



1 2

**Table S1.** Positions of Snow Sampling Sites, Snow Depth, and Concentration of Insoluble Particles in the SnowPack (C, mg/L) in February 2020.

| Site | Date       | Latitude, °N | Longitude, °E | Snow depth, cm | C, mg/L |
|------|------------|--------------|---------------|----------------|---------|
| 1    | 08.02.2020 | 53.353110    | 84.115650     | 49             | 10.8    |
| 2    | 08.02.2020 | 54.313820    | 83.268000     | 43             | 1.32    |
| 3    | 09.02.2020 | 55.267670    | 82.721080     | 46             | 0.66    |
| 4    | 09.02.2020 | 56,030940    | 83.776950     | 41             | 2.01    |
| 5    | 09.02.2020 | 56.539973    | 84.059395     | 36             | 3.21    |
| 6    | 09.02.2020 | 57.253698    | 83.923628     | 61             | 2.50    |
| 7    | 09.02.2020 | 57.639776    | 83.551018     | 66             | 2.00    |
| 8    | 09.02.2020 | 58.165450    | 82.552152     | 61             | 2.86    |
| 9    | 09.02.2020 | 58.644013    | 81.665805     | 50             | 3.04    |
| 10   | 11.02.2020 | 58.980790    | 80.612990     | 50             | 3.42    |
| 11   | 11.02.2020 | 59.339339    | 79.765788     | 72             | 1.60    |
| 12   | 11.02.2020 | 59.696980    | 78.935680     | 72             | 1.60    |
| 13   | 11.02.2020 | 60.075950    | 78.135140     | 70             | 1.64    |
| 14   | 11.02.2020 | 60.353770    | 77.478310     | 67             | 0.71    |
| 15   | 12.02.2020 | 60.830600    | 77.240780     | 73             | 1.98    |
| 16   | 12.02.2020 | 61.116430    | 75.851770     | 70             | 0.86    |
| 17   | 13.02.2020 | 61.379444    | 74.916667     | 86             | 1.03    |
| 18   | 13.02.2020 | 61.343056    | 73.683333     | 84             | 0.92    |
| 19   | 13.02.2020 | 60.962170    | 72.538410     | 70             | 1.24    |
| 20   | 13.02.2020 | 60.879560    | 71.367550     | 60             | 1.63    |
| 21   | 13.02.2020 | 61.033490    | 69.985940     | 58             | 1.96    |
| 22   | 14.02.2020 | 61.052037    | 68.652663     | 35             | 1.14    |
| 23   | 15.02.2020 | 60.999156    | 68.900517     | 53             | 1.75    |
| 24   | 15.02.2020 | 61.138230    | 67.769780     | 52             | 3.15    |
| 25   | 15.02.2020 | 61.480500    | 66.831950     | 84             | 1.30    |
| 26   | 15.02.2020 | 61.828180    | 66.024740     | 52             | 0.80    |
| 27   | 16.02.2020 | 62.231080    | 65.458900     | 59             | 1,03    |
| 28   | 16.02.2020 | 62.735510    | 65.456760     | 47             | 0.48    |
| 29   | 16.02.2020 | 62.734590    | 65.419840     | 70             | 0.70    |
| 30   | 16.02.2020 | 63.154290    | 64.769320     | 71             | 0.90    |
| 31   | 16.02.2020 | 63.656070    | 64.724190     | 50             | 0.88    |
| 32   | 17.02.2020 | 64.184470    | 65.392610     | 60             | 0.56    |
| 33   | 17.02.2020 | 64.773900    | 65.146220     | 54             | 0,52    |
| 34   | 17.02.2020 | 65.292940    | 64.747451     | 70             | 0.70    |
| 35   | 18.02.2020 | 65.854647    | 65.027917     | 82             | 0.51    |
| 36   | 18.02.2020 | 66.400238    | 66.234517     | 52             | 0.70    |









3 4

Figure S2. Scanning electron microscope photography (SEM images) of selected insoluble particles and their energy-dispersive X-ray spectra (the probe zone is shown by a white rectangle): :  $\mathbf{a}$ ,  $\mathbf{b}$  – 5 fragments of plants; **c**–**f** – ash; g–m – minerals (**g** – silica; **h** – quartz; **I** – biotite; **j** – saponite; **k** – augite; 6 l, m – corundum); n – ash.

7 Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional 8 affiliations.



© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).