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Abstract: The Dallas-Fort Worth (DFW) area that experiences high temperature and intense solar
radiation falls into the moderate nonattainment classification. The variation in meteorological
parameters plays an important role in ambient ozone levels variation. Meteorological influences need
to be decoupled from ozone data for long-term trend analysis. Temporal separation of maximum daily
average 8-h ozone (MDA8 ozone), maximum daily temperature (TMAX), daily average solar radiation
(DASR), and daily average wind speed (DAWS) were conducted using Kolmogorov-Zurbenko (KZ)
filter for ozone records at Keller (C17), Arlington (C61), Red Bird (C402) monitoring stations in the
DFW area from 2003 to 2017. Temporal separation, regression analysis, and meteorological detrending
were performed. The long-term component had a clear and stable trend. The contribution of the
long-term component to total variation was negligible, which is less than 2%. This is due to the
removal of the data noise from the original time series data. The seasonal component had a major
contribution (55% to 72%) in the total variation of the maximum temperature and solar radiation.
However, the short-term component was dominant in the total variation of the MDA8 ozone (41–54%)
and wind speed (68–79%). Regression analysis showed the baseline component bears the highest
correlation than the short-term and raw. Solar radiation had the highest correlation to the MDA8
ozone, followed by temperature data in all three stations. Meteorological detrending showed the
detrended long-term ozone had an increasing trend. The increasing trend was significant at C402
with a trend of 0.19 ± 0.006 ppb/y (0.398 R2), whereas slight increasing trends were found at C17
(0.072 ± 0.006 (0.107 R2)) and at C61 (0.019 ± 0.007 (0.005 R2)). The increasing trend of long-term
components of MDA8 ozone was justified by the increasing level of NOx and VOCs from the mobile
sources in the DFW area.

Keywords: Kolmogorov-Zurbenko (KZ) filter; meteorological detrending; temporal separation;
regression analysis

1. Introduction

Air pollution has significantly increased in the last 50 years, which poses a serious threat to
human health. Over the years, the concern of pollutants (sulfur dioxide) emitted due to fossil
fuel consumption has been shifted to new pollutants (Nitrogen Oxides (NOx), Volatile Organic
Compounds (VOCs), and ozone due to the increased use of vehicles in urban areas [1]. Ozone is
formed secondarily from the reaction between NOx and VOCs in the presence of sunlight. As ozone
formation occurs during day-time, mostly in summer, the ozone problems are more likely short-term
and seasonal. Higher levels of ozone have been detected in the tropospheric layer of some large
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cities all over the world. A total of 196 counties in the U.S. are in the Non-Attainment Area List of
USEPA according to the 8-H Ozone (2015) National Ambient Air Quality Standards (NAAQS) [2].
Due to the complex relation of ozone emissions and meteorological parameters, the ozone monitoring
and control program has been a subject of the challenge for the managers and related agencies.
The meteorological parameters always play an important role in the formation, transportation,
and dispersion of air pollutions. Temperature, wind speed/direction, and solar radiation are some of the
key parameters which have a significant influence on the air pollution mechanism [3–5]. Rao et al. (1997)
suggested various levels of the effects due to time scales in the analysis of pollutant concentrations [6].
The pollutant concentration due to meteorological conditions has less impact due to a long term-trend
than seasonal variations. The influence of meteorological factors on tropospheric ozone can be
identified and analyzed using statistical modeling. Broadly, three statistical methods have been used
(regression-based modeling, extreme value approaches, and space-time model) for the analysis of
time-series data [7]. Each method has its advantages and disadvantages. Based on the characteristics
and capability of the nature of data handling, a time series filtering model is useful for our long-time
series data. The KZ filter time series model has been successfully used to evaluate the long-term
trend of ozone and adjustment of meteorological parameters in the previous studies done by Rao and
Zurbenko (1995), Milanchus et al. (1998), Wise and Comrie (2005), Hogrefe et al. (2000), Sa et al. (2015),
and Ma et al. (2016) [8–13].

The KZ filter is a low pass filter that accounts for the moving average of time series data [8].
Kolmogorov introduced this filter in his study on “Pacific Ocean Turbulence”, which was later refined
by Zurbenko and hence named after KZ filter from their names in 1996. The length (m) and the number
of iteration (k) of the moving average window are the parameters. Hence, the convolution of the
window is an impulse response function of the KZ filter. As the impulse function is a sharply declining
function, it provides high-frequency resolution.

According to Rao and Zurbenko (1995), the KZ filter has a high-frequency resolution characteristic
to separate the data into short term and long-term variations in time series of meteorological and
air quality data [8]. Sometimes, when the data is processed, a loss of some information may occur,
leading to a change in the data analysis. However, when a KZ filter is used, there is no such fear of
losing any information [7]. According to Eskridge et al. (1997), this method has about 10 times higher
confidence level for the analysis of long trend estimation than any other method [14]. This filter is
widely accepted because of its ease of use and can also be used for time series with missing data [10].
Wise and Comrie (2005) have tested the effectiveness of the method in the Southwestern United States,
having weak synoptic weather conditions (Tucson, AZ, USA), including PM and O3 analysis [10].
The result showed the mixing height as an important variable in contrast to the findings of some
research conducted in other cities. Also, it demonstrated a small positive response to PM, but with
potentially significant differences. Also, the researchers together performed another 5-metropolitan
study where ozone and PM were analyzed in Albuquerque, NM, El Paso, TX, Las Vegas, NV, Phoenix,
AZ, and Tucson, AZ for a period from 1990 to 2003. The results for the five cities showed that
the temperature and the mixing height were major predictors on relative humidity, O3, and PM
concentrations. Overall, the meteorological variability accounted for 40–70% of O3 variability and
20–50% of PM, and the trend analysis indicated the increasing concentration of ozone in the last decade,
and a relatively constant concentration for PM.

Another study performed by Sa et al. (2015) tried to see the influence of meteorology on O3,
NO2, and PM10 in Portugal from the year 2002 to 2012 [12]. The result revealed that the short-term
component accounted for about 64%, 52%, 54% for PM10, O3, and NO2, respectively, to the total variance
of the original air quality data. The study conducted by Ma et al. (2015) at Shangdianzi regional
atmospheric background station, a rural site of northeastern China, indicated that the short-term
component accounted for 36.4%, the seasonal component was for 57.4%, and the long-term component
was for 2.2% of the total variance [13]. Also, MDA8 increased between 2003 and 2015 with an average
rate of 1.13 ± 0.01 ppb/year (R2 = 0.92). It showed that the long-term component of MDA8 ozone was
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not influenced by meteorology, and thus the changes were entirely due to emissions and to which the
VOCs might have been a major cause.

In our previous studies, the KZ filter was used for the long-term trend of ozone and precursor
concentrations in urban areas of Houston, Texas, and its ship channel region. It was found that the
petrochemical industrial sources along the ship channel had a significant contribution to the long-term
trend of ozone formation in the ship channel region [15]. The Dallas-Fort Worth (DFW) area is one of
the fastest-growing metropolitan regions in the U.S., with an average population growth of 20% over
the last two decades. It has air quality index (AQI) values in the range of 51 to 100, which falls into the
moderate “level of health concern”; the study of the ozone trend with and without the meteorological
influence can help to quantify the meteorological influence on the short-term, seasonal and long-term
ozone components. The objectives of this study are to (1) estimate the contribution of meteorological
influence on O3 at three sites in the DFW area, and (2) develop the long-term trends in ambient O3

over the 15 years from 2003–2017. These long-term trends would be assessed for statistical significance
to ascertain the impact of emission control policies instituted in the DFW region.

2. Methodology

The study was performed for three of the air quality monitoring sites in Dallas-Fort Worth (DFW):
Keller (Station C17), Red Bird (Station C402), and Arlington (C61) shown in Figure 1. The selection basis
of the sites was the stations that collect at least 8-h ozone, daily temperature, wind speed (scalar/resultant),
and solar radiation. Another basis was the land-use type, spatial distribution/sampling of sites,
availability of long period of data, and the sites which have never been moved since data-keeping
started. This selection assumes that the change at site location might impact the trend analysis due to
the variability of the local meteorological parameters and their impacts on ozone once site selection
was done, considering spatial distribution around the Dallas-Fort Worth (DFW) Area.
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Data collection, data quality assurance/quality control (QA/QC), and data reformatting were
done, followed by KZ filter processing using R Code (temporal separation, meteorological adjustment),
statistical analysis of data, and interpretations of the results.

The KZ filter follows the repeated iteration process of a moving average window of m and k (KZ
(m, k)). It was defined as

Y(i) =
1
m

k∑
j=−k

X(i+ j) (1)

where k is the number of values included on each side of the targeted value, m is the window length,
m = 2 k + 1 [16], i is the number of passes, j is the range for X value summation, and X is the input
time series. The output Y(i) from the one iteration or first pass became the input of the next pass.
This filter had the flexibility to adjust the filtering window for the application to various scales of
motion by changing window length (m) and the number of iterations (k) [9]. The application of
the KZ filter resulted in the low-frequency variations only by removing high-frequency variation.
The low-frequency output was represented by Y(t) as described in Equation (2) [16]

Y(t) = KZm,k[X(t)] (2)

2.1. Temporal Separation

Time series of air quality data can be sub-divided into three components [8] and can be represented by:

O(t) = e(t) + S(t) + W(t) (3)

where O(t) is the original time series, e(t) is a long-term component, S(t) is a seasonal variation,
and W(t) is a short-term component. Here, the long-term components were the result of a change in
overall emissions (climate, pollutant transport, policy, and/or economics), whereas seasonal variation
was due to the change in solar angle, and the short-term component was changed due to weather
change/fluctuation in precursor emissions [6].

The following criterion was applied to find the effective width of the filter if the filter period was
less than N days [10].

m ∗ k1/2
≤ N (4)

Moreover, the desired cutoff frequency (w0) was calculated using the following formula
recommended by Rao et al. [6].

w0 =

√6

π
√
(

1− ( 1
2 )

1
2k

m2 − ( 1
2 )

1
2k

) (5)

The studies from Hogrefe et al. (2000) and Milanchus et al. (1998) identified the 15-day window
size (m) with 5 iterations (k) for the KZ filter to pass baseline components with the removal of
short-term components [9,11]. The baseline component is the summation of long-term components and
seasonal components, as shown in Equation (6). Similarly, the window of (365,3) provided long-term
components with the removal of seasonal components S(t), as shown in Equation (7).

KZ15,5[O(t)] = OKZ(15,5)
(t) = e(t) + S(t) (6)

KZ365,3[O(t)] = OKZ(365,3)(t) = e(t) (7)

Seasonal component S(t) was obtained by re-arranging Equations (6) and (7) as shown in
Equation (8), and short-term component W(t) was calculated by subtracting baseline data KZ (15,5)
from the original data O(t), as shown in Equation (9). After obtaining the temporal components,
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i(t) such as long-term, seasonal, and short-term components, their relative contribution in the total
variance was calculated using Equation (10).

S(t) = OKZ(15,5)(t) −OKZ(365,3)(t) (8)

W(t) = O(t) −OKZ(15,5)(t) (9)

Relative Contribution of Variance i = (var (i(t))/var(O(t))) ∗ 100 (10)

2.2. Meteorological Adjustment

Meteorological adjustment is the process of removing the effects of meteorological parameters
from the air pollution time series data, targeting to develop long-term components of meteorologically
independent MDA8 ozone. In this study, the effects of maximum daily temperature, daily average,
and solar radiation were removed from the natural log of the MDA8 ozone concentration time
series for each station. Once the temporal separation was done for ozone and meteorological
parameters (temperature, solar radiation, and wind speed), the adjusted time series was developed
to see the variation in ozone caused by sources, but not by the removed meteorological parameters.
Then, the correlation relationship of each of the temporal components of ozone and temperature,
solar radiation, and wind speed were identified using the regression method.

Adding the regression on the baseline components and short-term components with Equations
(11) and (12) yields the meteorologically adjusted ozone [11]. The sum of the residuals (Equation (13))
of baseline components ε1, BL, and residuals of the short-term component (ε1, W) from the Equations
(11) and (12) provided the residual time series (ε1 (t)) of meteorologically adjusted ozone. In this
process, meteorological variable X(t) and Wx(t) were removed. The residual ozone time series was
developed for each model (models 1–4), which was independent of the corresponding meteorological
variable. Then, long-term trend ε(i,LT) (t) was generated for the meteorologically adjusted residual time
series of ozone by applying KZ (365,3) filter to the residual series ε1 (t), as shown in Equation (14).
After calculation of the long-term component of residual time series, the conversion of residual to real
ozone long-term component was performed using the method provided by Wise and Comrie (2005),
as shown in Equation (15).

Four models were developed to observe the trend of long-term, seasonal and short-term
components of MDA8 ozone with and without the influence of individual or combined meteorological
parameters. Model 1 describes the trend with the removal of temperature (TMAX) effect from the
MDA8 ozone baseline data.

Similarly, model 2 and model 3 described the trend with the removal of solar radiation (DASR)
and wind speed (DAWS), respectively. Model 4 represented the trend with the removal of all
three meteorological parameters (TMAX, DASR, and DAWS). Model 4 described the trend with full
meteorological adjustment. The residuals and their long-term trend were calculated for each model of
corresponding sites using the KZ (365,3) filter.

Linearity analysis was done using a linear regression method between baseline components
of the natural log of MDA8 ozone OKZ(15,5) and individual meteorological variables XKZ(15,5) using
Equation (11), whereas linear regression between short-term components of the natural log of MDA8
ozone W0(t) and meteorological components dWx(t) was performed using Equation (12). The conversion
of MDA8 ozone time series data to natural log was done to avoid fluctuation in the variance of each
temporal component of ozone time series data and to make it proportional in scale [14]. Then, the residual
time series were obtained from the sum of residuals from the linear regression between baseline
components and short-term components of ozone and meteorological parameters, as shown in
Equation (13) [17].

OKZ(15,5)(t) = aXKZ(15,5)(t + i) + b + ε1,BL (t) (11)

W0(t) = dWx(t) + e + ε1,W (t) (12)
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ε1(t) = ε1,BL(t) + ε1, W(t) (13)

where a, b, d, and e are fitted regression parameters, ε1,BL, and ε1,W are residuals from the linear
relationship from Equations (11) and (12). The conversion of residual time series ε1(t) to the long-term
component residuals εi,LT, KZ(365,3) was applied, as shown in Equation (14). After calculation of the
long-term component of residual time series, the conversion of residuals and logarithmic values into
real ozone long-term components were performed using Equation (15) [10,18].

KZ365,3[εi(t)] = εi,LT(t) (14)

OLT,adj(t) = εi,LT(t) + ê0(t) (15)

2.3. Model Development and Evaluation

KZ filter method was adopted for the time series data analysis, which was coupled with the
regression analysis of ozone to the meteorological parameters: temperature, solar radiation, wind speed
(scalar), and wind speed (resultant). The variance was used to evaluate the variability of the data series
of each parameter. Single regression and multivariate regression were used for regression analysis
to find the coefficient of determination. Pearson’s linear correlation method was used to find the
co-linearity among each meteorological parameter.

In this study, the length (m) parameter was taken as 15, and the iteration parameter as 5, to pass
baseline components by removing the short-term component from the original time series. Hence,
the KZ filter was applied for the (15,5) window to separate short-term components of time series data
for each station, whereas the length (m) parameter was taken as 365, and the iteration parameter as 3
to remove the seasonal component from the baseline components of the time series. Therefore, the KZ
filter was applied for the (365,3) window to pass long-term components of time series data from the
baseline components for each station. The model was evaluated using the coefficient of determination,
i.e., R2 value. It is a statistical measure of how close the regression line approximates the real data.
In another language, it was a measurement of the correlation between dependent and independent
variables. Its value ranged from 0 to 1. A higher value has a higher correlation between dependent
and independent variables.

3. Results and Discussion

The time-series data of raw MDA8 ozone concentration (ppb) of all three sites (C17, C61, and C402)
was analyzed and displayed in the box plots (Figures A1–A3 of Appendix A). The annual summary
of MDA8 ozone concentration data was calculated for 15 years of data from 2003 to 2017. For C17,
the annual maximum ozone ranged from 52.4 to 72.2 ppb, with the highest value being observed
in 2011, and the lowest value in 2016. During this period, the higher maximum-concentration was
observed in 2003, 2005, 2006, and 2011. The lower maximum value was observed in 2010 and 2016.
For C61, the maximum yearly concentration ranged from 48.9–69.4 ppb. The minimum value of the
maximum series was recorded in 2016, and the highest concentration was recorded in 2006. For C402,
the maximum yearly concentration ranged from 53.0–75.2 ppb. The minimum value of the maximum
series was recorded in 2015, and the highest concentration was recorded in 2003.

3.1. Temporal Separation

The temporal separation of the natural log of MDA8 ozone concentration was performed for Sites
C17, C61, and C402, as shown in Figures 2–4, respectively. The original time series plot (Figure 2a
showed the more frequent variation with a wide range of ozone concentrations, which are from
0.8 to 4.2 (log scale) at Site C17, −0.2 to 4.0 (log scale) at Site C61, and −0.8 to 4.2 (log scale) in C402.
As this plot exhibits a highly variable and frequent change in data series, the trend detection is very
difficult. With temporal separation, the plot of long-term (e(t)) component time series had a narrow
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and stable variation. The long-term component of Site C17 ranged from 3 to 3.4 (log scale), Site C16
ranged from 3 to 3.7 (log scale), and Site C402 ranged from 3.1 to 3.3 (log scale). The trend of the
long-term component was ever-increasing at all three sites. The plot exhibited four rising and falling
cycles at Sites C17 and C61, but three cycles at Site C402 for the 15 years. The plot of the long-term
component defined the data trend more clearly, and hence validated the importance of temporal
separation. Multiple peaks were observed annually during the summer in the seasonal component
S(t) of MDA8 ozone data, explaining the occurrence of multiple high ozone levels in the area during
summer. It also exhibited the three high ozone level episodes that happened in 2007, 2008, and 2009 at
Sites C17 and C61, whereas three to four episodes of high ozone were observed during the summer of
years 2005, 2008, 2009, and 2017. The highest value was observed in 2005, and the lowest value was in
2017 for Sites C17 and C61; however, 2007 and 2016 years had lower peak ozone concentration than
other years at Site C402. The short-term component W(t) of MDA8 ozone concentration was highly
frequent and had a wide range of variation. It ranged from −3.6 to 0.8 (log scale) at Site C17, −2.8 to 0.8
(log scale) at C61 and −3.3 to 1.1 (log scale) at C402. The variation was more in minimum values than
in the peak values.
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Similarly, the temporal separation of daily maximum temperature and solar radiation was
performed for Sites C17, C61, and C402, as shown in Figures 5–7, respectively. The temporal separation
provided a clearer trend for the long-term component with fewer noises than the original series similar
to the ozone data series. The raw temperature data series ranged from −8 to 41 ◦C at Site C17, −8 to
41 ◦C at C61, and −8 to 42 ◦C at C402. After the KZ filtration, they were narrowed down to ranges
from 23 to 26 ◦C in C17, 23.5 to 26.2 ◦C in C61, and 23.2 to 27 ◦C in C402 in long-term components.
The linear trend of the long-term component showed the increasing trend of temperature. There were
four major peaks in 15 years, with the highest peak in 2017 and the lowest in 2003 at Sites C17 and C61,
whereas the highest value was observed in 2006 and the lowest in 2010 at Site C402. The plot of the
seasonal component showed multiple high and low-temperature episodes each year with a range from
−16 to 11 ◦C in C17, −16 to 13 ◦C in C61, and −16 to 12 ◦C at Site C402. The short-term component
of temperature was highly variable, which was more in the minimum values. The range values of
temporal components of temperature time series at all three sites are very close.Atmosphere 2020, 11, 1226 10 of 24 
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The temporal separations of daily average solar radiation are shown in Figures 8–10. The original
data series had the fluctuation range from 0 to 380 w/m2 at Site C17, 0 to 400 w/m2 at C61, and 0 to
400 w/m2 at C402. The year 2009 had a single spike of solar radiation level with the highest value of
380 w/m2 at C17, whereas C61 had the highest solar radiation observed in 2010 and the highest value
at Site C402 in 2016. The long-term component of solar radiation ranged from 166 to 200 w/m2 at C17,
166 to 195 w/m2 at C61, and 168 to 213 w/m2 at C402, a much more narrow range than the original
data series. The linear trend showed that the long-term component was in a decreasing trend over the
study period in all sites. There were five peaks observed with the lowest value in 2004 at Sites C17 and
C61. Site C402 had the lowest value in 2015. The highest value was observed in 2006 at all the sites.
The seasonal component of solar radiation showed a couple of peaks in the summertime of every year,
similar to the seasonal ozone series. The seasonal component ranged from −120 to 110 w/m2 at C17,
−120 to 110 w/m2 at C61, and −110 to 110 w/m2 at C402 with double peaks in most years. Years 2007
and 2014 showed comparatively lower maximum values. The year 2015 had the highest seasonal
component. The short-term component exhibited highly variable and noisy series with value ranged
from −200 w/m2 to 150 w/m2 at C17, −210 w/m2 to 100 w/m2 at C61 and −200 to 200 w/m2 at C402.
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3.2. Variance Analysis

The variance measured the average of the squared differences from the mean. The smaller the
value of variation, the narrower the spread of data, and vice versa. In this study, the contribution
of temporal components in the total variation was calculated to see which component led more to
data variation. The percentage contribution was calculated using Equation (10). The sum of the
percentage variation of temporal components was not 100%, as shown in Table 1. The remaining
portion of the variance was contributed by the sum of co-variances, which was considered negligible
in this study [19]. A similar trend was observed in all three sites. The long-term component had a
negligible (less than 2%) contribution to the overall variation. The seasonal component was dominated
by the total variation of solar radiation and temperature. However, the short-term component was
significantly dominant in the total variance of wind speed. The short-term component was slightly
more dominant than a seasonal component on the total variation of MDA8 ozone data for all sites.

Table 1. Contribution of temporal components towards the total variation for three sites.

Parameters Long Term Component,
e(t)

Seasonal Component,
s(t)

Short-Term Component,
W(t)

Site C17

MDA8 ozone 1.20% 36.83% 41.86%

TMAX 0.75% 71.00% 24.08%

DASR 0.77% 55.44% 39.26%

DAWSR 0.68% 14.79% 68.27%

DAWSS 0.72% 14.76% 68.26%

Site C61

MDA8 ozone 1.78% 36.87% 54.59%

TMAX 0.63% 71.81% 22.96%

DASR 0.45% 55.41% 39.88%

DAWSR 0.69% 15.17% 79.12%

DAWSS 0.72% 14.94% 79.30%

Site C402

MDA8 ozone 1.56% 37.16% 54.13%

TMAX 1.42% 71.96% 22.88%

DASR 1.70% 52.03% 30.76%

DAWSR 1.75% 20.09% 77.75%

DAWSS 1.78% 17.34% 78.18%

At Site C17, the seasonal component had 55.44% and 71.00% contributions to the total variation of
solar radiation and temperature, respectively. The short-term component was more dominant in the
total variance of wind speed, with 68.26% contribution and MDA8 ozone with 41.86% contribution
at C17, as shown in Table 1. A similar trend had been found at site C61 and site C402. The seasonal
component was dominant in the total variation of maximum daily temperature (71.81%), and daily
average solar radiation (55.41%) and short-term component are dominant in the total variance of the
MDA8 ozone (54.59%) and daily average wind speed (79.3%) at C61. At C402, the seasonal component
had the most contribution to the total variance of maximum daily temperature (71.96%) and daily
average solar radiation (52.03%). The short-term component had the bigger contribution (54.13%) to
the total variation of MDA8 ozone and daily average wind speed (78.18%), as shown in Table 1.
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The temporal separation performed by Milanchus, Trivikrama Rao, and Zurbenko (1998) studied
the long-term trend of ozone in Cliffside Park, Washington, Chicago, and Los Angeles. These studies
indicated that the seasonal component was the primary contributor to the total variance of MDA8
ozone, TMAX and solar radiation, and that the short-term was the primary contributor for wind
speed [9]. Another study performed by Botlaguduru et al. (2018) in the Aldine Houston area showed
that the short-term component was the primary contributor for MDA8 ozone (63%), Solar Radiation
(49%) and wind speed (72%), and the TMAX seasonal component had the highest share (70%) [17].
Differing from these studies, The DFW analysis showed that the short-term component was the
primary contributor to the total variance of the MDA8 Ozone time series and wind speed time series.
In contrast, the seasonal component was the dominant contributor to the total variance of the TMAX
and solar radiation.

3.3. Regression Analysis

The single and multiple linear regression analysis was performed among the original,
baseline, and short-term components of MDA8 ozone and meteorological components for each
site. The combinations of temperature and solar radiation, temperature and wind speed, solar radiation
and wind speed, and the combination of temperature, solar radiation, and wind speed were regressed
with MDA8ozone. The coefficient of determination (R2) was calculated for each regression analysis
and presented in Table 2. The result shows that the baseline components of the MDA8 ozone data had
a higher correlation with baseline components of TMAX, DASR, and DAWS than the correlation of
raw data and short-term components of MDA8, TMAX, DASR, and DAWS.

Table 2. The coefficient of determination (R2).

Parameter Raw Data Base Line Short Term

Site C17

TMAX 0.331 0.618 0.088

DASR 0.393 0.717 0.147

DAWSR 0.003 0.018 0.023

TMAX/DASR/DAWS 0.447 0.739 0.197

Site C61

TMAX 0.272 0.540 0.084

DASR 0.316 0.640 0.116

DAWSR 0.009 0.004 0.029

TMAX/DASR/DAWS 0.383 0.699 0.188

Site C402

TMAX 0.277 0.534 0.099

DASR 0.336 0.68 0.127

DAWSR 0.012 0.004 0.0318

TMAX/DASR/DAWS 0.393 0.703 0.212

At Site C17, the result showed that the highest R2 value (0.717) was obtained from the correlation of
daily average solar radiation with the baseline component of MDA8 ozone. A similar strong correlation
was exhibited between TMAX and the baseline component of MDA8 ozone data with an R2 value
of 0.618, as shown in Table 2. Whereas the weaker correlation was found between meteorological
variables and raw MDA8 ozone data. The correlation was comparatively weaker at Site C61 than at
Site C17. At site C61, the strongest correlation was exhibited by solar radiation (0.64), followed by
temperature (0.54) with the baseline components of the MDA8 ozone data.
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Similarly, in C402, baseline components of TMAX (0.53) and DASR (0.68) had a higher correlation
with the baseline component of MDA8 ozone than raw and short-term components. The R2 value (0.33)
of the correlation between raw data of DASR and raw MDA8 ozone was weaker than the correlation
between baseline components of DASR and baseline component of MDA8 ozone (0.68). The negligible
relation was exhibited by meteorological variables with the short-term components of the MDA8 ozone
data. The combination of meteorological variables had improved the correlation values with MDA8
ozone (both raw data and baseline components). The combination of all variables (TMAX, DASR,
and DAWS) could only explain 45% of the variability in the raw ozone data, which was improved to
74% in the baseline component with the removal of short-term components from the time series data
at Site C17. At C61 and C402, almost 70% of variables could be explained with the combination of
the KZ filtered data, whereas only 38% of variables could be defined with the raw MDA8 ozone data.
It validated the use of the KZ filter for the evaluation of the role of meteorological parameters in the
ozone variation.

From the regression analysis, MDA8 ozone was positively correlated with the baseline components
of maximum temperature (TMAX) and daily average solar radiation, as shown in Figure 11i–iii(a,b),
respectively, for all three sites. In contrast, the daily average wind speed (DAWS) was negatively
correlated with MDA8 ozone for baseline components of the data, as shown in Figure 11i–iii(c) for all
sites. For Sites C61 and C402, the MDA8 ozone had a similar correlation as C17 as shown in Figure 11i–iii.
The TMAX and daily average solar radiation were positively correlated with MDA8 ozone, as shown in
Figure 11i–iii(a,b), but negatively correlated with wind speed as shown in Figure 11i–iii(c). When the
relationship between the unadjusted variables and air quality was considered, Wise and Comrie’s
(2005) study performed at some sites in Tuscon, AZ, showed that TMAX, Solar Radiation, and wind
speed had a positive correlation with MDA8 ozone [10]. Whereas, the study performed by Botlaguduru
et al. (2018) in Aldine, Houston, showed that baseline components of MDA8 ozone was positively
correlated with baseline components of TMAX and Solar Radiation, and was negatively correlated
with baseline components of wind speed, which matches the result of this study [17]. In a recent study,
Kotsakis et al. (2019) pointed out that the regional wind carries pollutants from Houston and the
Barnett Shale to DFW, and exacerbates DFW ozone concentrations [20].
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3.4. Meteorological Adjustment

As suggested by Astitha et al. (2017), the long-term component was dominant on the maximum
values of ozone levels [21]. This study had performed a long-term trend analysis with the detrending
of meteorological parameters. The long-term series was developed based on a series of residuals from
the regression analysis. They did not represent the actual MDA8 ozone series. Equation (14) was
used to convert residual long-term series to the actual long-term MDA8 ozone series. Figures 12–14
demonstrate the comparison of the adjusted MDA8 long-term component series to the unadjusted
long-term series at Keller (C17), Arlington (C61), and Redbird (C402), respectively. The long-term
average was plotted in each graph to compare the adjusted and unadjusted series. After meteorological
adjustment of MDA8 ozone long-term series, linear trends were developed for all sites from the linear
regression analysis, as shown in Table 3.
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Airport Station C402.
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Table 3. Estimated linear trends for long-term meteorologically independent MDA8 ozone (ppb/yr).

Model
MDA8 Ozone Linear Trend (ppb/Year)

Keller (C17) Arlington (C61) Redbird (C402)

Model 1 (TMAX) 0.007 ± 0.006;
R2 = 0.001

0.001 ± 0.007;
R2 = 0.001

0.161 ± 0.008;
R2 = 0.224

Model 2 (DASR) 0.076 ± 0.006;
R2 = 0.104

0.01 ± 0.007;
R2 = 0.001

0.248 ± 0.006;
R2 = 0.567

Model 3 (DAWS) 0.016 ± 0.009;
R2 = 0.002

0.014 ± 0.009;
R2 = 0.001

0.044 ± 0.011;
R2 = 0.010

Model 4 (TMAX/DASR/DAWS) 0.072 ± 0.006;
R2 = 0.107

0.019 ± 0.007;
R2 = 0.005

0.19 ± 0.006;
R2 = 0.398

At site C17, temperature (TMAX) and daily average solar radiation (DASR) were positively
correlated with the unadjusted long-term component of MDA8 ozone, as shown in Figure 12a,b.
When there was lower than average TMAX, the adjusted trend was above the unadjusted trend,
and when the TMAX was higher than the average value, the adjusted trends were pushed lower than
the unadjusted trend. For example, from the beginning of 2003 to 2005, the adjusted trend line was
higher than the unadjusted with TMAX lower than the average TMAX. A similar correlation was
found with solar radiation as well. The linear trend of the adjusted ozone was evaluated using linear
regression and found the very low R2 value (0.001) for model 1, as shown in Table 3. It exhibited that
linearity was not applicable for model 1 at the sites C71 and C61. In contrast, the adjusted trend of ozone
without the influence of temperature exhibited the increasing linear trend with a significant R2 value
(0.161 ± 0.008; R2 = 0.224; p-value < 0.5). With the variation in the TMAX value, the gap between the
adjusted and unadjusted trend lines was significant. Hence, the adjustment of TMAX in the MDA8
ozone had an important role in the ozone trend analysis.

The adjustment of the long-term component of MDA8 ozone with the removal of daily average
solar radiation (DASR) is shown in Figure 12b, Figure 13b, and Figure 14b. The linear trend of the
long-term component of MDA8 ozone after removal of the solar radiation forcing was not signifcant
over the study period for C17 and C61. The low R2 value in the model 2 for the MDA8 ozone of site
C17 (0.076 ± 0.006; R2 = 0.104; p-value < 0.5) and site C61 (0.01 ± 0.007; R2 = 0.001; p-value < 0.5)
demonstrates the weak linearity. A strong linear trend was observed at the site C402 with significant
R2 value (0.248 ± 0.006; R2 = 0.567; p-value < 0.5). Similar to temperature (model 1), the solar radiation
adjustment (model 2) would help to define a better ozone trend. However, in contrast to temperature
and solar radiation, the wind speed (model 3) was negatively correlated with an unadjusted long-term
component of MDA8 ozone. The linear trend analysis for model 3 showed the weak linearity with a
mild increasing trend for all sites, as shown in Table 3.

Figure 12d, Figure 13d, and Figure 14d explain the result of model 4, which explained the
comparison of the unadjusted trend of the MDA8 ozone long-term component to the trend of the fully
adjusted long-term component of MDA8 ozone. With the removal of the influence of TMAX, DASR,
DAWS, the variation range of long-term component of MDA8 ozone (6 ppb/yr) had been narrowed
down to the range of 3 ppb/yr, as shown in Figure 12d. The linearity analysis of model 4 for the site C17
resulted in the low R2 value and slightly increasing trend (0.072 ± 0.006; R2 = 0.107, p-value < 0.5) of
the long-term component of the MDA8 ozone. The result was similar for the site C61 with the R2 value
0.005 and a slope of 0.019. In comparison, strong linearity with the increasing trend was observed for
the long-term component of the MDA8 ozone at site C402 with R2 value 0.398 and slope 0.19, as shown
in Figure 14d and Table 3 (model 4). A higher degree of determinacy (R2 value) and strong linearity
were observed with the removal of multiple meteorological parameters (TMAX, DASR, DAWS) than
the adjustment of individual parameters, as shown in Table 3. The highest R2 value for each site was
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observed for model 4. In contrast to our study, the decreasing trend (0.412 ± 0.007) was observed in a
study performed in the Houston area [17].

The comparison of a long-term component trend of MDA8 ozone among all sites is presented in
Figure 15. The long-term component of the MDA8 ozone time series had an increasing trend from 2003
to 2017 for all sites. Site C402 had a higher increasing trend than the sites C17 and C61. The decrease in
ozone concentration was expected over time due to stringent emission standards by USEPA. However,
the slightly increasing trend for the long-term MDA8 ozone can be justified by the strong increasing
trend of VOCs and NOx in the DFW area. It is in agreement with the generally upward trend of
tropospheric ozone, which influences the surface ozone background, and the generally downward
trend of NOx emissions in the point resources of the USA, leading to ozone destruction in the first
place and subsequently to an increase of ozone [22].
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Figure 15. Long-term component trend comparison among all sites.

3.5. Role of NOx/VOC Emissions and Texas State Implementation Plan

NOx and VOC emissions are the primary precursors of ozone formation. The study showed a
slightly increasing trend of long-term ozone component after meteorological adjustment. The detection
of the influence of NOx and VOC on the increasing trend of long-term ozone component is key before
concluding. The trend analysis of NOx and VOC emissions in pounds per day (PP was performed
using the emission inventory list of Texas for point and non-point sources presented in Figure 16,
respectively. Figure 16A,B exhibited the emission trends of NOx and VOC during the ozone season,
and Figure 16C,D represented the annual emission trends of NOx and VOC. Due to the data limitation,
the emission data in 2017 is not present in Figure 16.

From the analysis of the emission inventory list of a point source, it can be concluded that NOx
emissions had been decreasing significantly in both data sets (ozone season and annual). A similar
trend was identified in VOC emissions during the ozone season (March to November for Dallas
County), i.e., spring, summer, and autumn. This decreasing trend was due to the state implementation
plan (SIP) as reasonable further progress (RFP). State Implementation Plan in the DFW area (Region 4)
set the target to achieve the 15% reduction of NOx and VOCs from 2002 to 2008. Instead, mobile source
emission analysis showed a significant increasing trend of VOCs and NOx, as shown in Figure 17.
Mobile source emission analysis was done from 2002 to 2014 National Emissions Inventory (NEI) for
Texas state considering every three years. Due to the data limitation, the emission data in 2017 is not
present in Figure 17.
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Figure 16. NOx and VOC emissions from point sources in the DFW Area from 2003 to 2016. (A) NOx
emissions during the ozone seasons; (B) VOC emissions during the ozone seasons; (C) annual NOx
emissions; and (D) annual VOC emissions.

Atmosphere 2020, 11, 1226 21 of 24 

 

 

Figure 16. NOx and VOC emissions from point sources in the DFW Area from 2003 to 2016. (A) NOx 
emissions during the ozone seasons; (B) VOC emissions during the ozone seasons; (C) annual NOx 
emissions; and (D) annual VOC emissions. 

From the analysis of the emission inventory list of a point source, it can be concluded that NOx 
emissions had been decreasing significantly in both data sets (ozone season and annual). A similar 
trend was identified in VOC emissions during the ozone season (March to November for Dallas 
County), i.e., spring, summer, and autumn. This decreasing trend was due to the state 
implementation plan (SIP) as reasonable further progress (RFP). State Implementation Plan in the 
DFW area (Region 4) set the target to achieve the 15% reduction of NOx and VOCs from 2002 to 2008. 
Instead, mobile source emission analysis showed a significant increasing trend of VOCs and NOx, as 
shown in Figure 17. Mobile source emission analysis was done from 2002 to 2014 National Emissions 
Inventory (NEI) for Texas state considering every three years. Due to the data limitation, the emission 
data in 2017 is not present in Figure 17. 

Even though point-source emissions showed a decreasing trend, the strong increasing trend of 
VOCs and NOx emissions from mobile sources validated the increasing trend of the long-term ozone 
component for the study area. 

 

Figure 17. Comparison of NOx and VOC emissions from mobile sources in the DFW Area from 2002 

to 2014. 

 -

 50,000.00

 100,000.00

 150,000.00

 200,000.00

 250,000.00

 300,000.00

 350,000.00

2002 2005 2008 2011 2014

Em
iss

io
ns

, T
on

ne
s

VOC NOX

Figure 17. Comparison of NOx and VOC emissions from mobile sources in the DFW Area from 2002
to 2014.

Even though point-source emissions showed a decreasing trend, the strong increasing trend of
VOCs and NOx emissions from mobile sources validated the increasing trend of the long-term ozone
component for the study area.

4. Conclusions

The study was performed for three sites, Keller (Station C17), Redbird (Station C402), and Arlington
(C61) of DFW. The sites were selected mainly based on the dominant land use of the area and data
availability. The MDA8 ozone time series, daily maximum temperature, daily average solar radiation,
and daily average wind speed data were considered for the study. The time-series data were
separated using the KZ filter into three components, i.e., long-term components, seasonal components,
and short-term components. Then the role of each component on the total variation of data was



Atmosphere 2020, 11, 1226 21 of 23

identified. The single and multiple regression analysis was performed to identify the relationship
of meteorological variables to the raw ozone data and baseline ozone data. The overall linear trend
analysis was done for each site, MDA8 ozone data. The study found that the temporal separation of
time series data is useful to identify a clear trend with the filtering out of noise in the data. A long-term
component provided a smooth trend, whereas the seasonal component assisted in the quantification of
the seasonal forcing on ozone concentrations. From the study of the contribution of each temporal
component in the total variation of the raw data, it was observed that the seasonal component was
dominant in the total variation of TMAX and DASR. In contrast, the short-term component was
dominant in the total variance of the MDA8 ozone and DAWS for all three sites. The contribution
of long-term components in the total variation was negligible. It was suggested that the TMAX and
DASR had a major effect on the regional ozone formation. The correlation of MDA8 ozone with
the meteorological components (TMAX, DASR, and DAWS) was observed using regression analysis.
The regression analysis was performed for each of the temporal components (long-term, seasonal
and short-term) that showed the baseline component bears the highest correlation, and when we
evaluated the correlation among them, the solar radiation had the highest correlation to the MDA8
ozone followed by temperature.

The combined effect of all meteorological variables (TMAX, DASR, and DAWS) defined the
correlation more strongly with baseline data than raw data. The meteorological adjustment analysis
showed that long-term MDA8 ozone had a significant increasing trend (0.19 ± 0.006 ppb/y) at
the Redbird (C402) site. However, for the other two sites—Keller (C17) and Arlington (C61)—the
meteorologically adjusted MDA8 ozone levels were relatively stable. During the same period of
2003–2017, the analysis of emission inventory for the point-sources suggests that the quantum of NOx
and VOC emissions had reduced considerably. A corresponding decrease in ozone levels could not be
attained due to the increase in NOx and VOC emissions from mobile sources. This study indicates
that an increased regulatory attention may be required for controlling ozone precursors from mobile
sources in order to achieve any substantial reduction in the long-term ozone levels in the DFW region.
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