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Abstract: Bayesian additive regression tree (BART) is a recent statistical method that combines
ensemble learning and nonparametric regression. BART is constructed under a probabilistic
framework that also allows for model-based prediction uncertainty quantification. We evaluated
the application of BART in predicting daily concentrations of four fine particulate matter (PM2.5)
components (elemental carbon, organic carbon, nitrate, and sulfate) in California during the period
2005 to 2014. We demonstrate in this paper how BART can be tuned to optimize prediction
performance and how to evaluate variable importance. Our BART models included, as predictors,
a large suite of land-use variables, meteorological conditions, satellite-derived aerosol optical depth
parameters, and simulations from a chemical transport model. In cross-validation experiments,
BART demonstrated good out-of-sample prediction performance at monitoring locations (R2 from
0.62 to 0.73). More importantly, prediction intervals associated with concentration estimates from
BART showed good coverage probability at locations with and without monitoring data. In our case
study, major PM2.5 components could be estimated with good accuracy, especially when collocated
PM2.5 total mass observations were available. In conclusion, BART is an attractive approach for
modeling ambient air pollution levels, especially for its ability to provide uncertainty in estimates
that may be useful for subsequent health impact and health effect analyses.

Keywords: regression trees; machine learning; Bayesian model; particulate matter; Community
Multiscale Air Quality (CMAQ); aerosol optical depth

1. Introduction

Ambient fine particulate matter pollution (PM2.5) is regulated worldwide because of its
well-established associations with cardiorespiratory diseases and premature mortality [1]. PM2.5 pollution
is a complex mixture of chemically and structurally diverse constituents, including elemental carbon
(EC), organic carbon (OC), metals, and ions such as sulfate and nitrate. Monitoring networks for PM2.5

components are considerably sparser compared to other air pollutants, which contributes to the challenge
of examining differential toxicity across PM2.5 components in population-based studies [2]. The ability to
accurately estimate PM2.5 components at locations and at time points without monitoring data can help
better support epidemiological studies analyses.

Various models have been developed to estimate concentrations of PM2.5 components using
meteorological parameters, land-use variables, simulations from chemical transport models,
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and satellite-derived parameters. These include generalized additive models that allow for nonlinear
associations [3], geostatistical models that incorporate spatial–temporal dependence [4], and machine
learning algorithms such as random forest, neural networks, and ensemble modeling [5–8]. The main
advantages of machine learning methods include the ability to handle large sets of highly correlated
predictors, and the ability to construct complex predictive algorithms that are nonadditive and nonlinear.

However, one limitation of machine learning methods compared to model-based regression
approaches is the lack of uncertainty quantification for individual predictions. To address this
issue, in this paper, we examine the use of a recent statistical learning algorithm, Bayesian additive
regression tree (BART) [9,10] for predicting PM2.5 components. BART employs a sum-of-trees approach,
such that the prediction is based on contributions from many decision trees in a regression framework.
More importantly, BART is a probabilistic model-based method that provides straightforward
uncertainty quantification for predictions (e.g., via prediction standard error and prediction intervals),
which are important for subsequent health impact and health effect analyses [11]. BART has been
utilized in various prediction problems [12–14], but we are not aware of previous applications in
modeling ambient air pollution.

We applied BART to four major PM2.5 components (EC, OC, nitrate, and sulfate) in California
during the period 2005 to 2014 by reanalyzing data from a previous study that used random forest [8].
The main objective was to evaluate the prediction performance of BART and whether it can be
tuned to achieve a balance between prediction accuracy and calibrated uncertainty intervals in
cross-validation experiments. We also investigated the relative usefulness of numerical model
simulations, satellite-derived aerosol optical depth (AOD), and total PM2.5 mass in predicting
component concentrations. Understanding how different predictors contribute to prediction
performance may help guide model development in other study settings.

2. Materials and Methods

2.1. Data Sources

The study area encompassed the state of California and an 80 km buffer from the state boundary.
For the period 2005 to 2014, daily 24 h concentrations of total PM2.5 mass and its components OC, EC,
sulfate, and nitrate from 55 monitors were obtained from the Chemical Speciation Network and the
Interagency Monitoring of Protected Visual Environments (IMPROVE) Network. Data harmonization
to account for different samplers and analytic methods between the two networks was described in
Meng et al. [3]. Monitor locations are shown in Figure S1 (Supplementary Materials).

A spatial grid with the resolution of 1 km by 1 km was designed over the study area to spatially
align predictors at different spatial resolutions. First, we obtained eight satellite-derived fractional AOD
components (components 1, 2, 3, 6, 8, 14, 19, and 21) from the Multi-Angle Imaging Spectroradiometer
(MISR) at 4.4 km spatial resolution. These fractional AOD components aim to reflect different particle
shapes, scattering properties, and effective radius of the aerosol mixture. We also obtained (1) MISR
fractional AOD based on aerosol particle properties (absorption, small, medium, large, and nonspherical
AOD [15], (2) total AOD from MISR, and (3) total AOD from the Multi-Angle Implementation
of Atmospheric Correction (MAIAC) algorithm at 1 km spatial resolution [16]. Each fractional
AOD component aims to represent aerosols with different properties (e.g., particle diameter, shape,
and refractive index), which are described in Table S1 (Supplementary Materials).

Additional predictors include (1) numerical model simulations for total PM2.5 mass, OC, EC,
sulfate, and nitrate from the Community Multiscale Air Quality (CMAQ) model version 5.0.2 at a
12 km spatial resolution, (2) daily average temperature, precipitation, wind speed, solar radiation,
potential evaporation, boundary layer height, and humidity from the North America Land Data
Assimilation Systems Phase 2 at an approximately 13 km spatial resolution, and (3) several land-use
variables (elevation, percent impervious surface, forest cover, shrub cover, and cultivated land),
population density, and length of major roads, highways, and interstate freeways. Additional details
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on data sources and processing steps were given in Geng et al. [8] and are summarized in the
Supplementary Materials.

2.2. Bayesian Additive Regression Trees

BART is a Bayesian regression approach that aims to model a response variable yi as a function of
P predictors xi = (xi1, xi2, . . . , xiP) in a flexible manner that captures potential nonlinear relationships
and complex interactions among predictors. This is accomplished by using a sum-of-trees framework.
Specifically, a BART model with K trees is given by yi =

∑K
k=1 Tk(Mk; xi) + εi, where Tk(Mk; xi) encodes

a specific decision tree structure with a set of terminal nodes Mk (also known as leaves) that are
dependent on the predictor vector xi. The component εi represents independent mean-zero normal
error with variance σ2.

Each tree Tk(Mk; xi) contains a set of internal (nonterminal) nodes with binary splitting rules based
on a single predictor in the form of xi j ≤ c or xi j > c for a threshold c. The decision process continues
until a terminal node is reached and the observation is assigned the leaf value of this tree. The leaf
parameter Mk = (µ1k,µ2k, . . . ,µbk) gives the set of terminal values of the k-th tree with b terminal nodes.
Hence, point predictions from BART can be interpreted as the sum of a specific terminal node from
K trees.

2.3. Bayesian Inference

BART contains three stochastic components: the residual error εi with variance σ2, the tree
structures T1, . . . , TK, and the corresponding leaf node values M1, . . . , MK. One needs to construct
probabilistic distributions that assign prior probability to all possible sum-of-trees. Independence is
assumed a priori between trees, between leaf nodes conditioned on trees, and the residual variance
as follows:

f
(
T1, . . . , TK, M1, . . . , MK, σ2

)
= f

(
σ2

) K∏
k=1

bk∏
l=1

f (µlk|Tk) f (Tk).

The distribution of trees f (Tk) is governed by its depth d, which has a prior distribution that is
proportional to α(1 + d)−β with α ∈ (0, 1) and β ∈ [0,∞). Hence, larger values of α and β favor smaller
trees, and these parameters can be tuned in cross-validation experiments. Terminal node values within
a tree are assumed to follow a normal distribution with mean [max(y) −min(y)]/(2K) and variance σ2

µ.
This is similar to the specification of a “ridge regression” for improving estimation accuracy.

Other probabilistic assumptions in the model include the following: at each internal node,
each splitting predictor variable has equal prior probability of being chosen, i.e., with probability 1/P.
Because of the sum-of-tree approach in BART, a large number of correlated variables may lead to
model overfit and high collinearity. Recently, Linero [17] developed a method that allows for variable
selection to impose sparsity, which we also considered in the analysis. Once the splitting variable is
determined, the splitting value has equal probability from the set of unique values. Finally, the prior
values for variance σ2

µ and σ2 are assumed to follow noninformative inverse Gamma distributions.
BART can be fitted via Markov chain Monte Carlo (MCMC) algorithms that generate samples of

all model parameters and predictions from their corresponding probability (posterior) distributions.
Given S samples of each prediction, the point prediction is defined as the means of all posterior samples,
and a 95% uncertainty/prediction interval is given by the 2.5th and the 97.5th quantiles of posterior
samples. The MCMC algorithms can be efficiently carried using the package BART in the R statistical
software [18]. Details for performing Bayesian inference for ensemble regression tress can be found
elsewhere [19,20].

2.4. Application to California PM2.5 Component Modeling

We applied BART to predict daily concentrations of PM2.5, EC, OC, sulfate (SO4) and nitrate
(NO3). Tuning parameters that control for the number of trees and the depth of the trees were adjusted
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to achieve the correct coverage probability for 95% posterior prediction intervals for in-sample data.
All BART models were fitted with 8000 number of burn-in samples, and 2000 posterior samples were
used for prediction.

We were interested in the importance of four types of predictors: total PM2.5 mass,
CMAQ simulated PM2.5 components, fractional AOD components, and other AOD parameters
(i.e., MAIAC/MISR total AOD and MISR aerosol particle properties). Models with the inclusion of
different groups of the above four types of predictors were fitted to test their relative importance.
The analysis of prediction performance with and without PM2.5 data is of particular interest because
of the potential to leverage the larger PM2.5 monitoring network for estimating PM2.5 components.
All BART models included longitude, latitude, land-use variables, and meteorology.

We considered three types of cross-validation (CV) experiments to assess out-of-sample prediction
performance. In ordinary CV, 10% of data were randomly left out in each CV fold to evaluate prediction
performance at locations with monitoring data. In spatial CV, 10% of monitors were randomly left out
in each fold to evaluate performance at locations without monitoring data. Lastly, in spatial cluster
CV, we first used k-means to group the monitors into 10 clusters on the basis of their longitude and
latitude (Figure S2, Supplementary Materials); then, each cluster was left out in each fold to evaluate
spatial prediction performance at regions without monitoring data and without nearby monitors.
We used three evaluation criteria: the linear R2 and the root-mean-square error (RMSE) between the
left-out observations and predictions, and the empirical probability of the 95% prediction intervals
capturing the left-out values. A model with well-calibrated uncertainty intervals will have an empirical
probability close to 95%.

3. Results

Table 1 presents the out-of-sample prediction performance of a BART model including meteorology,
land use, CMAQ simulations, and MISR fractional AOD with variable selection. We found that,
in general, models without variable selection or with additional AOD did not improve performance
(results in Table S2a–c, Supplementary Materials). The only exception was for OC in spatial cluster
CV where adding other AOD parameters improved performance. For all PM2.5 components,
prediction performance was poorer for spatial prediction compared to prediction at locations with
monitoring data. In spatial CV, R2 was highest for SO4 and lowest for EC, which can be explained by
the higher and lower spatial heterogeneity associated with these two pollutants. PM2.5 total mass is an
important variable for predicting PM2.5 components. Particularly, we saw the largest improvement in
prediction associated with OC. When PM2.5 was included as a predictor, CV R2 was highest for SO4

and OC, and lowest for EC. This is likely due to SO4 and OC being the two major constituents of PM2.5

by mass in the study region.
From Table 1, the 95% prediction interval coverage also showed excellent performance in ordinary

CV and continued to achieve close to 95% coverage for spatial predictions. RMSE and R2 when using
default BART settings are given in Table S3 (Supplementary Materials). We found that, when using the
default settings of prior distributions and 200 trees, the models showed evidence of overfitting as the 95%
prediction intervals had lower coverage probability than desired (78% to 92%). This under-coverage
was likely due to an underestimation of the true residual variability in the model. However, when we
reduced the number of trees and decreased the depth of trees, we could achieve a better 95% coverage
probability, usually sacrificing little R2 (0.02 to 0.05). In some cases, R2 improved further with tuning,
especially in predicting at locations without monitors (e.g., spatial CV for NO3 where R2 improved
from 0.52 to 0.59).

Table 2 gives posterior estimates of two key BART parameters: σ2
µ (variance of terminal nodes)

and σ2 (residual variance). First, we noted that the residual error σ2 decreased considerably when
PM2.5 total mass was included as a predictor. This indicates that the BART ensemble trees were able
to better explain variations in PM2.5 species, which may explain the better prediction performance
observed in Table 1. Second, σ2

µ reflected differences in variability in PM2.5 component concentrations



Atmosphere 2020, 11, 1233 5 of 11

and followed the same order of observed standard deviation for the four components: 3.28 for OC,
2.59 for NO3, 1.08 for SO4, and 0.74 for EC.

Table 1. Tenfold ordinary, spatial, and spatial cluster cross-validation (CV) results using Bayesian
additive regression trees (BARTs) for predicting fine particulate matter (PM2.5) components elemental
carbon (EC), organic carbon (OC), sulfate (SO4), and nitrate (NO3), with and without using PM2.5 total
mass as a predictor. All models include meteorology, land-use variables, Community Multiscale
Air Quality (CMAQ) simulations, and fractional aerosol optical depth (AOD) with variable
selection implemented.

Without PM2.5 With PM2.5

R2 RMSE Cvg95 R2 RMSE Cvg95

Ordinary CV

EC 0.67 0.42 0.95 0.78 0.35 0.95
OC 0.62 1.84 0.96 0.84 1.18 0.95
SO4 0.73 0.56 0.95 0.80 0.49 0.96
NO3 0.65 1.53 0.95 0.80 1.17 0.95

Spatial CV

EC 0.54 0.50 0.93 0.63 0.45 0.93
OC 0.44 2.26 0.93 0.74 1.54 0.92
SO4 0.70 0.59 0.95 0.77 0.52 0.95
NO3 0.59 1.66 0.95 0.71 1.40 0.93

Spatial
Cluster CV

EC 0.51 0.52 0.94 0.64 0.44 0.93
OC 0.27 2.66 0.91 0.69 1.66 0.91
SO4 0.61 0.67 0.93 0.70 0.58 0.93
NO3 0.50 1.83 0.93 0.72 1.38 0.93

RMSE: root-mean-square error; Cvg95: empirical coverage probability of the 95% prediction intervals.

Table 2. Posterior mean and 95% posterior interval of BART variance parameters from models with
and without PM2.5 as a predictor. Parameter σ2

µ describes the variability in terminal nodes across trees
and σ2 describes the residual variability not explained by the ensemble trees.

Without PM2.5 With PM2.5

σ2
µ σ2 σ2

µ σ2

EC 0.19 (0.15, 0.23) 0.14 (0.13, 0.14) 0.19 (0.17, 0.23) 0.09 (0.09, 0.09)
OC 8.88 (8.07, 10.5) 2.21 (2.17, 2.25) 5.01 (4.50, 5.54) 0.91 (0.90, 0.93)
SO4 0.51 (0.43, 0.62) 0.23 (0.22, 0.24) 0.35 (0.39, 0.46) 0.17 (0.16, 0.17)
NO3 7.07 (6.26, 8.21) 1.08 (1.06, 1.11) 7.32 (6.64, 8.75) 0.71 (0.70, 0.72)

Figure 1 demonstrates the usefulness of including AOD parameters or CMAQ simulations in
the set of predictors. In spatial CV, including AOD parameters or CMAQ simulations could improve
R2, especially when PM2.5 was not included as a predictor. However, including PM2.5 as a predictor
resulted in greater R2 improvement compared to including AOD and/or CMAQ. AOD parameters were
most useful for predicting NO3 when PM2.5 was not included as a predictor. Prediction performance
for SO4 and EC depended less on the inclusion of PM2.5, AOD, and CMAQ compared to other
pollutants. Similar observations were found for RMSE, other CV experiments, and BART fitted with
default settings. We tuned BART to have the desired 95% interval coverage. The resulting spatial CV
predictions all had coverage above 90% regardless of the set of predictors used.

Figure 2 describes the importance for AOD parameters in different BART models with and
without the presence of other predictors. Here, variable importance was measured by calculating
the number of times a variable was used for splitting nodes across MCMC iterations. The pattern of
variable importance was robust in models with only AOD, with AOD and CMAQ, or with AOD and
PM2.5. However, the relative importance of different AOD parameters varied across PM2.5 components.
For predicting NO3, AOD3 was highly important, and, for OC, AOD2 was the most important,
followed by AOD8. For SO4, many AOD parameters showed moderate importance.
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Figure 1. R2 of spatial cross-validation (CV) results for predicting PM2.5 components elemental carbon
(EC), organic carbon (OC), sulfate (SO4), and nitrate (NO3), comparing the inclusion of only Multi-Angle
Imaging Spectroradiometer (MISR) fraction AOD, only CMAQ simulations, or both AOD and CMAQ.
All models contain meteorology and land-use variables.

Figure 2. BART variable importance (proportion in trees) of individual AOD fractional components for
predicting PM2.5 components elemental carbon (EC), organic carbon (OC), sulfate (SO4), and nitrate
(NO3), under different predictor sets (with MISR fractional AOD, with AOD and CMAQ simulations,
or with AOD and PM2.5 total mass). All models include meteorology and land-use predictors.
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The importance for CMAQ simulations in different BART models with and without the presence
of other predictors is given in Figure S3 (Supplementary Materials). Similar to AOD, the pattern of
variable importance for CMAQ was robust across models. All PM2.5 components depended on CMAQ
heavily, specifically on the corresponding pollutant (i.e., the CMAQ simulation for EC had the highest
importance for predicting EC concentration). Generally, including PM2.5 reduced the importance of
CMAQ simulations.

Variance importance measures of all predictors are given in Figure S4 (Supplementary Materials).
For both EC and OC, the percentage impervious surface was the most important predictor as it is a
proxy of urbanicity. Other important meteorological and geospatial predictors (ranked among the
top five) included solar radiation for EC, OC, and sulfate, boundary layer height for EC and nitrate,
population density for EC, and percentage forest cover for OC.

One advantage of the regression-based framework of BART is its ability to estimate the marginal
effect (also known as partial dependence function) of a predictor of interest while accounting for all other
predictors in the model. For example, the marginal effect of an AOD parameter at a specific value is
defined as the average predicted PM2.5 component concentrations of all observations with that specific
AOD value. For each PM2.5 component, the marginal effects of the most important fractional AOD
parameter and the corresponding CMAQ simulations are given in Figure S5 (Supplementary Materials).
We observed clear positive marginal associations between these predictors and PM2.5 component
concentration with some evidence of nonlinearity at the low and high values of AOD.

Figure 3 shows the estimated annual pollution concentrations over California for the year 2010,
as well as the corresponding uncertainty measured as the average prediction standard error. Higher
pollution concentrations were estimated in the central valley and southern California, particularly in
the Los Angeles metropolitan area. Prediction standard errors also showed spatial variation and were
largest for OC and EC, especially at regions with estimated high concentrations. Geng et al. [8] found
similar spatial patterns in the four PM2.5 components during the study period 2005 to 2014.

Figure 3. Estimated 2010 annual average of elemental carbon (EC), organic carbon (OC), sulfate, and
nitrate in California. The prediction standard errors are for the annual averages. Concentration is given
in µg/m3.

4. Discussion

Our study showcased the application of BART in modeling ambient air pollution. BART has
received increasing attention in machine learning and statistical research because it borrows strengths
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from both modeling paradigms. Our analysis was motivated by BART’s ability to handle a large
number of predictors via variable selection, complex interactions via the additive tree structure,
and model-based uncertainty quantification via a Bayesian estimation procedure. The recent R package
for fitting BART will further encourage its use in wider applications.

The BART methodology shares some similarities with two commonly used ensemble
machine learning approaches that have been applied in estimating ambient air pollution, namely,
random forest [21] and gradient boosting [22]. Random forest is an ensemble approach that averages
predictions from many classification trees obtained by bootstrapping the original dataset and
subsampling the set of predictors. Gradient tree boosting is a sequential procedure that repeatedly
fits regression trees or other weak learners on the residuals from the previous step such that the
resulting overall predictions can be interpreted as a weighted sum of predictions from multiple trees.
Current implementations of gradient boosting further incorporate resampling of observations [23].
Both random forest and gradient tree boosting are frequently used in predicting ambient air pollution
including fine and coarse particulate matter, ozone, and NO2 across different regions of the world [24,25].

While both random forest and gradient boosting utilize the concepts of combining predictions from
many trees similar to BART, predictions from these two methods are not based on a regression model
with probabilistic components. Specifically, the lack of a residual variance σ2 and the use of various
tuning parameters to favor smaller trees and prevent overfitting make uncertainty quantification in the
resulting predictions challenging [26,27]. The main advantage of BART is that it is constructed such
that key components, i.e., tree structure Tk and leaf nodes Mk, are treated as unknown parameters.
These parameters are estimated jointly in a single Bayesian hierarchical model such that prediction
uncertainties can be easily calculated. The ability to modify distributional assumptions on various model
parameters provides an opportunity to consider various model extensions, e.g., for high-dimensional
predictors [28] and for random effect models [29].

We reanalyzed data from a recent study that utilized random forest [8]. We obtained similar
prediction performance for all pollutants at locations with monitoring data. For spatial cluster
prediction, our best models performed similarly for EC (R2 of 0.51 versus 0.53) and nitrate (R2 of
0.50 versus 0.48), poorer for OC (R2 of 0.39 versus 0.48), and better for sulfate (R2 of 0.65 versus 0.52).
Some of the difference could be attributed to reductions in accuracy to ensure that the prediction
intervals had the desired probabilistic property. The variable importance measure from BART is defined
differently than for random forest, but we identified similar important fractional AOD parameters to
Geng et al. [8]. Specifically, AOD2 and AOD3 were the most significant AOD components, possibly due
to their similar sizes to those of PM2.5 species. Light-absorbing components, AOD8 and AOD14,
were also important predictors in EC and OC models; however, other nonabsorbing components also
contributed to the model, probably because AOD8 and AOD14 were not sensitive enough to provide
the spatial variability. The significance of AOD19 in the sulfate and nitrate models could be caused by
particles with the dust component size distributions and shapes in California.

The main advantage of BART is its ability to provide uncertainty measures that can vary across
space, time, and predictor values. These uncertainties can be used in health impact assessments using
Monte Carlo methods [30–33], as well as in subsequent health effect analyses [33–35]. Previous studies
found that incorporating uncertainties in exposures usually led to larger intervals for health
effect estimates.

One limitation of our BART model is that it did not explicitly account for spatial autocorrelation in
ambient air pollution concentration. Although geographic information such as latitude and longitude
can be used as predictors, BART may not capture small-scale spatial dependence in the outcome.
Previous analyses using machine learning methods considered introducing spatial dependence via
spatially smoothed pollutant concentration as a predictor [5,36]. We were not able to perform a
detailed examination for BART due to the sparse monitoring network for PM2.5 components. However,
this approach may not be optimal for spatial interpolation [37] and makes assessing prediction
uncertainty more challenging because observed concentrations are also used as predictors.
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Another limitation is that our training and prediction datasets were restricted to locations and days
when both MISR AOD retrievals and PM2.5 component measurements were available. The average
number of MISR retrievals is around 30 per year across grid cells, and regulatory monitors typically
provide measurements every 6 days. To gap-fill predictions, recent studies for total PM2.5 mass
considered imputing total AOD that was informatively missing [38,39] and ensemble modeling that
included members without AOD as a predictor [40]. Both approaches warrant further investigation for
predicting PM2.5 components and for BART.

5. Conclusions

BART is an attractive approach for developing flexible prediction models for ambient air pollution
concentrations. In particular, BART offers the ability to provide uncertainty in estimates that may be
useful for subsequent health impact and health effect analyses. In our California case study, major PM2.5

components could be estimated with good accuracy, especially when collocated PM2.5 total mass
observations were available.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/11/1233/s1:
Table S1. Particle properties of the eight MISR fractional AOD; Table S2. Results comparison with alternative BART
models; Table S3. Results comparison with the primary BART model without tuning; Figure S1. Locations of
PM2.5 component monitors; Figure S2. Locations of monitoring data and test group; Figure S3. BART variable
importance (proportion in trees); Figure S4. BART variable importance (proportion in trees) for all variables;
Figure S5. Marginal effects of the most important fractional AOD parameter and CMAQ simulation.
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