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Abstract: We investigated the characteristics of surface wind speeds and temperatures predicted by
the local data assimilation and prediction system (LDAPS) operated by the Korean Meteorological
Administration. First, we classified automated weather stations (AWSs) into four categories (urban flat
(Uf), rural flat (Rf), rural mountainous (Rm), and rural coastal (Rc) terrains) based on the surrounding
land cover and topography, and selected 25 AWSs representing each category. Then we calculated
the mean bias error of wind speed (WE) and temperature (TE) using AWS observations and LDAPS
predictions for the 25 AWSs in each category for a period of 1 year (January–December 2015). We found
that LDAPS overestimated wind speed (average WE = 1.26 m s−1) and underestimated temperature
(average TE = −0.63 ◦C) at Uf AWSs located on flat terrain in urban areas because it failed to reflect the
drag and local heating caused by buildings. At Rf, located on flat terrain in rural areas, LDAPS showed
the best performance in predicting surface wind speed and temperature (average WE = 0.42 m s−1,
average TE = 0.12 ◦C). In mountainous rural terrain (Rm), WE and TE were strongly correlated with
differences between LDAPS and actual altitude. LDAPS underestimated (overestimated) wind speed
(temperature) for LDAPS altitudes that were lower than actual altitude, and vice versa. In rural
coastal terrain (Rc), LDAPS temperature predictions depended on whether the grid was on land or
sea, whereas wind speed did not depend on grid location. LDAPS underestimated temperature at
grid points on the sea, with smaller TE obtained for grid points on sea than on land.

Keywords: AWS; land cover; LDAPS; mean bias error; temperature; topography; wind speed

1. Introduction

Weather directly and indirectly influences daily life and economic activity. Severe weather can
cause disasters that lead to loss of human life and property [1–4]. Accurate and precise weather
prediction can help mitigate such disasters and provide useful information for socioeconomic and
cultural fields including agriculture, industry, transportation, tourism, and leisure [5–7]. In response to
demands from the industrial sector [8,9], the Korean Meteorological Administration (KMA) has been
working to supply customized weather information, such as real-time, on-site weather forecasting to
enhance the success of the 2018 Pyeong-Chang Winter Olympics.
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Previous studies in Korea have improved the accuracy of numerical weather prediction models.
Jeong and Lee [10] contributed to enhancing the medium-range prediction of the weather research
and forecasting (WRF) model by correcting bias errors. Lee et al. [11] decreased the negative bias of
surface wind speeds of WRF by parameterizing a subgrid-scale orographic effect over mountainous
terrain. Kwun et al. [12] analyzed the difference in the planetary boundary layer (PBL) scheme between
the weather research and forecasting (WRF) model and the fifth-generation Pennsylvania State
University–National Center for Atmospheric Research Mesoscale Model (PSU–NCAR MM5) to the
optimal prediction of coastal and sea surface wind speeds. KMA conducts weather forecasting using
various numerical weather prediction models to provide rapid, high-quality weather information.
KMA developed the local data assimilation and prediction system (LDAPS) based on the unified
model (UM) designed by the UK Met Office. To prepare for weather disasters caused by local severe
weather events over the entire Korean peninsula, LDAPS employs a high-resolution grid system with
1.5 km horizontal resolution and 70 vertical layers [13]. However, the spatial and temporal resolution
of LDAPS is insufficient to resolve small obstacles such as buildings and hilly terrain, which cause
external forcing in urban- or smaller-scale flows [14]. Recently, many studies are trying to predict
detailed flows and dispersion within urban canopy by using computational fluid dynamics models
coupled to numerical weather prediction models (e.g., LDAPS) [15–17]. LDAPS enables smaller-scale
numerical simulations within the atmospheric boundary layer by providing realistic initial and
boundary conditions for numerical models with computational fluid dynamics models. To apply
LDAPS to multi-scale numerical simulations, we need to grasp the characteristics of LDAPS-predicted
surface winds and temperatures for the application studies of LDAPS predictions.

Some studies have analyzed the characteristics of LDAPS prediction results and have improved
its prediction performance. Kang et al. [18] compared the air temperature, wind speed, and relative
humidity observed at the Daegu and Gumi meteorological stations for 7 days with those predicted by
LDAPS. Their building-scale resolved air temperature model improved the performance of LDAPS air
temperature prediction by reflecting the heating effect in urban areas [19]. Other previous studies have
contributed to our understanding of LDAPS prediction characteristics [20–24]. However, the extensive
numerical experiments including sensitivity tests to spatial and temporal resolutions and physical
parameterization schemes have not distinctly explained the reasons for the spatial variability in LDAPS
biases for surface wind speeds and temperatures over the Korean Peninsula yet. One possible thing is
that a land cover type and terrain undulation are significantly different region by region in Korea.

We investigated the characteristics of surface wind speeds and temperatures predicted by LDAPS
at automatic weather stations (AWSs) with different surrounding land cover and topography. First,
we classified 100 AWSs into four categories based on land cover (urban and rural areas) and topography
(mountainous, coastal, and flat terrain). For each category, we identified the characteristics of wind
speeds and air temperatures predicted by LDAPS, by comparing them with data collected during a
1-year period (January–December 2015). For comparison, we interpolated LDAPS-predicted wind
speeds and temperatures to the same observation heights above the ground surface.

2. Methodology

2.1. AWS Classification

First, we followed previously described classification methods [25–27] to characterize the region
(1.5× 1.5 km2, to match the horizontal LDAPS grid) surrounding each of 100 AWSs using land cover and
topography data obtained from 1:25,000 land cover maps provided by the environmental geographic
information service (EGIS) of the Ministry of Environment, Korea (Figure 1). For example, if the region
surrounding an AWS had a ratio of urban (U) to rural (R) land cover of >50%, then that AWS was
classified as U; otherwise, it was classified as rural R [25]. Topography was classified based on digital
maps created by the National Geographic Information Institute of Korea in 2015. An AWS with altitude
of >200 m in the surrounding area was classified as mountainous (m) [26]. An AWS located within
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horizontal distance of 500 m of a coastline was classified as coastal (c) [27]. Any AWS not classified
as m or c was considered on flat terrain (f). The combination of both classification schemes yielded
six categories: Um, Uc, Uf, Rm, Rc, and Rf. However, preliminary classification showed that AWSs
in the Um and Uc categories were very rare in Korea. Therefore, in this study, we selected 25 AWSs
(Figure 2) for each of the four remaining categories (Uf, Rm, Rc, and Rf) to identify the characteristics
of LDAPS-predicted wind speeds and temperatures. Dynamical and biophysical effects of land covers
are not considered in the analysis.
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2.2. LDAPS Data

We used the surface wind speeds and temperatures predicted by LDAPS from January 1 to
December 31, 2015. LDAPS employs a self-analysis and prediction circulation system based on a
three-dimensional variational data assimilation technique [19]. LDAPS performs 36 h predictions
at 00, 06, 12, and 18 UTC for the prediction and data assimilation purposes and 3 h predictions at
03, 09, 15, and 21 UTC for the data assimilation only. LDPAS assimilates various surface and upper
air observation datasets after the quality control process of LDAPS automatically selects datasets
that will be included and excluded in the assimilation process. The AWS observations selected
in the assimilation process may hinder the data independence in the analysis. However, most of
the AWS observations are known to be excluded in the assimilation process. To consider LDAPS
data expected to have minimal errors, we used the initial data of LDAPS at each operation time
(that is, every 3 h from 00 UTC to 21UTC) and 1 and 2 h prediction data at the rest times (that is,
01, 02, 04, 05, . . . , 22, and 23 UTC). Table 1 summarizes the LDAPS configuration; further details
are provided elsewhere [28,29]. The horizontal and vertical grid systems are based on the Arakawa
C-grid and Charney-Phillips staggered grid, respectively [30]. LDAPS employs New Dynamics [31]
as a dynamics core, JULES (the Joint UK Land Environment Simulator) as a land surface process,
mixed-phase scheme [32] for microphysics, and Edward-Slingo general 2-stream scheme [33] for the
radiative process.

Table 1. Summary of local data assimilation and prediction system (LDAPS)’s numerical details.

Model LDAPS (UM 1.5 km L70)

Basic model UK Met Office Unified Model (UM) Vn 8.2

horizontal grid dimension variable grid (total): 744 × 928fixed grid (inner): 622 × 810

horizontal grid size (km) (inner) 1.5

dynamics core New Dynamics

horizontal grid system Arakawa C-grid

vertical layers 70 (eta level) (~40 km)

time step 50 s

time integration semi-implicit semi-Lagrangian scheme

vertical grid system Charney-Phillips staggered grid

boundary conditions Global Data Assimilation and Prediction System (GDAPS)

data assimilation 3DVAR/latent heat nudging

radiative process Edward-Slingo general 2-stream scheme

land surface process JULES (Joint UK Land Environment Simulator) land-surface scheme

microphysics mixed-phase scheme with graupel

planetary boundary layer non-local scheme with revised diagnosis of K profile depth

gravity wave drag gravity wave drag due to orography

For comparison to the observations, we used LDAPS-predicted wind speeds and temperatures
extracted to the same observation heights above the ground surface, even taking the building heights
into account in cases of the AWSs installed above the building roofs. LDAPS does not have any
grid cell including two or more AWSs. Meteorological variables predicted at a grid point by LDAPS
represent those averaged over the 1.5 × 1.5 km2 area around the grid point. On the other hand,
the observations at an AWS give meteorological information at one point, not reflecting the effects of
the observation environment in the area as wide as the grid cell of LDAPS. Despite the difference in
data representativeness, we conducted a point-based comparison of LDAPS predictions to the AWS
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observations due to the evaluation data availability. Hence, our analysis has the limitation of the
nonequivalent representativeness of data used in the comparison.

3. Results and Discussion

We calculated the mean bias error (MBE) of LDAPS prediction results for the 25 AWSs in each
category during the study period and compared their averages. For details of the AWSs considered
in this study, see Table A1 in Appendix A. Figure 3 shows boxplots of the MBE of wind speed (WE)
and temperature (TE) for the four categories. In all categories, LDAPS generally overestimated the
measured wind speed. Average WE was highest in Uf (1.26 m s−1) and lowest in Rf (0.42 m s−1).
Rm showed the widest variation in WE (−2.38 to 2.68 m s−1), but a lower average (0.57 m s−1) than Rc,
which had an average WE of 1.06 m s−1 (standard deviation (SD) = 0.52 m s−1). LDAPS overestimated
surface wind speeds at all AWSs (Figure 3a).
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black circles indicate the outliers, the bars above and below a box, respectively, indicate the upper
and lower extremes, and upper, middle, and lower segments of a box, respectively, indicate the upper
quartile, median, and lower quartile. The red line in each box plot represents the average of the mean
bias error for the category.

At Uf AWSs, TE showed the opposite pattern to WE (Figure 3b). LDAPS underestimated
temperatures at most Uf AWSs, with an average TE of−0.63 ◦C, which was the most significant difference
among the four categories. At Rf AWSs, there was no distinct pattern in TE; LDAPS overestimated the
surface temperature at some AWSs and underestimated it at others. However, as observed for average
WE values, the average TE (0.12 ◦C) and its SD (0.46 ◦C) were lower than those of the other categories.
At Rm AWSs, the variation in TE was highest (1.56 ◦C), but its average was not very high (0.41 ◦C).
The lowest average TE (−0.12 ◦C) and SD (0.31 ◦C) were observed at Rc AWSs.

Next, we analyzed the LDAPS prediction characteristics in detail, using the relationships between
MBE and the land cover and topography surrounding the AWSs in each category. Figure 4 shows
WE and TE for Uf AWSs. Numerical weather prediction models are well known to overestimate the
roughness lengths and surface wind speeds [34–36] in urban areas because most of them did not
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sufficiently reflect the effects of roughness such as buildings. LDAPS overestimated wind speeds
measured at a height of 10 m and underestimated temperatures measured at a height of 1.5 m at
most Uf AWSs (Figure 4). Notably, the TE averages at AWSs 627 and 417 were slightly greater than
zero. LDAPS employs the Joint UK Land Environmental Simulator (JULES) as a land surface model;
using the mosaic method within a single grid, JULES classifies land cover into nine types and applies
an urban parametrization weighted by the average of each type [37]. However, the limited resolution
of LDAPS prevents it from accurately reflecting flow changes caused by buildings and differential
heating among land use types in urban areas [38]. As most Uf AWSs were located on building roofs,
LDAPS overestimated wind speeds and underestimated temperatures (Figure 4). Correlations between
AWS measurements and LDAPS predictions were slightly better in summer (June, July, and August)
than winter months (December, January, and February) (Figure 5).
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LDAPS overestimated wind speeds at Rf AWSs except for AWS 706, and underestimated
temperatures at nine AWSs (Figure 6). The WE (<1 m s−1) and TE (<1 ◦C) of Rf AWSs were consistently
lower than those of Uf AWSs, with averages of 0.43 m s−1 and 0.12 ◦C, respectively (Figure 3).
This result was expected because there were few buildings to create drag and act as heat sources; thus,
LDAPS performed well in predicting wind speed and temperature at Rf AWSs (Figure 3). Note that
LDAPS slightly overestimated wind speed except at AWS 706, and negative TE was observed only
when LDAPS altitude was higher than the actual altitude, at AWSs 321, 623, 708, 825, 829, 887, 900,
932, and 946. At AWSs 321, 900, and 946, LDAPS altitude was much higher (>170 m) than the actual
altitude, and WE and TE showed similar characteristics to those of the Rm AWSs described below,
i.e., wind speed overestimation and temperature underestimation. The ratio of urban areas was close
to 50% at AWSs 708 (38%), 829 (46%), and 932 (48%), resulting in negative TE. AWS-measured and
LDAPS-predicted temperatures were very strongly correlated, with R values of 0.96 in summer and 0.97
in winter, at AWS 615, which was located in a flat rural area, and less strongly correlated, with R values
of 0.92 in summer and 0.81 in winter, at AWS 900, which was located in a basin area with a range
of altitudes (Figure 7). The measured and predicted wind speeds were weakly correlated at both
AWS 615 (R = 0.69 in summer and 0.71 in winter) and AWS 900 (R = 0.76 in summer and 0.69 in
winter), indicating that LDAPS performed better in predicting wind speeds at Rf AWSs than at Uf
AWSs (Figure 5b,d and Figure 7b,d). Further investigation showed that the LDAPS altitude was
higher than the actual altitude at AWS 900, resulting in wind speed overestimation and more frequent
temperature underestimation.

The variation in WE and TE was greatest at Rm AWSs among the four categories (Figure 3).
At Rm AWSs, WE generally had the opposite sign to TE. WE (TE) increased (decreased) as the difference
between the LDAPS and actual altitude increased (Figure 8) because LDAPS inevitably smoothed the
steep terrain to avoid model blowup. Thus, for AWSs on mountain peaks or ridges, the LDAPS altitude
was generally lower than the actual altitude. LDAPS resultantly underestimated (overestimated)
wind speed (temperature), which is considered as a fundamental problem of numerical models for
mountainous terrain [39]. By contrast, for AWSs in valleys or basins, the LDAPS altitude was generally
higher than actual altitude, leading to overestimation (underestimation) of wind speed (temperature).
Thus, MBE distributions distinctly reflected systematic LDAPS errors caused by smoothing (Figure 8).
TE had a monotonic relationship with the altitude difference, whereas WE had a more complicated
relationship, due to local circulation patterns in mountains and valleys around AWSs that were
not resolved by LDAPS [40,41]. Further studies should perform more detailed analyses of these
relationships. Figure 9 shows scatterplots of wind speed and temperature at AWSs 316 and AWS 872.
Temperature (wind speed) was distinctly overestimated (underestimated) at AWS 316, where the LDAPS
altitude was lower than the AWS altitude, and underestimated (overestimated) at AWS 872, where the
LDAPS altitude was higher than the AWS altitude. At AWS 316, predicted and observed temperatures
were strongly correlated (R = 0.90 in summer and 0.94 in winter). However, predicted and observed
wind speeds were very poorly correlated (≤0.32), showing apparent underestimation. The correlation
between measured and predicted temperatures (wind speeds) at AWS 872 was weaker (stronger)
than that at AWS 316, showing apparent underestimation (overestimation).

The average WE of Rc AWSs was comparable to that of Uf AWSs (Figure 3). At Rc AWSs,
wind speed was overestimated, regardless of whether the LDAPS grid points were on sea or land
(Figure 10). The highest WE occurred at AWS 301, which was located on the sea. The average WE for
AWSs near the West Sea (AWSs 300, 301, 606, 607, 631, 657, 662, 663, 697, 700, and 881) and East Sea
(AWSs 310, 524, 661, 671, 800, 852, 901, 923, 924, 949, and 954) were 1.28 and 0.83 m s–1, respectively.
The coastline of the Korean Peninsula is more complicated near the West Sea than the East Sea.
However, LDAPS simplified the coastline to a greater extent near the West Sea than the East Sea,
resulting in greater overestimation of wind speed. LDAPS tended to underestimate temperature when
the LDAPS grid points of the AWS were on the sea (right panel, Figure 10). TE and its variation
were lower for AWSs on the sea than for those on land (left panel, Figure 10). We further analyzed
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monthly averages of WE and TE. The average monthly WE and SD tended to increase in winter and
decrease in summer (Figure 11). In spring and summer, LDAPS underestimated temperatures at AWSs
with LDAPS grid points on the sea (Figure 11a), where lower sea temperatures induced negative TE.
Higher sea temperatures resulted in positive TE in the fall and winter. However, at AWSs with LDAPS
grid points on land, LDAPS generally slightly underestimated temperature, regardless of the season
(Figure 11b). The AWS-measured and LDAPS-predicted wind speeds and temperatures were more
strongly correlated in winter than in summer (Figure 12). Wind speed correlations at Rc AWSs were
highest among the four categories.
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Figure 12. Scatter plots of the AWS-observed and LDAPS-predicted temperatures (left panels) and wind
speeds (right panels) at the (a,b) AWS 607 (LDAPS grid located at sea) and (c,d) AWS 793 (LDAPS grid
located at land). Red and blue dots indicate for summer season (June, July, and August) and winter
season (December, January, and February), respectively.

Next, we analyzed WE and TE at 25 AWSs within in each category. Based on this analysis,
we summarized the characteristics of wind speeds and temperatures predicted by LDAPS for Uf, Rf,
Rm, and Rc (Table 2). At Uf AWSs, the average WE was >0.63 m s−1, and the average TE was <0.04 ◦C.
At Rf AWSs, the average WE ranged from −0.12 to 0.72 m s−1. The average TE was dependent on the
altitude difference between LDAPS and the actual terrain, with values > 0.24 ◦C when LDAPS altitude
was lower than actual altitude and values ranging from −0.68 ◦C to 0.89 ◦C when LDAPS altitude
was higher than actual altitude. At Rm AWSs, WE and TE was also dependent on the difference
between LDAPS altitude and actual altitude, because LDAPS smoothed steep terrains in mountains
and valleys. Jiménez and Dudhia [42] reported that the smoothed terrain in a numerical weather
prediction model causes errors in predicting wind speeds by failing to capture momentum fluxes
from unresolved topography. When the altitude difference was less (more) than 400 m, the average
WE was lower (higher) than −0.92 (0.32) m s−1 except at one AWS (554). The average TE was higher
(lower) than 0.14(−0.15) ◦C at altitude differences of less (more) than 150 m except at one AWS (831).
At Rc AWSs, average WE and TE values were influenced by whether the LDAPS grid was on sea or
land. At AWSs corresponding to LDAPS grid points on the sea, the average WE was >0.04 m s−1,
and the average TE varied seasonally, with values >0.19 ◦C in fall and winter and <0.02 ◦C in spring
and summer. At AWSs corresponding to LDAPS grid points on land, the average WE was >0.14 m s−1,
and the average TE ranged from −0.56 to 0.46 ◦C, similar to those of Rf AWSs.
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Table 2. Summary of the LDAPS characteristics for the four categories (Uf, Rf, Rm, and Rc).

Category Prediction Characteristics of LDAPS Model

Wind Speed Temperature

Uf

� If an AWS located on the ground
→ 0.66 < WE < 1.50 m s−1, IQR= 0.27 m s−1

� If an AWS located on the building
→ 0.63 < WE < 1.96 m s−1, IQR= 0.28 m s−1

� If an AWS located on the ground
→−1.05 < TE < 0.03 ◦C, IQR = 0.44 ◦C
� If an AWS located on the building
→−2.67 < TE < 0.04 ◦C, IQR = 0.43 ◦C

Rf � −0.12 < WE < 0.72 m s− 1, IQR= 0.22 m s−1

� If (LDAPS—actual altitude) < 0 m
→ 0.24 < TE < 0.87 ◦C, IQR = 0.41 ◦C
� If (LDAPS—real-terrain altitude) > 0 m
→−0.68 < TE < 0.89 ◦C, IQR = 0.45 ◦C

Rm

� If (LDAPS—actual altitude) < −400m
→−2.38 < WE < −0.92 m s−1, IQR= 0.85 m s−1

� If (LDAPS—real-terrain altitude) > −400m
→−1.69 < WE < 2.68 m s−1, IQR= 0.47 m s−1

� If (LDAPS—actual altitude) < 150 m
→ 0.14 < TE < 3.40 ◦C, IQR = 0.56 ◦C
� If (LDAPS—actual altitude) > 150 m
→−2.73 < TE < 0.09 ◦C, IQR = 0.70 ◦C

Rc

� If LDAPS grid located on the land
→ 0.14 < WE < 1.70 m s−1, IQR= 0.57 m s−1

� If LDAPS grid located on the sea
→ 0.04 < WE < 2.09 m s−1, IQR= 0.54 m s−1

� If LDAPS grid located on the land
→−0.56 < TE < 0.49 ◦C, IQR = 0.88 ◦C
� If LDAPS grid located on the sea
→−0.55 < TE < 0.55 ◦C, IQR = 0.47 ◦C

Note: IQR indicate inter-quartile range.

4. Summary and Conclusions

We analyzed the characteristics of surface wind speeds and temperatures predicted by LDAPS for
100 AWSs classified into four categories based on surrounding land covers and topography.

At Uf AWSs, LDAPS did not sufficiently reflect the influence of building drag and surface heating
due to limited grid resolution and the applied coordinate system. At Uf AWSs, it generally overestimated
wind speed (average WE = 1.26 m s−1) and underestimated temperature (average TE = −0.63 ◦C).
At Rf AWSs, it performed best in predicting wind speed and temperature (average WE = 0.42 m s−1,
average TE = 0.12 ◦C), because there were few buildings to provide friction and heat around the
AWSs. The average WE and TE of LDAPS predictions were very small in mountainous terrain (Rm)
despite their extensive variation. At Rm AWSs, WE and TE were strongly correlated with the difference
between LDAPS altitude and actual altitude. LDAPS underestimated wind speed and overestimated
temperature when the LDAPS terrain was lower than the actual terrain, and vice versa. In coastal
terrain (Rc), it overestimated wind speed, regardless of whether the LDAPS grid points corresponded
to land or sea; WE was generally slightly higher for grid points on land than for those on the sea.
TE and its variation were smaller for grid points on the sea than for those on land.

Our results demonstrate that LDAPS performance in predicting wind speed and temperature at
AWSs depends on the surrounding land cover (urban or rural areas) and topography (mountainous,
coastal, or flat terrain). We expect that the results would help researchers (including LDAPS improvers
and users) to understand the characteristics of LDAPS-predicted surface wind speed and temperature
around any concerning region. Additionally, our findings will contribute to future applications of
LDAPS for forecasting local weather in Korea.

Author Contributions: Conceptualization, D.-J.K. and J.-J.K.; methodology, D.-J.K. and J.-J.K.; formal analysis,
D.-J.K., G.K., D.-Y.K. and J.-J.K.; writing—original draft preparation, D.-J.K., G.K., and J.-J.K.; writing—review and
editing, J.-.J.K.; visualization, D.-J.K., G.K., and D.-Y.K.; funding acquisition, J.-J.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was funded by the Korea Meteorological Administration Research and Development Program
under Grant ‘KMI2018-06610’ and ‘KMI2017-02410’.

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable comments
and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.



Atmosphere 2020, 11, 1224 13 of 16

Appendix A. Heights of the AWSs Considered in this Study and Statistical Details

Table A1. Height of the AWSs considered in this study and statistical details.

Cate Gory
Station

Number

Station Height
above the Mean

Sea Level (m)

MBE (Wind
Speeds/

Temperature)

RMSE (Wind
Speeds/

Temperature)

R (Wind
Speeds/

Temperature)
Cate Gory Station

Number

Station Height
above the Mean

Sea Level (m)

MBE (Wind
Speeds/

Temperature)

RMS (Wind
Speeds/

Temperature)

R (Wind
Speeds/

Temperature)

Uf

400 60 1.29/−0.47 1.82/1.26 0.53/0.95

Rm

316 912 −2.38/3.40 4.16/3.80 0.28/0.92

401 42 1.08/−0.88 1.52/1.49 0.67/0.94 318 770 0.93/0.14 1.51/2.29 0.76/0.85

402 57 1.96/−1.02 2.47/1.50 0.51/0.96 320 1263 0.23/2.19 2.36/2.46 0.53/0.93

403 54 1.92/−0.74 2.50/1.41 0.46/0.95 419 266 0.40/0.93 1.79/1.85 0.45/0.92

404 79 1.75/−0.49 2.29/1.10 0.52/0.95 422 333 0.37/0.67 1.41/1.22 0.49/0.96

405 10 1.15/−0.84 1.61/1.44 0.58/0.94 497 658 2.68/0.50 3.36/2.80 0.56/0.79

406 56 1.96/−1.39 2.88/2.12 0.46/0.93 498 1015 0.60/1.25 1.97/1.78 0.36/0.93

408 49 0.96/−0.24 1.71/1.39 0.47/0.94 554 770 −1.69/0.17 2.31/1.76 0.77/0.87

409 40 0.63/−0.45 0.87/1.29 0.54/0.96 559 575 0.95/−0.16 1.73/2.64 0.72/0.87

410 34 0.65/−0.05 1.10/1.48 0.63/0.90 579 609 0.74/0.39 1.36/2.28 0.64/0.88

413 28 0.97/−0.47 1.37/1.20 0.51/0.96 581 420 0.32/−0.68 1.27/2.29 0.56/0.92

415 33 1.46/−0.17 1.78/1.28 0.44/0.94 586 226 0.97/−0.98 1.65/2.34 0.62/0.92

417 42 1.32/0.04 1.78/1.17 0.46/0.95 682 1062 −1.06/3.05 1.69/3.80 0.10/0.85

421 34 1.40/−0.63 1.77/1.45 0.45/0.95 695 1050 −1.53/2.63 2.18/3.00 0.22/0.93

423 53 1.08/−0.18 1.54/1.18 0.42/0.95 735 658 1.08/0.33 1.77/2.48 0.64/0.85

424 56 1.47/−2.67 2.00/2.82 0.56/0.97 759 481 1.58/−1.49 2.94/3.26 0.40/0.73

510 24 1.59/−0.52 2.11/1.33 0.41/0.94 791 413 1.02/−1.27 2.05/2.70 0.60/0.81

512 9 1.03/−0.30 1.63/1.45 0.50/0.91 831 662 2.07/0.09 2.73/2.74 0.61/0.77

572 29 1.07/−0.87 1.50/1.79 0.62/0.95 838 452 0.95/−1.89 1.98/2.62 0.64/0.92

627 41 0.82/0.03 1.48/1.41 0.69/0.92 853 570 1.89/0.46 3.00/1.23 0.46/0.95

712 9 0.86/−0.63 1.54/1.24 0.75/0.95 856 514 1.78/−1.33 2.87/2.26 0.62/0.87

788 63 1.02/−0.27 1.68/1.37 0.53/0.94 870 1488 0.67/−1.39 2.47/2.17 0.62/0.84

938 109 0.75/−0.70 1.70/1.55 0.59/0.89 872 865 1.66/−2.73 3.28/3.55 0.46/0.79

940 72 1.50/−1.05 2.46/1.82 0.49/0.91 875 1596 −0.92/3.04 3.31/3.42 0.47/0.90

942 15 1.72/−0.74 2.24/1.30 0.52/0.92 878 814 1.06/0.86 1.87/1.54 0.47/0.93
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Table A1. Cont.

Rf

321 254 0.34/−0.68 1.10/2.12 0.71/0.92

Rc

300 48 0.04/0.05 1.79/1.10 0.74/0.85

416 66 0.64/0.87 1.02/2.10 0.69/0.94 301 4 2.09/−0.10 1.83/1.95 0.80/0.83

496 30 0.52/0.58 1.20/1.75 0.64/0.94 310 14 1.10/0.14 1.58/2.39 0.58/0.82

529 41 0.37/0.12 1.21/2.16 0.57/0.85 524 3 0.48/−0.51 1.78/2.49 0.49/0.83

602 93 0.67/0.01 1.29/1.69 0.67/0.93 606 24 1.60/−0.17 2.11/1.49 0.69/0.87

603 120 0.48/0.16 1.29/1.92 0.72/0.94 607 7 2.00/−0.25 2.32/1.55 0.75/0.84

615 12 0.26/0.24 1.01/1.30 0.70/0.97 631 9 1.24/−0.35 1.87/1.53 0.72/0.85

622 93 0.54/0.33 1.32/2.24 0.75/0.92 657 32 1.07/−0.12 1.99/1.43 0.57/0.84

623 75 0.65/−0.54 1.43/1.73 0.71/0.95 661 5 0.14/0.49 1.57/3.05 0.48/0.71

701 205 0.34/0.89 1.08/2.24 0.55/0.92 662 14 1.70/0.29 2.55/1.17 0.69/0.85

706 49 −0.12/0.18 1.10/1.51 0.69/0.94 663 60 0.51/0.55 2.77/1.03 0.77/0.91

708 30 0.49/−0.10 1.26/1.30 0.77/0.94 671 3 1.39/−0.43 1.84/2.60 0.52/0.70

710 9 0.36/0.16 1.25/1.56 0.79/0.93 697 4 1.35/−0.08 3.04/1.04 0.72/0.87

775 51 0.33/0.47 1.08/1.33 0.82/0.96 700 52 1.24/0.34 2.68/1.06 0.65/0.92

816 42 0.54/0.19 1.32/1.55 0.73/0.89 793 3 0.43/−0.06 1.81/1.06 0.81/0.95

825 30 0.11/−0.63 0.95/1.83 0.67/0.93 800 9 0.81/−0.56 1.76/2.02 0.57/0.80

829 71 0.38/−0.16 1.13/1.70 0.77/0.94 852 41 0.61/0.14 1.67/1.71 0.75/0.91

841 137 0.37/0.44 0.94/2.56 0.70/0.89 881 13 1.20/−0.13 1.70/1.53 0.54/0.82

887 33 0.31/−0.06 1.04/1.54 0.73/0.94 901 68 1.08/−0.42 1.99/1.45 0.65/0.90

900 122 0.62/−0.36 1.42/2.40 0.72/0.87 907 23 1.27/−0.55 2.17/1.31 0.59/0.89

920 8 0.52/0.37 1.28/1.73 0.73/0.94 921 74 1.54/0.01 2.98/1.44 0.62/0.88

925 12 0.51/0.71 1.32/1.50 0.69/0.94 923 66 1.02/−0.29 1.87/1.12 0.64/0.91

932 8 0.72/−0.68 1.24/1.30 0.53/0.95 924 24 1.28/−0.27 1.94/1.13 0.60/0.90

946 324 0.22/−0.35 1.00/2.34 0.69/0.88 949 4 0.52/−0.49 1.45/1.87 0.62/0.85

951 103 0.35/0.76 1.33/1.88 0.70/0.92 954 63 0.75/−0.26 1.65/1.53 0.61/0.92
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