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Abstract: The technologies underlying fire and smoke detection systems play a crucial role in ensuring
and delivering optimal performance in modern surveillance environments. In fact, fire can cause
significant damage to lives and properties. Considering that the majority of cities have already
installed camera-monitoring systems, this encouraged us to take advantage of the availability of
these systems to develop cost-effective vision detection methods. However, this is a complex
vision detection task from the perspective of deformations, unusual camera angles and viewpoints,
and seasonal changes. To overcome these limitations, we propose a new method based on a deep
learning approach, which uses a convolutional neural network that employs dilated convolutions.
We evaluated our method by training and testing it on our custom-built dataset, which consists of
images of fire and smoke that we collected from the internet and labeled manually. The performance
of our method was compared with that of methods based on well-known state-of-the-art architectures.
Our experimental results indicate that the classification performance and complexity of our method
are superior. In addition, our method is designed to be well generalized for unseen data, which offers
effective generalization and reduces the number of false alarms.
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1. Introduction

Despite the rapid growth of technologies and smart systems, certain problems remain unsolved
or are solved with methods that deliver poor performance. One of these problems is the unexpected
outbreak of a fire, an abnormal situation that can rapidly cause significant damage to lives and properties.
According to the Korea Statistical Information Service, the National Fire Agency recordedthat, during
the three years from 2016 to 2018, 129,929 fires occurred in South Korea, resulting in 1020 deaths,
5795 injuries, and damage to properties estimated at USD 2.4 billion [1].

The latest technological advancements in sensors and sensing technologies have inspired
businesses to determine whether these improvements can help to reduce the damage and harm
caused by fire. This is the most frequent and widespread threat to public and social development as
well as to individuals’ lives. Although fire prevention is the top priority to ensure fires do not occur in
the first place, it is nonetheless essential to spot fires and to extinguish them before they have serious
consequences. In this regard, a large number of methods were introduced and tested for early fire
detection to reduce the number of fire accidents and the extent of the damage. Accordingly, different
types of detection technologies in automated fire alarm systems have been formulated and are widely
implemented in practice.
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Two types of fire alarm systems are known: traditional fire alarm systems and computer
vision-based fire detection systems. Traditional fire alarm systems employ physical sensors such as
thermal detectors, flame detectors, and smoke detectors. These kinds of sensing devices require human
intervention to confirm the occurrence of a fire in the case of an alarm. In addition, these systems
require different kinds of tools to detect fire or fumes and alert humans by providing the location
of the indicated place and extent of the flames. Furthermore, smoke detectors are often triggered
accidentally, as they are unable to differentiate between smoke and fire. Fire detection sensors require
a sufficient intensity of fire for clear detection, which can extend the time taken for detection, resulting
in extensive damage and loss. An alternative solution, which could improve the robustness and safety
of fire detection systems, is the implementation of visual fire detection techniques. In this regard,
many researchers have endeavored to overcome the abovementioned limitations by investigating
the combination of computer vision-based methods and sensors [2,3]. A vision-based detector is
advantageous in that it can overcome the shortcomings of sensor-based methods. In addition, this type
of system has several advantages, such as scalability, manageability of installation, and it does not
demand any closedowns. Moreover, the use of computer vision for surveillance applications has
become an attractive research area in which notable advances have been made in the last few years.
Vision-based approaches also overcome various limitations of traditional fire alarm systems, such as the
need for surveillance coverage, human intervention, response time, and detailed reports of the fire with
particulars such as its intensity, rate of spread, and extent. However, the complexity and false triggering
for diverse reasons continue to remain problematic. Accordingly, studies have been conducted to
investigate and address these issues related to computer vision-based technology. Initially, computer
vision-based fire detection applications focused on edgedetection [3] or the color of the fire or smoke
within the framework of rule-based systems. Rule-based systems are vulnerable to environmental
conditions such as illumination, variation in lighting, perspective distortion, and inter-object occlusion.
Solving the abovementioned problems using deep neural networks, such as convolutional neural
networks (CNNs) and region-based CNNs, despite their robustness to lighting variations and different
conditions, continue to present problems. In this case, without appropriate adjustment, a standard
CNN is not effective under any possible circumstances. Creating a robust fire detection system requires
sophisticated effort because of the dynamic and static behaviors of fire, smoke, and the large amount of
domain knowledge that is required to solve the problem. Problems of this nature and extent could be
solved by using machine/deep learning approaches [4,5]. However, solving these problems requires
appropriately designed network architecture to be trained with a huge volume of data to eliminate the
overfitting problem. The abovementioned smoke detection system [4] relies on machine-learning-based
image recognition software and a cloud-based workflow capable of scanning hundreds of cameras
every minute.

In this study, we addressed the aforementioned issues by structuring a convolutional layer that
uses a dilated convolution operator to detect a fire or smoke in a scene. The advantage of this model
is that it can reduce false fire detections and misdetections. For this work, we collected a number of
images containing diverse scenes of fire and smoke to enhance the capability of the fire and smoke
detection model to generalize unseen data. In other words, the utilization of various fire and smoke
images helps to make our approach more generalizable for unseen data. We used one subset of data
for the learning process and evaluated it on a different subset. Several similar methods already exist,
for example that proposed by Abdulaziz and Cho [6], who implemented adaptive piecewise linear
units (APL units). However, when we used their method to process the specific dataset we constructed,
the experiments showed that our proposed method is more effective than theirs in terms of complexity
and accuracy. The majority of the relevant researchers used common CNN architectures to compare
their work, such as AlexNet [7], VGG16, and VGG19 [8]. Therefore, we evaluated our method in
comparison to the abovementioned deep neural network structures.

Accordingly, the following points outline our key contributions:
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(1) We propose a CNN-based approach that uses a dilated CNN to eliminate the time-consuming
efforts dedicated to introducing handcrafted features because our method automatically extracts
a group of practical features to train it. Asit is essential to use a sufficient amount of data for
the training process, we assembled a large collection of images of different scenes depicting fire
and smoke obtained from many sources. Images were selected from a well-known dataset [9].
Our dataset is also available for further research.

(2) We used dilated convolutional layers to build our network architecture and briefly explain the
principles thereof. Dilated convolution makes it possible to avoid learning much deeper, because
it helps to learn larger features by ignoring smaller features.

(3) Small window sizes are used to aggregate valuable values from fire and smoke scenes. The use
of smaller window sizes in deep learning is known to enable smaller but complex features in
an image to be captured, and it offers improved weight sharing. Therefore, we decided to use a
smaller kernel size for the training process.

(4) We determined the number of layers that are well suited to solve this task. Four convolutional
layers were employed because an excessive number of layers allow the model to learn much
deeper. This approach considers that, rather than having to classify a very large number of classes,
the task is a simple binary classification. Therefore, employing many layers will exacerbate the
overfitting problem. In Section 5, overfitting is demonstrated to occur. However, the latter studies
used a larger number of layers, mostly six layers [6].

The remainder of this paper is organized as follows. In Section 2, information about fire and smoke
detection approaches is introduced. The features of our custom dataset are presented in Section 3.
A comprehensive explanation of our proposed method is provided in Section 4. In Section 5, we discuss
all the experimental results. Section 6 highlights a few limitations of the proposed method. Finally,
Section 7 concludes the manuscript with final remarks.

2. Related Work

2.1. Computer Vision Approaches for Fire and Smoke Detection

Many researchers who studied traditional fire and smoke detection systems focused on extracting
crucial features from images. Many of these investigations focused on detecting geometrical characteristics
of flames [10,11] and fires in the images [12,13]. For example, Bheemul et al. [11] suggested an efficient
approach for extracting edges by detecting changes in the brightness of an image of a fire. Jian et al. [13]
presented an enhanced edge detection operator, a Canny edge detector, which uses a multi-stage
algorithm. However, the abovementioned computer vision-based methods were only applicable to
images of simple and steady fires and flames. Other researchers applied new methods based on FFT
(Fast Fourier Transform) and wavelet transform to analyze the contours of forest fires in video scenes [14].
Previous research has indicated that these approaches are suitable only under certain conditions.

Changes in fires were analyzed using red-green-blue (RGB) and (hue, saturation, intensity) HSI
color models. For example, Chen [15] used a color-based approach to detect the discrepancy among
sequential images. Celik et al. [16] proposed a generic rule-based approach that uses the YCbCr
color space to discriminate luminance from chrominance to identify a variety of smoke and fires
in images. Yu et al. [17] also used simultaneous motion and color features for detection purposes.
The use of YCbCr can increase the detection rate of fire in images compared to RGB, because it can
separate luminance more effectively than RGB color space [18]. However, color-based fire and smoke
detection methods are not feasible, because these approaches are not independent from environmental
factors such as lighting, shadows, and other distortions. In addition, color-based approaches are
vulnerable to the dynamic behavior of fire and smoke, even though fire and smoke have a longer-term
dynamic behavior.

The disadvantage of these methods is that they require specific knowledge to extract and explore
the features of fire and smoke in images. In addition, almost all conventional fire detection methods
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use color-based, edgedetection, or motion-based techniques, and these approaches are infeasible for
analyzing tiny and noisy images. Therefore, these methods are limited, because they rely on limited
characteristics of fire and smoke in images such as the motion, color, and edge of the fire or smoke.
Furthermore, extracting these characteristics is also challenging because of the quality of the video
or image.

2.2. Deep Learning Approaches for Fire and Smoke Detection

In recent years, deep learning has emerged significantly because of advances in hardware,
the ability to process large-scale data, and substantial advances in the design of network structures
and training strategies. Additionally, deep learning has been effectively implemented in various fields
such as natural language processing (NLP), network filtering, games, medicine, and vision. Several
deep learning applications have been shown to outperform human experts in certain cases [7,19,20].
In vision-related tasks, computers have already achieved human-level performance. Several studies
have been carried out to detect fire and smoke in images using deep learning approaches to enhance
the reliability and results of these methods.

These approaches for fire and smoke detection differ from those based on computer vision in
various ways. First, deep learning performs automatic feature extraction using a massive amount of
data for training and discriminative features learned by the neural network to detect a fire or smoke.
Another advantage is that deep neural networks can be flexibly and successfully implemented in
various fields, and instead of spending time on feature extraction, they can be changed to construct a
robust dataset and appropriate network structure.

Recently, Abdulaziz [6] introduced a fire and smoke detection network with limited data based on
CNNs and used it with a generative adversarial network (GAN) [21] for augmentation purposes. Instead of
using the traditional activation function, Abdulazizet al. employed adaptive piecewise linear units as an
activation function. Abdulaziz [6] conducted a number of experiments to show an increase in detection.
Sebastien et al. [22] also suggested a model that uses a multilayer perceptron-type neural network to
learn features by an iterative process of learning. In addition, Muhammad et al. [23] experimented
with different fine-tuned versions of various CNN models, such as AlexNet [7], SqueezeNet [24],
GoogleNet [25], and MobileNetV2 [26]. Our proposed model, which allows fire scenes to be semantically
understood, is based on the SqueezeNet architecture. However, the abovementioned deep-learning-based
models improved the fire detection accuracy, with minimum false alarms, but the complexity and size of
the model are comparatively large, that is, 238MB [23]. All of these studies utilized Foggia’s dataset [9]
as the main source of their training data.Ba et al. [27] proposed a new convolutional neural network
(CNN) model, SmokeNet, which incorporates spatial and channel-wise attention in CNN to enhance
feature representation for scene classification. In this study, we proved that using a small kernel size and
a small number of layers can improve the performance and generalizability of the current task. In fact,
by conducting a number of experiments, we proved that this approach could overcome the overfitting
problem for a small number of data samples.

In the image/video classification fields, CNN has outpaced and showed superior performance
compared with other approaches because of its powerful feature extraction techniques and robust
model structure. Consequently, in terms of performance, traditional computer vision methods are
being replaced by deep learning methods. Our proposed method adopts a model to classify fire or
smoke in images/videos. Misclassification of images or videos leads to an increase in false fire alarms
because of variations in perspective distortions, shadows, and brightness. We detected images showing
fire and smoke using a model based on dilated CNNs to learn and extract the robust features of a frame.

3. Dataset

One of the main limitations of vision-related tasks is the insufficiency of robust data for evaluating
and analyzing the suggested method. To find a suitable dataset, we examined datasets that were
used in prior studies. One of the datasets provided by Foggia et al. [9] contains fourteen fire and



Atmosphere 2020, 11, 1241 5 of 15

seventeen non-fire videos. However, the diversity of this video data is insufficient to be suitable for
training, and we cannot expect it to deliver good fire detection performance in realistic scenarios. Thus,
we attempted to create a diverse dataset by extracting frames from fire and smoke videos and collecting
images from internet sources. Our training set consists of fire images sampled from Foggia’s dataset
and from images on the internet. Images of smoke taken from different internet sources diversified our
dataset. We extracted frames from videos and randomly sampled a few images from each video to
build our final fire-smoke dataset for use in this study. Table 1 contains information on the number of
fire and smoke images in our dataset.

Table 1. Distribution of images in the dataset.

Dataset Fire Images Smoke Images Total

Our dataset 8430 8430 16,860

Examples of images that were collected are shown in Figure 1. The red-green-blue (RGB) images
are stored in JPG format and the images are sized 100 × 100 pixels.
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4. Proposed Architecture

4.1. Brief Summary of Well-Known Network Architectures

We propose a novel model for fire and smoke detection. The model is constructed on the basis of
dilated convolutions, and its performance was evaluated with respect to the following well-known
architectures: AlexNet [7], VGGNet [6], ResNet50 [28], and Inception V3 [29]. In 2012, Alex Krizhevsky
published work [7] that was a turning point for vision-related tasks in deep learning. This work
was an advanced variant of LeNet [30] and became a winner of the ImageNet LSVRC-2012 [31]
competition. The AlexNet model is constructed with five convolutional layers, and a max-pooling
operation is applied after the convolutional layers. The output of the last two fully connected
layers feeds data into thousand-way units to produce a probability distribution among thousands of
classes of labels. The success of AlexNet started a revolution in deep learning, and then, VGGNet
and the inception architecture of GoogLeNet achieved similarly high performance in the ImageNet
LSVRC-2014 [31] classification challenge, where VGGNet scored second place after GoogLeNet. In 2015,
ResNetintroduced a “bottleneck” architecture that employs skip connections to fit the input from the
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previous layer to the next layer without changing it. Therefore, it enabled a deeper network and became
the winner of ImageNet LSVRC-2015 [31] as well as the winner of MS COCO 2015 [32]. Although
the aforementioned network models perform more efficiently on the current issue, these network
models are too deep for our two-class classification task. This motivated us to build a model with high
robustness by emphasizing the extraction of useful and specific characteristics of images. In our case,
it is necessary to detect whether fire or smoke appears in a given image.

4.2. Dilated Convolution

The purpose of utilizing convolutions is to aggregate learnable features from the input images.
In computer vision, there are several different filters to extract features for convolutions. Each type
of filter is responsible for extracting different aspects or features from the input data, for example
horizontal, vertical, and diagonal edges. Correspondingly, CNN uses convolutional layers to extract
different features using various filters whose weights are spontaneously updated at the time of the
learning process. All the extracted or learned features are then merged to make decisions concerning
the input data. In addition, convolution takes the spatial relationship of pixels into consideration,
and this is helpful especially in computer vision tasks. In a recent development [31], an additional
hyper parameter referred to as dilation was introduced to the convolutional layer, as illustrated in
Figure 2. The convolution operator is adapted to apply the filters in a different manner in convolutional
layers. The modified version of the convolution operator is referred to as the dilated convolution
operator. The standard (vanilla) convolution is shown in Figure 3. Equation (1) expresses the standard
convolution and Equation (2) the dilated convolution.

(F ∗ k)(p) =
∑

s+t=p

F(s)k(t) (1)

(F ∗ kl)(p) =
∑

s+lt=p

F(s)k(t) (2)

It is clear that, in summation, s+ lt = p indicates that certain points are skipped during convolution.
Furthermore, dilated convolution allows the network to obtain more information from the context and
requires less computational time with fewer parameters, and it allows the model to execute faster than
a model that uses normal convolution. A common use of dilated convolutions is image segmentation,
where each pixel is labeled by its corresponding category. Therefore, the network output needs to have
the same size as the input image.
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This is the origin of the concept of employing convolutions with a dilation rate to solve the
described problem. An excellent idea proposed by René et al. [33] is that of multi-scale context
aggregation. Convolutional layers with the dilation rate have been implemented in various fields,
such as text-to-speech [34] and text interpretation [35]. These methods used dilated convolutions to
aggregate multi-scale context features from the input with fewer parameters. The former of these two
methods employs dilated convolutions to generate speech and music from a raw audio waveform.
Moreover, this method is implemented to recognize speech from a raw audio waveform.

4.3. Proposed Network Architecture

As mentioned earlier, our task is not a classification of 1000 groups; hence, we built a model with
fewer layers, as shown in Figure 4.
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Figure 4. Structure of the network based on dilated convolutional neural networks.

All convolutional layers in this architecture use small receptive field sizes (3×3) and dilated
convolutions with a rate of 2 are employed. The fourth convolutional layer is followed by two fully
connected layers with 2024 nodes and a final output layer with two nodes. The architecture of the
proposed method is provided in Table 2. The input layer takes input data with a fixed shape of
100 × 100 × 3 (width × height × color channel), and all data points are resized to fit the given shape.

The output shape of the first convolutional layer is 96 × 96 × 128. The calculation of the feature
ma is given by Equation (3) [36]. In this equation, (width× height) is the input shape, (Fwidth × Fheight) is
the filter size, Swidth and Sheight are the stride, and P is the padding (it is chosen as “valid” padding in
our case):

Outputwidth =
width− Fwidth + 2P

Swidth
+ 1Outputheight =

height− Fheight + 2P

Sheight
+ 1 (3)
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We employed a rectified linear unit (ReLU) [37] as the activation function after all four convolutional
layers. The mathematical form of the rectified linear unit is expressed as in Equation (4). The advantage
of a ReLU is that its processing speed is higher than those of other nonlinear activation functions;
in addition, a ReLU does not experience the gradient vanishing problem, because the gradient of the
ReLU function is either 0 or 1, which means it never saturates, and so the gradient vanishing problem
does not occur.

y = max(0, x) (4)

Table 2. Layered network structure.

Layer Type Filters Feature Map Kernel Size Stride

Input layer 100 × 100 × 3

1st convolutional layer 128 96 × 96 × 128 3 × 3 × 3 1 × 1

Max-pooling layer - 32 × 32 × 128 2 × 2 3 × 3

2nd convolutional layer 256 32 × 32 × 256 3 × 3 × 3 1 × 1

Max-pooling layer - 16 × 16 × 256 2 × 2 -

3nd convolutional layer 512 16 × 16 × 512 3 × 3 × 3 1 × 1

Max-pooling layer - 8 × 8 × 512 2 × 2 -

4th convolutional layer 512 8 × 8 × 512 3 × 3 × 3 1 × 1

Max-pooling - 4 × 4 × 512 2 × 2 -

Dropout -

1st fc layer 2048

Dropout -

2nd fc layer 2048

Dropout -

Classification(output)layer 2

After each convolutional layer, we employed a max-pooling layer for down sampling purposes.
Max pooling has been proved to be more effective than average pooling for computer vision tasks such
as classification, segmentation, and object detection. Our proposed method functions by increasing the
number of filters by a factor of 2 until the 4th convolutional layer. At the initial layer, 128 kernels are
employed with a dilation rate of 2. The following layer is formed of 256 kernels that is double the first
convolutional layer. The third and fourth layers have the same depth, that is, 512 filters. A common
problem in computer vision is that of over fitting. To prevent the overfitting problem, we use dropout
regularization [38] after the final convolutional and each fully connected layer. AlexNet [7] additionally
employs local response normalization that normalizes over local input regions. Our network architecture
is shallower than that of AlexNet, and the amount of data used to train the model is considerably
smaller. Therefore, the application of any normalizing technique might lead to the loss of the essential
relationship between data points. Eventually, we employed sigmoid activation as the activation function,
as presented in Equation (5), to indicate the probability of the evaluation result.

y =
1

1 + e−x (5)

We trained our model using Keras, a high-level API of the TensorFlow framework, in our
experiments. Keras is an open-source neural network library written in Python. The model was
trained on a workstation with a 3.4 GHz AMD Ryzen Thread ripper 1950X 16-Core Processor and
an NVDIA GeForce GTX 1080Ti GPU with 11 GB of memory. During training, data augmentation
techniques were also used, and we set the number of epochs and batch size to 250 and 64, respectively.
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We employed a stochastic gradient descent algorithm (SGD) [39] to optimize the training process and
set the parameters as follows: initially, we set the momentum to 0.99, the learning rate was 10−5, l2,
and regularizationwas 5× 10−4. We used 80% of the data to train the model, and the remainder of the
data to evaluate the model performance.

5. Experiments and Discussion

5.1. Investigating the Optimum Method for Fire and Smoke Detection

To analyze the efficiency of the model, we carried out extensive attempts to select the appropriate
kernel size, dilation rate, and number of convolutional layers. We used the well-known machine
learning library, Keras, built on top of TensorFlow. Initially, we compared two neural network
models without dilation and with dilated convolutional layers. Figure 5 provides an indication of the
training accuracy.
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Figure 5a,b show that, after the final epochs, the training accuracy for the model (without dilated
convolutional layers) with kernel sizes of three and five was 98.86% and 98.63%, respectively. Compared
with the other two models, the model with dilated convolutional layers delivered higher performance
on training with 99.60% accuracy. The training and testing accuracies of these networks are provided in
Table 3. These results indicate that the training and testing accuracies of the network that implements
dilated convolutional layers are higher than those of the other models. One of the contributions of our
study is the use of dilated convolutions, as we previously mentioned. We carried out a number of
experiments to prove the advantages of using convolutional layers to which dilation is applied instead
of using no dilation, as shown in Figure 5. As mentioned previously, a dilation operator is adapted to
predict each label for each pixel in the images, because it has the capability of expanding the receptive
field without losing coverage.

Table 3. Comparison of training and testing performance of the models.

Method Training Scores Testing Scores

Model (without dilation operator, k =3 ) 98.86% 97.53%
Model (without dilation operator, k = 5) 98.63% 95.81%

Model (with dilation operator) 99.3% 99.06%

We experimented on models by changing the number of layers to identify the model that performs
the best on this task. Figure 6 compares the performance of the model by varying the number of
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convolutional layers. At first sight, it is obvious which model has the highest accuracy, especially when
comparing the models with three and five convolutional layers, the performance of which is similar.
According to Figure 6, the plotted line for the model using four layers indicates the highest accuracy
relative to the other three models.
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With minor variance, the model with four convolutional layers delivers the best performance.
Accordingly, the lowest scores belong to the model two convolutional layers. The training and testing
scores for the model with two convolutional layers are 98.52% and 98.03%, respectively, whereas
the training scores for the models with three and five convolutional layers are 99.38% and 99.36%,
respectively. These results are provided in Table 4. However, the generalization ability of neural
networks with three and five convolutional layers is slightly lower than those of the model with four
layers. Thus, we demonstrated the training and testing accuracy of our proposed method by making
use of four convolutional layers.

Table 4. Comparison of training and testing scores of the models.

Method Training Scores Testing Scores

Model (with two convolutional layers) 98.52% 98.03%
Model (with three convolutional layers) 99.38% 99.06%
Model (with four convolutional layers) 99.60% 99.53%
Model (with five convolutional layers) 99.36% 98.07%

We mentioned above that employing small kernel sizes in dilated convolutional layers might
assist the performance of models. Although the exact size of kernels that perform optimally on this task
was not known for us, we conducted several experiments to find the optimal kernel size. The selected
kernel size proved to be the best option for solving this problem. The performance of the models is
compared in Figure 7.

We started by experimenting with training the model by using different kernel sizes from 3 × 3 to
13 × 13. The plotted lines illustrating the training scores of kernel sizes 11 and 13 indicate the lowest
training scores along with lower testing scores. At the same time, the results for the performance of
our model when the kernel size equals seven demonstrate average performance, as shown in Figure 7.
The training scores for models that employ smaller kernel sizes are higher, and thus, the models are
more efficient in terms of both training and evaluation.
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The testing and training accuracies of the models with kernel sizes of 3, 5, 7, 9, 11, and 13 are
summarized in Table 5. However, it is difficult to differentiate between the performances of the
respective models. Furthermore, the models with smaller kernel sizes performed more accurately for
the purpose of our task. We found a kernel size of 3 × 3 to be the most appropriate option to solve the
fire and smoke detection problem.

Table 5. Comparing the training and testing scores of models using various kernel sizes.

Method Training Scores Testing Scores

Model (kernel size = 3) 99.60% 99.53%
Model (kernel size = 5) 98.69% 98.07%
Model (kernel size = 7) 98.23% 98.83%
Model (kernel size = 9) 98.13% 98.31%

Model (kernel size = 11) 98.06% 98.19%
Model (kernel size = 13) 98.12% 97.95%

5.2. Comparison of Our Network Model with Well-Known Architectures by Conducting Experiments on
Our Dataset

Our experiments mainly aimed to evaluate the performance of our proposed model against
renowned deep learning models, such as VGGNet, AlexNet, ResNet, and Inception V3, all of which
performed exceptionally well with respect to classification in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC). We compared the performance of our method in terms of accuracy.
The training accuracies of these networks are shown in Figure 8.

As indicated in Figure 8, higher training accuracies were obtained by deeper models. Table 6
provides the detailed training and testing scores of all the models. We trained VGG16, VGG19, and their
fine-tuned versions to evaluate their performance against our custom dataset. The results in Table 6
lead to a few conclusions. The highest training and testing scores of 99.6% and 99.53%, respectively,
were achieved by our proposed network model, whereas the scores for VGG19 (fine-tuned) were the
lowest, i.e., 94.6% and 94.88%, respectively. However, the performance of VGG16 was also higher,
even though it is a less deep network in our experiments. The highest performance accuracies were
obtained by the Inception V3 and ResNet50 network architecture. We additionally calculated other
metrics, such as theF1-score, precision, and recall. The F1 score is the weighted average of precision
and recall. Hence, this score considers both false positives and false negatives. Intuitively, it is not as
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easy to understand as the accuracy, but F1 is more commonly used than accuracy. The accuracy is best
used when the false positives and false negatives have similar costs. If the cost of these two metrics
differs, it is more useful to consider both precision and recall. Precision is the ratio of correctly predicted
positive observations to the total predicted positive observations. Recall is the ratio of correctly predicted
positive observations to all observations in the actual class, as shown in Equation (6). As indicated in
Table 6, the F1 score of the proposed method is the highest overall, with a lower score on recall and
precision. In particular, the F1 score of the proposed method is 0.9892 compared with the lowest result,
which was recorded by AlexNet, of 0.7513.We calculated the precision and recall rates as follows:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

F1 =
2× precision× recall

precision + recall
(6)

where TP denotes the number of true positives, FP the number of false positives, and FN the number of
false negatives. Precision is defined as the number of true positives over the number of true positives
plus the number of false positives. Recall is defined as the number of true positives over the number of
true positives plus the number of false negatives.Atmosphere 2020, 11, x FOR PEER REVIEW 12 of 16 
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Table 6. Training and testing scores of our network against those of well-known networks.

Method Training Scores Testing Scores F1-Score Recall Precision

Our Model 99.60% 99.53% 0.9892 0.9746 0.9827
Inception V3 [29] 99.19% 98.31% 0.9744 0.9980 0.9532

AlexNet [7] 98.78% 86.74% 0.7513 0.6131 0.7332
ResNet [28] 99.23% 98.79% 0.9425 0.9364 0.9486
VGG16 [8] 99.04% 98.67% 0.9278 0.8799 0.875
VGG19 [8] 99.29% 98.37% 0.9206 0.8566 0.9949

VGG16 (fine-tuned) 98.85% 98.76% 0.8754 0.8215 0.9368
VGG19 (fine-tuned) 94.6% 94.88% 0.8548 0.887 0.8248

In fact, the computational cost of deeper models, such as AlexNet, VGGNet, and ResNet50, is high,
and they require much more computational time than models that are not as deep. For example,
the parameters of the AlexNet and VGGNet architectures are 60 M and 138 M, respectively. However,
our proposed model has only 24 M parameters. Our experiments proved that, for our two-class
classification task, the generalization of much deeper networks was lower. For instance, the well-known
ResNet50 and Inception V3 network architectures do not generalize well to our custom-built dataset.
Moreover, deeper networks are more complex and, thus, affect the training time and prediction time.
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The deeper networks were much more time consuming for training as well as for prediction (Table 7).
The prediction time in the table is in seconds, and the results reflect the complexity of the model.
Our model spent less time predicting the entire test set, namely 1.9 s; in contrast, Inception V3 had the
longest time of all the models, 8.7 s.

Table 7. Comparing the time required for training and prediction.

Method Training Time (hh:mm:ss) Prediction Time for Test Set (s)

Our Model 2:15:00 1.9
Inception V3 [29] 10:20:00 8.7

AlexNet [7] 9:26:40 7.9
ResNet [28] 10:00:00 8.5
VGG16 [8] 3:20:00 2.4
VGG19 [8] 4:43:20 3.1

6. Limitations

The proposed method may make errors in the early stages when the pixel values in the fire and
smoke images are very close to those of the background. Our method mainly experiences this problem
when the weather is cloudy. In an attempt to overcome this problem, we are currently experimenting
with datasets containing satellite imagery of smoke (USTC_SmokeRS), which consist of RGB images
from more complex land covers. In our research area, dataset images play a significant role in smoke
scene detection.

7. Conclusions

We presented new robust deep learning model architecture for classifying fire and smoke images
captured by a camera or nearby surveillance systems. The proposed method is fully automatic, requires
no manual intervention, and is designed to be well generalizable for unseen data. It offers effective
generalization and reduces the number of false alarms. Based on the proposed fire detection method,
our contributions include the following four main features: the use of dilation filters, a small number of
layers, small kernel sizes, and a custom-built dataset, which was used in our experiments. This dataset
is expected to be a useful asset for future research that requires images of fire and smoke. However,
we are far from concluding that this is the best solution for this task, because all experiments were
conducted on our custom dataset. We verified our method experimentally by conducting several
experiments to demonstrate that employing a dilation operator and a small number of layers can boost
the performance of the method by extracting valuable features. Moreover, using a small number of
layers and less deep networks would allow the model to be used in devices with low computational
power. During the experiments, we assessed the performances and generalizing abilities of well-known
CNN architectures in comparison with those of our proposed method. The experimental results
proved that the performance of our proposed method on our dataset was slightly superior to that of
well-known neural network architectures.

Our future projection is to build a lightweight model with robust detection performance that
would allow us to set up embedded devices, which have low computational capabilities.
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