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Abstract: Greenhouse Gas (GHG) emissions pose a global climate challenge and the mining
sector is a large contributor. Diurnal and seasonal variations of area-fugitive methane advective
flux, released from an open-pit mine and a tailings pond, from a facility in northern Canada,
were simulated in spring 2018 and winter 2019, using the Weather Research and Forecasting (WRF)
model. The methane mixing ratio boundary conditions for the WRF model were obtained from the
in-situ field measurements, using Los Gatos Research Ultra-Portable Greenhouse Gas Analyzers
(LGRs), placed in various locations surrounding the mine pit and a tailings pond. The simulated
advective flux was influenced by local and synoptic weather conditions in spring and winter,
respectively. Overall, the average total advective flux in the spring was greater than that in the
winter by 36% and 75%, for the mine and pond, respectively. Diurnal variations of flux were notable
in the spring, characterized by low flux during thermally stable (nighttime) and high flux during
thermally unstable (daytime) conditions. The model predictions of the methane mixing ratio were in
reasonable agreement with limited aircraft observations (R2 = 0.68). The findings shed new light
in understanding the area-fugitive advective flux from complex terrains and call for more rigorous
observations in support of the findings.

Keywords: advective flux; aircraft measurements; area-fugitive emissions; methane; open-pit mining;
Weather Research and Forecasting (WRF)

1. Introduction

Atmospheric methane (CH4) is a Greenhouse Gas (GHG) with about 28–35 times more
global warming potential (over a time period of 100 years) than carbon dioxide (CO2) [1–4].
Methane contributes to the generation of further GHGs such as tropospheric ozone and stratospheric
water vapour [4–6]. Methane emissions from natural and anthropogenic sources account for
approximately one-quarter of today’s total warming [7]. In comparison to the longer atmospheric
lifetime of CO2, which implicates long-term warming trends, the lifetime of methane is approximately
10 years, which influences short-term warming trends. Mitigating the amount of methane emissions
can possibly cause an immediate slowdown of the warming trends [8,9]. Therefore, it is very important
to better understand, measure, and quantify the magnitude and variations of methane emissions from
different sources.

The fossil fuel industry is one of the major contributors of anthropogenic methane emissions,
globally (∼100−180 Tg yr−1) [10,11]. For instance, the United States Environmental Protection Agency
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(EPA) has reported that more than a quarter of the methane emissions in the United States result from
the oil and gas industry [12]. GHG emissions occur at various stages of the mining operation, from land
disturbance to distribution. Area-fugitive emissions from the oil and gas sector are one of the largest
contributors of anthropogenic methane in the atmosphere [3,13]. Large discrepancies exist among
various estimates of methane emissions from large open-pit mines and other area-fugitive sources
mainly because of the unaccounted sources of emission and meteorological effects that confound
GHG transport mechanisms in such cases [13]. There is limited literature on area-fugitive methane
emissions from open-pit mining facilities [14,15], mainly because of the logistical, safety, accessibility,
time, financial, and other constraints [15,16]. Most GHG emission inventories and industrial reports
from open-pit mines are based on extrapolation of snap-shot observations or point measurements.
The areal coverage for the stack emission measurement technique is relatively small and not applicable
to large area-fugitive sources. Furthermore, complex topographies and land use, typical of open-pit
mines, may lead to more uncertainty in the GHG emission estimates [17]. Currently, two operational
methods are used to estimate area-fugitive emissions from open-pit mines: (1) bottom-up approach
and (2) top-down approach.

The bottom-up approach is commonly used to estimate the inventory of emissions [18,19]
according to the United Nations Framework Convention on Climate Change (UNFCCC) protocol [1].
In this approach, annual emissions from a facility or segment are estimated by extrapolating the
ground-based measurements from point sources. For instance, flux chambers have been used
extensively to measure emission fluxes just above the ground in selected spatial points or times at a
facility [20]. The top-down approach is relatively new and emissions are estimated using remote or in
situ measurements of mixing ratio levels of GHGs from satellites, research aircraft, drones, or ground
stations. Global atmospheric methane measurements have been reported using satellites such as
the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY)
on-board of ENVISAT, the Greenhouse gases Observing SATellite (GOSAT), TROPOspheric Monitoring
Instrument (TROPOMI) aboard the Sentinel 5 Precursor (S5P) satellite, and the GHGSat [21–25].
Satellites typically measure the column-averaged mixing ratio of methane and other GHGs. To derive
emission fluxes from satellite observations, meteorological predictions are also necessary to be
combined with GHG mixing ratio observations. Aircraft have been used to estimate GHG emission
fluxes from large area sources based on the mass balance approach [19,26–29]. In this method,
common algorithms to estimate the emissions from aircraft observation of the atmosphere include
the Top-down Emissions Rate Retrieval Algorithm (TERRA) [26] and the Mass Balance Estimation
(MBE) method [30]. Drones have been used to measure mixing ratios of GHGs and meteorological
variables downwind of a source and back calculate the emission strength at the source using various
algorithms [31,32]. The Inverse Dispersion Modelling (IDM) approach employs backward Lagrangian
calculations to estimate an emission source strength distributed over an area given limited point
observations downwind [33].

Deficiencies exist for all of the above operational methodologies that result in systematic discrepancies,
up to more than 100%, in estimating emission fluxes using different approaches [12,18,19,28,29].
The bottom-up approach is highly extrapolated in space and time, lacking sufficient accuracy in
reporting actual emission fluxes. The top-down approach based on mass balance and aircraft
measurements has the following limitations: (1) it is costly to fly aircraft frequently; (2) aircraft
cannot fly at elevations lower than 150 m from the ground for safety reasons to measure emission
fluxes accurately, where emission fluxes in the atmospheric surface layer are possibly intensified
under certain atmospheric conditions [26,27]. It is reported that the uncertainty for extrapolating
the aircraft-measured methane emission flux to elevations below 150 m can be more than 20% of
the total emission flux [26]; (3) wind magnitude and direction can change over an hour resulting
in plume drift, which confound emission flux measurements using aircraft [26]; (4) it is difficult to
operate aircraft overnight and in winter conditions to measure diurnal and seasonal variations of
the emission fluxes [26–29,34]; (5) up- or down-scaling of aircraft-measured emission fluxes based on
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mining production is very inaccurate for area-fugitive emissions, since such emission fluxes do not
scale with production [29]. Satellite observations have numerous drawbacks: (1) they cannot observe
GHGs at night or in high latitudes with very oblique solar zenith angles; (2) the spatial and temporal
resolutions are low such that they cannot map a facility continuously with high spatial detail [35,36].
The rudimentary IDM methods suffer in complex topographies and land-use environments where
horizontal homogeneity in meteorological fields cannot be assumed [37,38].

Recent research advancements and availability of computational power have enabled alternative
estimation of area-fugitive emission fluxes of GHGs using forward (or backward for advanced IDM)
dispersion modelling employing mesoscale meteorological models that ingest near-surface-level
observations of GHGs (or downwind observations of GHGs for advanced IDM) and predict the
advective fluxes of GHGs at the model exit boundaries (or near-surface-level emission fluxes of GHGs
at the source for advanced IDM). The advective flux can be different from the emission flux due
to various mechanisms in storing, reacting, and depositing the GHGs in the atmospheric domain,
to be discussed in the methodology section. However, if the advective flux is monitored or predicted
reliably over long time durations of multiple days, it can be used as an alternative measure of the
amount of GHGs that enter the atmosphere. This motivates a paradigm shift in GHG emission
monitoring and regulations. This approach accounts for complex meteorological transport phenomena,
particularly over complex topographies, and enable operational advective flux estimation as it varies
diurnally and seasonally. For instance the Weather Research and Forecasting (WRF) model has a built-in
passive tracer dispersion model [39,40] as well as other chemistry plugin options such as WRF-Chem
and WRF-GHG that can be used to simulate the mixing ratio of GHGs and subsequently advective
fluxes forward in time [41–44]. In such models, the boundary condition for near-surface-level gases is
either implemented as a fixed-mixing ratio [42] or fixed-flux [43,45–49] (e.g., based on measurements or
emission inventories) accounting for spatio-temporal distributions. The fixed-flux approach is not used
in some cases where spatio-temporal inaccuracies exist in the inventory datasets for surface emission
fluxes [43]. Also, over complex terrains with topography and land use variations, the near-surface-level
emission fluxes are very heterogeneous and difficult to measure due to flow variations near the surface,
while mixing ratios of GHGs are less spatially variable [50,51]. This may justify use of the fixed-mixing
ratio boundary condition based on observations. Although such methods do not estimate the emission
flux at the source (e.g., an open-pit mine or a tailings pond), they enable estimation of the advective
flux downwind of the source as influenced by meteorological effects.

Objectives

While most methane emission estimates in the literature are only concerned with midday
conditions, this study aims to quantify diurnal and seasonal variation of methane advective flux
from an open-pit mining facility. This objective is inspired by and based on the premise that varying
earth surface (temperature, moisture, land cover, land use, etc.) [52] and meteorological (thermal
stability, wind speed, etc.) [17] conditions can influence methane advective fluxes that are currently not
reported by previous research. As shown in Figure 1a, the open-pit mining facility is located in northern
Canada near the Wood Buffalo National park. The facility includes a tailings pond, which is an area of
refused mining waste where the waterborne refuse material is pumped. The mining excavations are
primarily conducted over the mine area, which is approximately 100 m deep, with a width-to-depth
aspect ratio of greater than 20. The supporting observations and modelling occurred for twenty days in
May 2018 (late spring) and twenty days in February–March 2019 (winter and early spring). This study
utilized a forward dispersion modelling approach using WRF 4.0 with a passive tracer dispersion
option supplied by near-surface-level boundary conditions with field-measured methane mixing
ratios accounting for spatio-temporal variations over the mine and the pond. The methane advective
flux was then calculated at the model’s inner domain boundary and reported as it varied diurnally
and seasonally and as a function of meteorological conditions. This methodology to determine the
advective flux did not reflect the dynamics of the surface–atmosphere boundary (e.g., biogenic activity
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inside a tailings pond, rate of exposure of the freshly-excavated mining surface to the air, or storage of
methane in a thermally stable surface layer inside the mine at nighttime); instead the focus was on the
meteorologically-modulated advective flux downstream of an emission source. Given the uncertainties
of this method, accurate quantification of real-time emission flux of methane was not possible;
however, quantification of the emission flux over long time durations is possible by monitoring or
predicting the advective flux over multiple days (assuming no reactions, surface deposition, or biogenic
generation of GHGs). This is true since the net stored GHG in the model inner domain will be zero
over extended time periods. In addition, the relative change in the advective flux as it varied diurnally
and seasonally could be provided with sufficient accuracy to inspire further investigation.
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Figure 1. (a) Weather Research and Forecasting (WRF) simulation domains centred at the mining
facility; (b) surface topography in the WRF domain 05; (c) land-use configuration in the WRF domain
05; (d) areas for applying the methane tracer boundary condition in the WRF domain 05; measurement
sites are approximately at the centre of each rectangle.
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2. Methodology

2.1. WRF Model Set-Up

This study used the Weather Research and Forecasting (WRF) 4.0 model with the Advanced
Research WRF (ARW) dynamical core [53] and with a passive tracer dispersion option. The model
was configured with five nested domains using one-way nesting, with the outermost domain (d01)
covering most of the western and northern Canada and parts of the northern United States, while the
innermost domain (d05) mainly covered the mining facility, comprised of the tailings pond and
the mine. As in Nahian et al. [17], a ratio of 1/3 was used for both time step and horizontal grid
spacing in successive nested grids. The time step for d01 and d05 were ∼60 and ∼1 s, respectively.
The third order Runge–Kutta split-explicit scheme was used for time integration. In the horizontal
directions, the grid spacings for d01 and d05 were 41,000 and 506.17 m, respectively. In the vertical
direction the model had 90 eta levels from the surface up to an altitude of 20 km, with the lowest level
located at 25 m above ground and the first twelve levels below 2 km above ground (approximate height
of the daytime Planetary Boundary Layer (PBL)). The map illustrating the position of the domains is
shown in Figure 1a. The WRF configuration and physics scheme details are summarized in Table 1.

Table 1. WRF configurations and physics options.

Category Configuration Option

Planetary Boundary Layer (PBL) MYJ [54]
Microphysics Thompson Scheme [55] (d01, d02, and d03 only)
Longwave radiation RRTMG [56]
Shortwave radiation RRTMG [56]
Cumulus scheme Tiedtke Scheme [57] (d01, d02, and d03 only)
Surface Layer (SL) Monin–Obukhov Eta Similarity Scheme [54]
Land Surface (LS) model Noah Land Surface Model [58]

To construct the most recent topography of the mining facility, in d01, d02, and d03 the standard
Global 30 Arc-Second (GTOPO 30s) dataset in WRF was used, which provided a horizontal resolution
of 900 m. For d04 and d05, the Shuttle Radar Topography Mission (SRTM) 1s dataset with a horizontal
resolution of 30 m was used [59,60]. For d05, the background resolution (SRTM 1s) was overwritten
with an up-to-date Light Detection And Ranging (LiDAR) dataset with a horizontal and vertical
resolution of 1 m to reflect the presence of the tailings pond and the mine. Figure 1b shows the
topographic map updated with SRTM 1s and LiDAR datasets.

For a realistic simulation of the atmospheric dynamics and dispersion, the finest details of the
land-use configuration should be accounted for in the WRF model [17]. Nahian et al. [17] found
that WRF simulations of meteorological variables, at the same mining facility, were closer to the
observations when the latest mine topography and modified land-use configurations were used. As a
result, in that study the model biases reduced from 1.10 to 0.08 m s−1, from 1.04 to 0.50 m s−1, from 0.98
to 0.32 K, and from 45.7 to 17.3 W m−2, for near-surface-level wind speed, boundary-layer wind speed,
near-surface-level potential temperature, and turbulent sensible heat flux, respectively. Land-use
configuration of the Moderate Resolution Imaging Spectroradiometer (MODIS) 30s data product
(Modified 21-category IGBP-MODIS land use) by Friedl et al. [61] was used with classifications for
the tailings pond (lake = 21), mine (barren = 16), plant and lodge (urban and built-up = 13), and other
(grassland = 10). The Subin et al. [62] and Gu et al. [63] lake model in WRF was enabled to properly
simulate the thermodynamics and aerodynamics effects of water bodies on the atmosphere. For the
tailings pond and other water bodies, a depth of 50 m was considered, and the lake model accounted
for 25 model layers including up to 5 layers for snow, 10 layers for water, and 10 layers for soil.
The land-use configuration used for WRF simulations is shown in Figure 1c.
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The meteorological initial and lateral boundary conditions were obtained from the National
Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS) dataset with a
spatial resolution of 0.25◦ and a temporal resolution of 6 h [64].

2.2. Methane Transport in WRF

The near-surface-level methane mixing ratios were obtained from field observation campaigns
at the mining facility. Mixing ratios of methane were measured at an elevation of ∼2–10 m above
ground in various locations surrounding the mine and the tailings pond using Los Gatos Research
Ultra-Portable Greenhouse Gas Analyzers (LGRs). The LGRs were placed at four locations surrounding
the mine and four locations surrounding the tailings pond. As shown in Figure 1d, in WRF,
four rectangular patches were defined, each centred around the measurement point, corresponding to
both the mine and the tailings pond. The total methane source areas covered by the patches were made
equal for both the mine and the tailings pond and were kept the same for all simulations. The combined
surface area of four source locations was 29.72 km2. The frequency of measurement was 15 minutes.
The mixing ratio of the measurement was averaged every four hours and updated in the WRF model
as the boundary condition; the four-hour averaging was required by the limitations of running WRF,
which mandated a recompilation of the source code every four hours with updated near-surface-level
boundary conditions for methane. The mixing ratios were applied at the model’s lowest level at 25 m
above ground [39]. The WRF source code was modified to enable the methane release from a specified
location of interest. This allowed analyzing relative advective fluxes between the mine and the tailings
pond and reporting relative advective fluxes as they varied diurnally and seasonally.

In order to explore the methane mixing ratio variation, and the advective flux, in different
meteorological conditions, WRF model simulations were conducted during May 2018 (late spring)
and February–March 2019 (winter and early spring) corresponding to methane observations for both
the mine and the tailings pond at the mining facility. Mine simulations were conducted for ten days
on 18–27 May 2018 (late spring) and on 16–25 March 2019 (late winter and early spring), respectively.
Tailings pond simulations were conducted for ten days on 01–10 May 2018 (late spring) and on
14–23 February 2019 (winter), respectively. The operations of the mining facility remained the same
during the study period, except for a short duration of shift change for the operation staff ocurring
daily at 0600 and 1800 local standard time (LST = UTC − 7).

In WRF the passive tracer mixing options were enabled. The passive tracer had no chemical
properties and was treated by the model as a scalar variable. The passive tracers were released
at every time step and they were transported horizontally and vertically by the model-simulated
wind field and turbulent parameterization using the Surface Layer (SL) and PBL schemes [40].
The main transport mechanisms influencing the spatio-temporal distribution of a passive tracer
mixing ratio in the PBL were horizontal/vertical advection, horizontal/vertical turbulent transport,
and SL fluxes [65]. The Monin–Obukhov SL scheme provided vertical flux of the tracer using similarity
relations [54,66]. The MYJ PBL scheme parameterized the Turbulence Kinetic Energy (TKE) using a 2.5
closure scheme [67]. For horizontal turbulent transport, a second-order diffusion equation was solved
employing an eddy diffusion coefficient as a function of TKE and other model parameters. For vertical
turbulent transport, the tracer vertical flux was computed by employing an eddy diffusion coefficient,
which was also formulated using TKE and other model parameters [68].

WRF was spun-up for 12 h before releasing the passive tracer from the specified surface grid points.
The tracer output after the first 3 h of release was used as the initial and lateral boundary conditions,
except for the near-surface-level boundary condition, where the observed mixing ratio was used.
In order to find the variation in advective flux under different diurnal and seasonal times, simulations
were conducted for four-hour time intervals of 0000–0400, 0400–0800, 0800–1200, 1200–1600, 1600–2000
and 2000–2400 LST, when measured near-surface-level mixing ratios were used as constant boundary
conditions, while meteorological fields were updated according to the GDAS dataset at a much higher
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time resolution of ∼1–60 s. The advective methane flux at the model inner domain exit boundary was
calculated and is reported with a one-hour time resolution.

2.3. Flux Calculation

Using the divergence theorem, the methane emission flux F from a control volume box
surrounding an open-pit mining facility can be given by [26]

F = Fadv + Fturb + Fsur f + Fmass + Fchem, (1)

where Fadv and Fturb are the advective and turbulent fluxes through the box walls and top lid, Fsur f
is the surface flux due to deposition or biogenic generation of methane, Fmass is the flux associated
with increasing mass within the control volume due to density changes, and Fchem is the flux due to
chemical reactions involving methane. Accounting for turbulent flux in WRF requires Large-Eddy
Simulation (LES) of methane transport with a high sampling frequency of wind and tracer solutions
every 5 min or less [27,45]. However, in this case a PBL scheme was used at coarser resolutions
to be able to simulate an overall long time-span of 40 days for the estimation of the flux with the
sampling frequency of the solution every 1 h. Using LES and wind tunnel experiments, it was
estimated that the horizontal turbulent flux of the tracer was upwind and 10–20% of the magnitude
of the advective flux [27,45]. Over short ranges in the inner WRF domain, the flux due to deposition,
biogenic generation, and chemical reactions of methane may be ignored given the fact the site land
was mostly bare (except for the emission source areas) or developed for residence and industrial
operations [49]. Further, the surrounding boreal forest is known not to be a source for methane flux (in
fact the boreal forest is a sink for methane flux) [52], so the measured methane mixing ratio could be
assumed to be generated from area-fugitive sources and not influenced by background methane levels.
Therefore, the divergence theorem reduces to F = Fadv + Fmass. If this flux is monitored or predicted
over a long time duration, Fmass should average to zero since the built-up and release of the stored
methane in the model inner domain cancel over many days, so a prolonged monitoring or prediction
of Fadv provides an alternative measure of the amount of GHGs entering the atmosphere. In fact,
these assumptions could be justified using ground-based and aircraft measurements of the methane
emission flux at the same facility, where it was estimated that the turbulent, surface, mass, and chemical
fluxes of methane were at most up to ∼3–5% of the advective flux, combined [26]. With these
assumptions and previous evidence, the advective flux alone contributed to ∼95–97% of the total
emission flux. So for operational purposes, we could calculate the advective flux, to provide an
estimate of the total flux, as

F =
∫∫

north
V SdA +

∫∫
east

U SdA −
∫∫

south
V SdA −

∫∫
west

U SdA +
∫∫

top
W SdA, (2)

where U, V, and W were the average components of the wind velocity vector in (m s−1) evaluated at
each grid cell on a bounding box containing the emission source, and S was the average concentration
of the methane tracer in (µg m−3) for a given grid cell on the bounding box. Note that if a tall box
is considered that stretches to altitudes many multiples of the PBL height, then integration of the
advective flux on the box top is not necessary, since it would be zero. The tracer units of (ppm) could be
converted to (µg m−3) having the molecular weight of methane MCH4 = 16.04 g mole−1, total pressure
for a grid cell as a function of height P(z) in (Pa), average temperature for a grid cell as a function of
height T(z) in (K), and the gas constant R = 8.314 J mole−1 K−1 by

S =
P(z)MCH4

RT(z)
× MR, (3)
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where MR was the average tracer mixing ratio for the grid cell in (ppm). Having the average potential
temperature for the grid cell as a function of height Θ(z) in (K) as a model output, we could calculate
the temperature at any given height for the grid cell using

T(z) = Θ(z)
(

P(z)
P0

)3.5

, (4)

where P0 was the reference sea-level pressure in (Pa). This allowed calculation of the advective flux
of methane in units of mass per time, for example, in (tonne hr−1). Even though there were inherent
errors for neglecting some flux terms, this simplified way enabled the method to quantify diurnal and
seasonal variations of flux for operational purposes.

2.4. Statistical Analysis

The advective fluxes computed from the methodology of the previous section associated with
different emission sources (e.g., mine or pond), diurnal time, or seasons, can be compared to one
another using a statistical test. The two-sample t-test was performed to find if the difference between
two calculated average advective fluxes (e.g., FCH4,1 and FCH4,2) associated with two simulations was
statistically significant with a confidence level of 95%. The t-test rejected (R for p < 0.05) or accepted
(A for p > 0.05) the Null Hypothesis (NH) that there was no difference in the mean advective fluxes
between two cases in question, i.e., µ1 = µ2. The t statistic is given by

t =
FCH4,1 − FCH4,2√

S2
1

n +
S2

2
n

, (5)

where overbars represented averages, n was the sample size, and S1 and S2 were the sample standard
deviations for the fluxes. A degree of freedom was also considered for the t-test according to
Nahian et al. [17]. The Normalized Average Difference (NAD) was used to represent the shift between
two sets of model simulations, given by [69]

NAD =
2(FCH4,1 − FCH4,2)

FCH4,1 + FCH4,2
. (6)

The Pearson’s Correlation Coefficient (PCC) between variables FCH4,1 and FCH4,2 is given by

PCC =
∑n

i=1(FCH4,1,i − FCH4,1)(FCH4,2,i − FCH4,2)√
∑n

i=1(FCH4,1,i − FCH4,1)2
√

∑n
i=1(FCH4,2,i − FCH4,2)2

, (7)

where overbars represented averages and n was the sample size. A PCC value close to 1 indicates that
both variables are highly correlated, while a PCC value close to zero shows that there is no correlation.
A negative PCC value close to −1 indicates anti-correlation.

3. Results

3.1. Diurnal and Seasonal Variation of Advective Flux

The near-surface-level mixing ratios of methane were measured at four locations surrounding
the mine and four locations surrounding the tailings pond using Los Gatos Research Ultra-Portable
Greenhouse Gas Analyzers (LGRs). The LGR measurements were made during field campaigns in
late spring 2018 and winter and early spring 2019. These field measurements were, for the mine
from 18 to 27 May 2018 (M18), the tailings pond from 1 to 10 May 2018 (P18), the mine from 16
to 25 March 2019 (M19), and the tailings pond from 14 to 23 February 2019 (P19). Figure 2 shows
the time series of four-hour-averaged near-surface-level mixing ratio of methane at four observation
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locations during the M18, P18, M19 and P19 field campaigns; the four-hour averaging was required
by the limitations of running WRF, which mandated a recompilation of the source code every four
hours with updated near-surface-level boundary conditions for methane. Figure 3 shows the time
series of hourly advective methane flux for all the simulations. These figures can be studied in
conjunction with Figure 4 showing the PCC matrix calculated for the near-surface-level mixing ratio,
normalized advective flux, and near-surface-level meteorological variables. The mine showed more
diurnal variations in the mixing ratios as can be seen from the many observed elevated peaks for
both the M18 and M19 measurements. For the M18 observations in late spring, the elevated mixing
ratios were mostly in the nighttime or early morning hours. One reason for diurnal variation could
be meteorological and thermal stability conditions. This is also in agreement with the negative
correlation between the average Mixing Ratio (MR) of four locations with WRF-simulated wind
speed at 10 m (S10)(PCC = −0.32) and upward surface Sensible Heat Flux (SHF) (PCC = −0.44).
M19 observations of MR also showed negative correlation with S10 (PCC = −0.33). In comparison to
the mine observations, the tailings pond mixing ratio showed less diurnal variation. P18 observations
showed more variability in comparison to P19 observations.
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Figure 2. Time series of LGR-measured four-hour-averaged near-surface-level mixing ratios MR of
methane at four observation locations during the M18, P18, M19 and P19 field campaigns indicated in
Figure 1d; numbers on the horizontal axis indicate the start of the day using local standard time (LST =
UTC − 7); (a) Mine May 2018; (b) Pond May 2018; (c) Mine March 2019; (d) Pond February 2019.

The hourly-simulated methane advective flux FCH4 from the inner domain (05) boundaries,
surrounding the open-pit mining facility, was calculated. There were four groups of WRF simulations,
each 10 days long, following the same time periods of M18, P18, M19 and P19 LGR observations of
methane mixing ratio. Figure 3a shows the times series of hourly-normalized advective flux of methane
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(F̂CH4) for 10 days associated with M18, P18, M19 and P19 simulations, respectively. The advective
flux was normalized by the average hourly advective flux (FCH4) calculated for the duration of 10
days in each case. Here the value of one on the vertical axis represents the average advective flux.
This figure can be studied in conjunction with Figure 4 showing the PCC matrix calculated for the
near-surface-level mixing ratio, normalized advective flux, and near-surface-level meteorological
variables. It must be noted that reporting absolute advective fluxes with high accuracy using this
method is only possible if the mixing ratio of near-surface-level methane is rigorously measured in
numerous points. For this study, data from only four measurement locations were available at a
time, therefore, the advective flux was reported in the normalized form. Nevertheless, this analysis
was informative to provide the behaviour of diurnal and seasonal variations of advective flux with
some confidence.
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Figure 3. Time series of WRF-simulated normalized advective flux of methane (F̂CH4 ) from the inner
domain (05) boundaries, surrounding the open-pit mining facility; numbers on the horizontal axis
indicate the start of day using local standard time (LST = UTC − 7); (a) Mine May 2018; (b) Pond May
2018; (c) Mine March 2019; (d) Pond February 2019.

As can be seen in Figure 3a for the mine simulations M18 in the late spring, during the thermally
stable nighttime and early morning periods, the advective flux could be as low as 20% of the
average, while during the thermally unstable mid afternoon hours it could be as high as 400% of the
average. These percentage values could change from day to day as the meteorological conditions
over the mining facility changed. In M18 simulations, the advective flux was highly correlated
with S10 (PCC = 0.82) and SHF (PCC = 0.74) (Figure 4a). This can also be seen from the time
series of S10 and SHF (Figure A1a in Appendix A) and colour plots of F̂CH4 at given S10 and
SHF values (Figure A4a in Appendix A). The lower advective flux at nighttime corresponded to low
S10 and SHF, while the higher advective flux during daytime corresponded to high S10 and SHF
(Figures A1a and A4a in Appendix A). Diurnal changes in the advective flux from the tailings pond
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simulations P18 could be seen in Figure 3b. In comparison to M18, there were attenuated advective flux
peaks during the thermally unstable mid afternoon hours, while the same trend in advective flux was
witnessed at the thermally stable nighttime and early morning hours. In P18 simulations, the advective
flux was highly correlated with S10 (PCC = 0.81) but anti-correlated with SHF (PCC = −0.43)
(Figure 4b and Figures A1b and A4b in Appendix A). The anti-correlation was expected given the
difference in surface temperatures between the water bodies and the surrounding earth surfaces [17].
Per Figure 4a,b the correlation coefficients among other meteorological variables were indicative of
diurnal variations associated with local weather patterns.
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Figure 4. Pearson’s Correlation Coefficient (PCC) of near-surface-level Mixing Ratio of methane (MR),
normalized advective flux (F̂CH4 ), wind speed at 10 m (S10), upward surface Sensible Heat Flux (SHF),
temperature at 2 m (T2), Relative Humidity at 2 m (RH2), and Sea Level Pressure (SLP); all data except
MR used here were from WRF simulations; MR data were from the LGR observations; (a) Mine May
2018; (b) Pond May 2018; (c) Mine March 2019; (d) Pond February 2019.

For mine simulations M19 in late winter and early spring, as shown in Figure 3c, for the first few
days a higher advective flux was predicted during the nighttime and early morning hours, while a
lower advective flux was predicted during the mid afternoon hours. This seasonal change in the
advective flux could be caused by the meteorological conditions in winter that were associated with
synoptic events. In M19 simulations, the advective flux was highly correlated with S10 (PCC = 0.62)
but not SHF (Figure 4c and Figures A1c and A4c in Appendix A). The Sea Level Pressure (SLP) for
M19 simulations (Figure A3c in Appendix A) in winter was higher than SLP for M18 simulations
in the late spring (Figure A3a in Appendix A). Nevertheless, the last few days of M19 simulations
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showed a diurnal variation in the advective flux similar to the M18 simulations (Figure 3a) possibly
as local weather patterns emerged in the early spring. The methane advective flux from the tailings
pond simulations P19 in winter is shown in Figure 3d. The advective flux exhibited a totally different
pattern from the P18 simulations in the late spring (Figure 3b). A clear diurnal pattern in variation of
advective flux could not be seen in P19 simulations suggesting that synoptic weather conditions could
be prominent over local weather conditions. In this case the advective flux was only highly correlated
with S10 (PCC = 0.79), similar to the first few days of M19 simulations. The SLP for P19 simulations
(Figure A3d in Appendix A) in winter was higher than SLP for P18 simulations in the late spring
(Figure A3b in Appendix A). The findings were in agreement with previous studies that showed,
in winter, there were high correlations between the synoptic scale pressure systems and pollutant
mixing ratios [70,71]. The high pressure system in the lower elevation combined with low wind speed
and temperature inversion could prevent the vertical dispersion of the GHGs in the air and therefore
the GHGs were not transported significantly away from the source. In M19 and P19 simulations no
notable correlations were found between the advective flux and any other meteorological variable.
Overall, among all the meteorological variables considered, the wind speed was most highly correlated
with the advective flux for all cases, in agreement with previous findings concerning short-range
landfill methane emission fluxes [72].

To better understand the diurnal and seasonal variation of the advective flux statistically,
the simulated hourly advective fluxes were grouped in four-hourly time intervals 0000–0400, 0400–0800,
0800–1200, 1200–1600, 1600–2000, and 2000–2400 local standard time (LST = UTC − 7) over the 10 days
of M18, P18, M19 and P19 simulations. The Normalized Average Difference (NAD) was calculated to
determine the difference in average advective fluxes (FCH4) between four sets of model simulations,
i.e., M18-P18, M18-M19, M19-P19, and P18-P19. The two-sample t-test was employed to investigate if
the differences between the average total (or the four-hourly) advective fluxes (FCH4 ) were statistically
significant. Statistical p values were used to check the statistical significance for a confidence level of
95%. The t-test rejected (R for p < 0.05) or accepted (A for p ≥ 0.05) the Null Hypothesis (NH) that
there was no difference in advective fluxes between two cases in question. Table 2 shows the values of
NAD, and the two-sample t-test results.

As can be seen in Table 2, the average total (combining all the time intervals) advective flux
(FCH4) from the mine for the M18 simulation was slightly higher than that from the pond for the P18
simulation, but the difference was not statistically significant (NAD = 0.131, NH = A). The average
total advective flux from the mine for the M18 simulation was significantly higher than that of
M19 simulations (NAD = 0.356, NH = R). The average total advective flux from the mine for M19
simulation was significantly greater than that from the pond P19 simulations (NAD = 0.542, NH = R).
The average total advective flux from the pond for the P18 simulation was significantly higher than
that of P19 simulations (NAD = 0.747, NH = R). Overall, it was found that the average total advective
flux in late spring was statistically significantly greater than those in winter and early spring by 36%
and 75%, for the mine and pond, respectively. The four-hourly analysis revealed that there could
be a statistically significant difference (NH = R) in the average advective flux from the mine versus
the pond in the same season or from the same source in different seasons. Concerning M18 and P18
simulations, it can be seen that the mine advective flux could be less than the pond advective flux
under thermally stable conditions by up to 62% (0000–0400 LST) while being greater under thermally
unstable conditions by up to 31% (1200–1600 LST). Concerning M19 and P19 simulations, on the
contrary it can be seen that the mine advective flux could be greater than the pond advective flux for
most diurnal times by up to 89% (all time intervals except for 1200–1600 LST). This could be explained
by dominance of synoptic weather conditions in the winter and early spring as opposed to local
weather conditions in the late spring. Concerning M18 and M19 simulations, winter and early spring
advective flux from the mine could be greater than that in late spring for some diurnal times by up to
124% (0000–0400, 0400–0800, 2000–2400 LST) but less at other times up to 126% (0800–1200, 1200–1600
LST). Concerning P18 and P19 simulations, the late spring advective flux from the pond could be
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greater than that in the winter and early spring for some diurnal times by up to 112% (1200–1600,
1600–2000 LST).

Table 2. Normalized Average Difference (NAD) of WRF simulated advective flux (FCH4 ); two-sample
t-test to check the null hypothesis (NH) that there was no difference in average advective fluxes (FCH4 )
between two cases in question; accept (A) meant there was no difference, while reject (R) meant there
was a difference with a confidence of 95%; n is the sample size; the time intervals in local standard time
(LST = UTC − 7).

Time Flux Difference N AD t p NH

Total Mine 2018 minus Pond 2018 (M18−P18) 0.131 1.248 0.212756 A
n = 240 Mine 2018 minus Mine 2019 (M18−M19) 0.356 3.909 0.000106 R

Mine 2019 minus Pond 2019 (M19−P19) 0.542 10.107 0.000001 R
Pond 2018 minus Pond 2019 (P18−P19) 0.747 7.090 0.000001 R

0000–0400 Mine 2018 minus Pond2018 (M18−P18) −0.618 −4.250 0.000059 R
n = 40 Mine 2018 minus Mine 2019 (M18−M19) −1.238 −12.224 0.000001 R

Mine 2019 minus Pond 2019 (M19−P19) 0.585 6.221 0.000001 R
Pond 2018 minus Pond 2019 (P18−P19) −0.204 −1.634 0.106262 A

0400–0800 Mine 2018 minus Pond 2018 (M18−P18) −0.261 −1.653 0.102335 A
n = 40 Mine 2018 minus Mine 2019 (M18−M19) −0.924 −7.901 0.000001 R

Mine 2019 minus Pond 2019 (M19−P19) 0.894 8.545 0.000000 R
Pond 2018 minus Pond 2019 (P18−P19) 0.223 1.676 0.097836 A

0800–1200 Mine 2018 minus Pond 2018 (M18−P18) 0.158 0.769 0.443962 A
n = 40 Mine 2018 minus Mine 2019 (M18−M19) 0.540 2.749 0.007422 R

Mine 2019 minus Pond 2019 (M19−P19) 0.720 5.891 0.000001 R
Pond 2018 minus Pond 2019 (P18−P19) 1.037 4.778 0.000008 R

1200–1600 Mine 2018 minus Pond 2018 (M18−P18) 0.313 2.657 0.009570 R
n = 40 Mine 2018 minus Mine 2019 (M18−M19) 1.256 10.477 0.000000 R

Mine 2019 minus Pond 2019 (M19−P19) 0.111 0.610 0.543310 A
Pond 2018 minus Pond 2019 (P18−P19) 1.124 6.506 0.000001 R

1600–2000 Mine 2018 minus Pond 2018 (M18 − P18) 0.086 0.498 0.619959 A
n = 40 Mine 2018 minus Mine 2019 (M18−M19) 0.749 5.251 0.000001 R

Mine 2019 minus Pond 2019 (M19−P19) 0.280 2.159 0.033945 R
Pond 2018 minus Pond 2019 (P18−P19) 0.911 4.143 0.000086 R

2000–2400 Mine 2018 minus Pond 2018 (M18 − P18) −0.103 −0.518 0.605774 A
n = 40 Mine 2018 minus Mine 2019 (M18−M19) −0.796 −6.542 0.000001 R

Mine 2019 minus Pond 2019 (M19−P19) 0.688 5.717 0.000000 R
Pond 2018 minus Pond 2019 (P18−P19) −0.022 −0.114 0.909626 A

3.2. Methane Plume Visualization

Figure 5 shows examples of a simulated total column mixing ratio of methane from several
simulations. The total column mixing ratio was calculated by summing the mixing ratio of methane
in each grid cell in a vertical column. Two examples were chosen each from M18, P18, M19 and P19
simulations corresponding to different thermal stability (M18, P18) and synoptic (M19, P19) conditions.
Figure 6 shows the contour plots of temperature at 2 m and wind barbs at 10 m corresponding to the
examples shown in Figure 5. The methane plume vertical cross-sections at the boundary of the model’s
inner domain (05) can be seen in Figure 7 corresponding to the examples shown in Figure 5.
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(a) Mine 2018-05-27-1400
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(b) Mine 2018-05-20-0200
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(c) Pond 2018-05-08-1400
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(d) Pond 2018-05-04-0200

0 2 4 6 8 10 12 14 16 18 20 22
Distance from west to east (km)

0
2
4
6
8

10
12
14
16
18
20
22

Di
st

an
ce

 fr
om

 so
ut

h 
to

 n
or

th
 (k

m
)

0

2

4

6

8

10

12

14

CH
4 

Co
lu

m
n 

To
ta

l (
pp

m
)

(e) Mine 2019-03-23-1400
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(f) Mine 2019-03-20-0200
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(g) Pond 2019-02-18-1400
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(h) Pond 2019-02-15-0000

Figure 5. WRF-simulated total-column mixing ratio of methane; the white lines show the perimeter of
area sources for methane mixing ratio boundary condition for the mine and pond; times in local
standard time (LST = UTC − 7); (a) Mine 2018-05-27-1400; (b) Mine 2018-05-20-0200; (c) Pond
2018-05-08-1400; (d) Pond 2018-05-04-0200; (e) Mine 2019-03-23-1400; (f) Mine 2019-03-20-0200; (g) Pond
2019-02-18-1400; (h) Pond 2019-02-15-0000.
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(a) Mine 2018-05-27-1400
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(b) Mine 2018-05-20-0200
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(c) Pond 2018-05-08-1400
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(d) Pond 2018-05-04-0200
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(e) Mine 2019-03-23-1400
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Figure 6. Wind barbs at 10 m and temperature contour at 2 m; the white lines show the perimeter of area
sources for methane mixing ratio boundary condition for the mine and pond; times in local standard
time (LST = UTC − 7); (a) Mine 2018-05-27-1400; (b) Mine 2018-05-20-0200; (c) Pond 2018-05-08-1400;
(d) Pond 2018-05-04-0200; (e) Mine 2019-03-23-1400; (f) Mine 2019-03-20-0200; (g) Pond 2019-02-18-1400;
(h) Pond 2019-02-15-0000.
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Figure 7. Vertical cross-section of the simulated methane mixing ratio at the south, east, north and
west boundaries of domain 05; times in local standard time (LST = UTC − 7); (a) Mine 2018-05-27-1400;
(b) Mine 2018-05-20-0200; (c) Pond 2018-05-08-1400; (d) Pond 2018-05-04-0200; (e) Mine 2019-03-23-1400;
(f) Mine 2019-03-20-0200; (g) Pond 2019-02-18-1400; (h) Pond 2019-02-15-0000.
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Figure 5a shows the predicted total column mixing ratio of methane released from the mine during
the afternoon at 1400 LST on 27 May 2018. Influenced by westerly winds (Figure 6a), during this period
the methane plume appearance was primarily on the eastern part of the mining facility. During the
mid afternoon hours in late spring the boundary layer was thermally unstable, characterized by higher
wind speeds and temperatures (Figures A1a and A2a in Appendix A), and the methane plume was
well mixed within the convective boundary layer up to 1-2 km Above Grade Level (AGL), in agreement
with previous aircraft observations [26,28,29], as can be seen in the eastern boundary of Figure 7a.
Figure 6a shows that temperature and wind speed over the mine pit were higher than those over
the tailings pond, which can be explained on the basis of higher heat capacity of the water bodies in
comparison to the surrounding land [17,73]. Figure 5b shows the predicted total column mixing ratio
of methane released from the mine during the nighttime at 0200 LST on 20 May 2018. Influenced by
southerly winds (Figure 6b), during this period the methane plume was seen on the northern part of
the mining facility. At this time the boundary layer was thermally stable, characterized by the lower
vertical height of the plume under 150 m AGL (Figure 7b) and lower wind speed and temperatures
(Figure 6b). At this time, the temperature over the pond was higher than that over the mine [17,73].

Figures 5c,d show the predicted total column mixing ratio of methane released from the pond
during the afternoon at 1400 LST on 08 May 2018 and during the nighttime at 0200 LST on 04 May 2018,
respectively. During the mid afternoon the boundary layer was thermally unstable as characterized
by the higher wind speed and temperatures (Figure 6c and Figures A1b and A2b in Appendix A),
and the methane plume was well mixed within the convective boundary layer up to 1–2 km AGL
as can be seen in the eastern boundary of Figure 7c. During the nighttime at 0200 LST the boundary
layer was thermally stable as illustrated by lower wind speeds and lower temperatures (Figure 6d and
Figures A1b and A2b in Appendix A), characterized by the lower vertical height of the plume under
300 m AGL as can be seen on the western boundary of Figure 7d.

Figure 5e,f show the simulated total column mixing ratio of methane during the afternoon at
1400 LST on 23 March 2019 and during the nighttime at 0200 LST on 20 March 2019, respectively.
The methane plume appearances on the south-western (Figure 7e) and northern (Figure 7f) boundaries
were consistent with the wind directions shown in Figures 6e,f, respectively. The predicted methane
total column mixing ratio during the afternoon at 1400 LST on 18 February 2019 and during the
nighttime at 0000 LST on 15 February 2019 can be seen in Figures 5g,h, respectively. The plume
mainly appeared on the northern and western boundaries of the mining facility for the afternoon and
midnight simulations, respectively. These were also consistent with the wind directions (Figures 6g,h)
and methane plume vertical cross sections (Figures 7g,h). Under synoptic weather conditions in winter
and early spring, it was noted that the plume rose up to no more than 400 m AGL. This was supported
by the fact that the boundary layer exhibited conditions closer to a thermally stable state as evidenced
by snow cover on the ground (not shown), lower temperatures (Figure 6 and Figure A2 in Appendix A),
and lower Sensible Heat Flux (SHF) (Figures A1 and A4 in Appendix A) compared to late spring.

3.3. Model Evaluation against Aircraft Observations

Limited aircraft observations of the methane mixing ratio in the PBL were available to compare
with the WRF predictions. The Convair-580 aircraft belongs to the National Research Council
(NRC) of Canada, and methane measurements were performed using a Picarro model G2401-m
instrument. Aircraft measurement details (including those of methane and state parameters) were
detailed elsewhere [28,29]. The aircraft flew in a box flight pattern around the facility on 31 May 2018
and measured the methane mixing ratio with a sampling frequency of 0.5 Hz. On this day the methane
plume was measured on the west face of the box flight and the measurement was centred around
1100 LST (the box flight typically took 1 to 2 h to complete). The aircraft minimum altitude on this
flight was about 550 m AGL and the maximum altitude was 1850 m AGL. For model validation, the
WRF simulations were run using four-hourly-averaged methane mixing ratios over both the mine
and the pond in May 2018 as boundary conditions, which were updated in the model every four
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hours. This was needed since in reality there would be simultaneous emissions from both locations
although they were not measured simultaneously. The WRF solution was extracted at 1100 LST in
grid cells closest to the aircraft latitude, longitude, and altitude positions. In other words, for every
aircraft measurement at a frequency of 0.5 Hz, a solution was sampled from WRF. Figure 8 shows the
comparison of aircraft versus WRF predictions of methane mixing ratio after removing the background
mixing ratio from the methane measurements of the aircraft. The bias and root mean square error for
this comparison were 0.0543 and 0.0530 ppm, respectively. The coefficient of determination R2 for this
comparison was 0.68. This evaluation provided confidence in the ability of the WRF model to simulate
the plume transport adequately.
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Figure 8. Comparison of aircraft observations and WRF predictions of methane mixing ratio at
1100 LST on 31 May 2018 (R2 = 0.68); the background mixing ratio of methane is subtracted from the
aircraft observations.

3.4. Sources of Uncertainty

Although the methodology in this study enabled simulation of diurnal and seasonal variations
of area-fugitive methane advective flux from the open-pit mining facility with some confidence,
various sources of uncertainty could be proposed for the current approach. The meteorological
predictions of the WRF model for this mining facility were evaluated in detail against near-surface-level
and PBL observations in a previous study [17]. The methane mixing ratio predictions of the WRF
model was also compared against limited aircraft observations for the current facility in this study.
Nevertheless, the authors did not possess rigorous methane mixing ratio observations within PBL over
many diurnal times and seasons to evaluate the advective flux predictions in more detail. Most satellite
products considered (e.g., TROPOMI, GOSAT, and GHGSat) did not provide total column methane
mixing ratio measurements at nights or co-incident with near-surface-level observations using LGRs for
the open-pit mining facility. Finding methane mixing ratio observations within PBL in the winter was
even more difficult due to lack of satellite data products or aircraft measurements. In the current model
it was assumed that each of the four measured methane mixing ratios near surface was constant within
a box area, however, in reality the mixing ratio could vary at finer spatial scales, so deployment of
more near-surface-level instruments measuring the methane mixing ratio could enhance the accuracy
of the flux predictions. Current research effort for this mining facility aims to deploy many tens of
such near-surface-level instruments for future predictions. The WRF model is sensitive to grid spacing
changes [17,74]. It was beyond our scope to provide sensitivity results for changing the model grid
spacing, although for the PBL scheme used, the horizontal grid spacing of 506.7 m in the inner domain
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and use of 90 vertical levels were appropriate and also frequently used by other relevant studies in the
field [68].

4. Discussion

4.1. Conclusions

To the authors’ knowledge, this is the first modelling study to quantify the diurnal and seasonal
variation of area-fugitive advective flux of methane from a complex open-pit mining facility in
northern Canada using WRF. The methane mixing ratio boundary conditions for the WRF model
were obtained from the in-situ field measurements in various locations surrounding the mine pit
and a tailings pond for two seasons in late spring in 2018 and winter and early spring in 2019.
Methane transport was simulated using passive tracer dispersion in WRF. To find the variation
in the advective flux under different diurnal times, the simulations were conducted for blocks of
four-hour time intervals, where methane mixing ratio boundary conditions were updated in the model
according to the observations, while meteorological fields were updated according to the Global Data
Assimilation System (GDAS) dataset. The dispersion and advective flux patterns from an active mining
facility were confounded by the complex topography, variation in land use, and meteorological effects
at micro and mesoscales.

It was found that there were significant (p < 0.05 or with 95% confidence level) diurnal and
seasonal differences in the methane advective flux from the mine and the pond. In late spring, advective
flux was influenced by local weather conditions, while in winter and early spring, the advective
flux was influenced by synoptic weather conditions, in agreement with previous findings [70,71].
Among the meteorological variables considered, the advective flux was most highly correlated with
wind speed (winter and spring), in agreement with previous findings [72], but the advective flux could
also be moderately correlated with other variables such as sensible heat flux near surface (late spring).
Overall, it was found that the average total advective flux in late spring was statistically significantly
greater than those in winter and early spring by 36% and 75%, for the mine and pond, respectively.
The diurnal variation of the advective flux was more notable in late spring, characterized by lower
advective flux at nighttime under thermally stable conditions and higher advective flux during daytime
under thermally unstable conditions. In late spring, methane plume visualizations indicated a plume
rise up to the top of the PBL height of 1–2 km AGL under thermally unstable conditions, in agreement
with previous findings [26,28,29], while the visualizations indicated a plume rise up to 150 m and
300 m AGL under thermally stable conditions for the mine and pond, respectively. In winter and
early spring, methane plume visualizations indicated a lower plume rise up to 400 m AGL due to the
boundary layer being closer to the thermally stable condition. The WRF model predictions of methane
mixing ratio were evaluated against aircraft observations on midday on 31 May 2018. The bias and
root mean square error for this comparison were 0.0543 and 0.0530 ppm, respectively. The coefficient
of determination R2 for this comparison was 0.68.

4.2. Implications

Although this approach did not estimate the emission flux at the source (e.g., an open-pit mine
or a tailings pond), it enabled estimation of the advective flux downwind of the source as influenced
by meteorological effects. This approach motivates a paradigm shift in GHG flux monitoring and
prediction from area-fugitive sources. Given that measuring the emission flux near the surface over
complex heterogeneous terrains is inherently difficult [50,51], alternatively the advective flux can
be estimated downwind using near-surface-level observations of GHG mixing ratios at the source
with the aid of mesoscale modelling. This can be justified due to the fact that the storage and
release of GHGs in the mesoscale modelling domain (enclosing the source) average to zero over
multiple days, so the advective flux (in the absence of GHG chemical reactions, surface deposition,
or biogenic generation) ultimately provides a proxy or estimate for the amount of GHGs that enter
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the atmosphere. The methodology used can be applied to other situations where large scale land
surface modifications require micro and mesoscale Numerical Weather Prediction (NWP) in dispersion
modelling of atmospheric pollutants and quantification of area-fugitive advective fluxes of GHGs.
This approach addresses a need for utilization of mesoscale models in GHG flux quantification.
Most existing mesoscale models are not currently utilized to quantify flux. Rather, they take the
emission flux as input (via emission inventory datasets) and predict the mixing ratio of pollutants
throughout the atmospheric domain [43,45–49]. While this is useful in air quality studies, it does not
address the issue of quantifying flux. Instead, the proposed method in this study provides a mechanism
for quantification of GHG fluxes, as they vary diurnally and seasonally, using mesoscale models,
forced by near-surface-level observations of the GHG mixing ratio. This approach may also eliminate
the need for resource-intensive top-down approaches in quantifying GHG fluxes using satellites,
aircraft, and drones [23,25,26,29,31,32]. The proposed method only relies on near-surface-level
measurement of GHG mixing ratio, while it relies on mesoscale modelling to derive the advective flux
of GHGs.

4.3. Future Work

The method can be improved by ingesting boundary conditions for the methane mixing
ratio at higher spatio-temporal resolutions. To achieve this, either high-resolution surface-level
or satellite-based observations can be used. The method can also be improved by more rigorous
evaluations against PBL observations of the methane mixing ratio as it varies diurnally and seasonally.
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Figure A1. Time series of simulated wind speed at 10 m (S10) and Sensible Heat Flux (SHF);
numbers on the horizontal axis indicate the start of day using local standard time (LST = UTC −
7); (a) Mine May 2018; (b) Pond May 2018; (c) Mine March 2019; (d) Pond February 2019.
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Figure A2. Time series of simulated temperature at 2 m (T2) and Relative Humidity at 2 m (RH2);
numbers on the horizontal axis indicate the start of day using local standard time (LST = UTC − 7);
(a) Mine May 2018; (b) Pond May 2018; (c) Mine March 2019; (d) Pond February 2019.
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Figure A3. Time series of simulated normalized advective flux of methane (F̂CH4 ) and Sea Level
Pressure (SLP); numbers on the horizontal axis indicate the start of day using local standard time
(LST = UTC − 7); (a) Mine May 2018; (b) Pond May 2018; (c) Mine March 2019; (d) Pond February 2019.

0 2 4 6 8 10
S10 (m s 1)

50

0

50

100

150

200

250

SH
F 

(W
 m

2 )

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

FCH4 = FCH4/FCH4

(a) Mine May 2018

0.0 2.5 5.0 7.5 10.0 12.5
S10 (m s 1)

120

100

80

60

40

20

0

20

40

SH
F 

(W
 m

2 )

1

2

3

4

FCH4 = FCH4/FCH4

(b) Pond May 2018

0 2 4 6 8 10
S10 (m s 1)

75

50

25

0

25

50

75

100

125

SH
F 

(W
 m

2 )

0.5

1.0

1.5

2.0

2.5

FCH4 = FCH4/FCH4

(c) Mine March 2019

0 2 4 6 8 10
S10 (m s 1)

40

20

0

20

40

60

80

100

SH
F 

(W
 m

2 )

0.5

1.0

1.5

2.0

2.5

FCH4 = FCH4/FCH4

(d) Pond February 2019

Figure A4. Colour plot of simulated normalized advective flux of methane (F̂CH4 ) at given wind speed
at 10 m (S10) and Sensible Heat Flux (SHF) values; median normalized advective flux of methane is
shown in each tile; (a) Mine May 2018; (b) Pond May 2018; (c) Mine March 2019; (d) Pond February 2019.
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