
C9-aromatics 2424 2.24 0.84 1.50 3.02
Terpenes 2424 0.78 0.25 0.52 1.03
Total VOCs 2424 67.27 27.04 38.13 102.90
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Table 4. OFPs (in µg/m3) for the high ozone episodes on July 27 and 28, 2011 based on 1-h VOCs data.

VOC
N Total Mean Standard Deviation P10 P90

1 2 1 2 1 2 1 2 1 2

Acetaldehyde 207 264 49.92 33.08 8.76 7.04 39.54 24.6 60.29 42.06
Ethanol 207 264 14.43 13.39 1.16 1.45 12.88 11.35 15.97 15.07

1.3-Butadiene 207 264 15.73 12.92 2.15 2.11 13.08 10.39 18.60 15.47
Acetone 204 264 4.23 3.87 0.40 0.46 3.71 3.38 4.78 4.45

Acetic acid 182 263 7.27 6.78 0.95 0.90 6.09 5.67 8.59 7.98
Isoprene 207 264 7.98 6.93 1.64 1.57 5.95 4.85 10.20 8.85

MVK + MACR 207 264 7.76 6.03 1.39 1.02 5.90 4.73 9.46 7.42
Benzene 207 264 0.42 0.31 0.06 0.06 0.35 0.23 0.51 0.39

MBO 207 264 3.25 2.96 0.51 0.53 2.66 2.33 3.95 3.67
Toluene 207 264 3.03 2.09 0.59 0.45 2.30 1.55 3.91 2.66
Phenol 207 264 0.81 0.91 0.18 0.18 0.57 0.67 1.06 1.15
Styrene 207 264 0.37 0.43 0.09 0.08 0.25 0.32 0.48 0.54

C8-aromatics 207 264 3.57 3.01 0.94 0.65 2.52 2.20 4.85 3.79
C9-aromatics 207 264 2.12 2.05 0.59 0.61 1.33 1.29 2.97 2.88

Terpenes 207 264 0.76 0.71 0.33 0.32 0.30 0.32 1.19 1.13
Total VOCs 207 264 121.70 95.50 12.22 11.27 105.86 81.3 136.38 110.36

Thus, the total contribution of all the measured VOCs to daytime ozone levels in Moscow was
found to be significant in hot and calm weather conditions. O3 production from VOCs was 31–67 µg/m3

on average and in 10% of cases exceeded 100 µg/m3. Anticyclonic conditions with high air temperature
(above 30 ◦C), low cloud cover, and low wind speeds led to active ozone generation in the presence of
local pollution sources and resulted in near-surface day-time ozone mixing ratios exceeding hazardous
levels (OFPs from total VOCs was about 100–122 µg/m3 on average and were higher than 136 in 10% of
calculations).

4. Conclusions

The detailed analysis of ground-level O3 and its precursors measured at the MSU-IAP site located
in the southwestern part of Moscow (about 8 km away from the city center) showed the highest O3 to be
in the daytime warm periods of the observation period. The O3 mixing ratio increased monotonically
from early morning, reaching its maximum value of 34 ppbv (sample mean) at ~4 p.m. LT. However,
anticyclonic meteorological conditions with high air temperatures (above 25 ◦C) and low wind speeds
(2–3 m/s) contributed to O3 reaching a hazardous level (up to 105 ppbv or 210 µg/m3) in the city.

Diurnal variations of anthropogenic O3 precursors, NOx, CO, and benzene, were opposite to
that of ozone, showing a stable decrease from their morning peak values at 8 a.m. to late afternoon
minimums at 5-6 p.m. LT. The observed diurnal variability of the above species can be explained by
changes in vertical mixing intensity in the course of the day. Additionally, chemical distraction of the
primary emitted VOCs, with the benzene as an example, could contribute to their daytime decrease,
accompanied by significant accumulation of O3 and other secondary pollutants. The maximum
O3 production rate was observed during the late morning hours (10–12 a.m. LT) which coincided
markedly with diurnal peaks in a number of the most abundant secondary VOCs (acetaldehyde,
acetone, and acetic acid). The origin of the observed late morning maximum of the above species could
be attributed to both photochemical oxidation of primary emitted VOCs after sunrise and entrainment
of partially oxidized products from the upper layers under development of the convective boundary
layer. The high positive relationships of acetaldehyde, ethanol, acetone, and acetic acid with each
other (Rs = 0.6–0.9) and with the products of isoprene oxidation, MVK and MACR, (Rs = 0.7–0.8) and
no correlation with CO and NOx confirmed the significant role of photochemistry in the production
of these VOCs in the city along with their primary sources. The positive correlation of daytime O3

(Rs = 0.5) with secondary VOCs affirmed an important role of photochemical O3 production in Moscow
during the summers of 2011–2013.
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The toluene to benzene ratio (T/B), which can serve as an indicator of vehicle pollution as well as
air chemical aging, suggested that the dominant anthropogenic VOCs source in Moscow was local
vehicle emissions. The non-linear O3–NOx dependence showed a decrease in ground-level O3 with
am increase in NOx, which is typical for the VOC-sensitive photochemical regime of O3 formation in
Moscow. Increase in the VOCs/NOx ratio caused an increase in O3 production of the NOx molecule
and, consequently, to an increase in ground-level O3 concentration. The NMHC/NOx ratio calculated
for the elevated ozone episodes in July 2011 showed that O3 was mainly generated in the conditions of
transitional and NOx-sensitive photochemical regimes.

The concentrations of the biogenic VOCs isoprene and monoterpenes were 0.73 ppbv and 0.53
ppbv, respectively, on average. Their diurnal variations were poorly distinguished, which may have
been due to the mainly southwest and west winds blowing from the roads and limited vegetation
area. The high positive relationship of isoprene (Rs= 0.7) with the vehicle exhaust tracer benzene in the
summer daytime hours pointed to the impact of anthropogenic isoprene on the data. The calculated
nighttime winter isoprene/benzene ratio showed that about 5% of the daytime summer isoprene in
Moscow was anthropogenic.

For all the measured VOCs in Moscow from 2011to 2013, OFP values did not exceed 115 µg/m3 in
90% of the whole observation period. The highest OFPs were found in 2011 and 2012 (67.3 µg/m3 on
average and did not exceed 103 µg/m3 in 90% of cases). The lowest O3 formation was found in 2013
(31.3 µg/m3 on average and did not exceed 44.3 µg/m3 in 90% of cases). Acetaldehyde, 1.3-butadiene,
and isoprene played the leading roles in O3 generation (9.6–20.4 µg/m3 in average). Benzene, styrene,
phenol, and monoterpenes made less of a contribution to O3 formation in the city (0.3–0.9 µg/m3 in
average). Anticyclonic conditions catalyzed active generation of ground-level O3 in polluted urban air
(OFPs from total VOCs was about 100–122 µg/m3 on average and were higher than 136 µg/m3 in 10%
of calculations).

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/11/1262/s1.
Figure S1: Frequency distribution of some atmospheric compounds in Moscow (summers of 2011–2013).
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