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Abstract: A cloud image can provide significant information, such as precipitation and solar
irradiation. Predicting short-time cloud motion from images is the primary means of making
intra-hour irradiation forecasts for solar-energy production and is also important for precipitation
forecasts. However, it is very challenging to predict cloud motion (especially nonlinear motion)
accurately. Traditional methods of cloud-motion prediction are based on block matching and the linear
extrapolation of cloud features; they largely ignore nonstationary processes, such as inversion and
deformation, and the boundary conditions of the prediction region. In this paper, the prediction of
cloud motion is regarded as a spatiotemporal sequence-forecasting problem, for which an end-to-end
deep-learning model is established; both the input and output are spatiotemporal sequences.
The model is based on gated recurrent unit (GRU)- recurrent convolutional network (RCN), a variant
of the gated recurrent unit (GRU), which has convolutional structures to deal with spatiotemporal
features. We further introduce surrounding context into the prediction task. We apply our proposed
Multi-GRU-RCN model to FengYun-2G satellite infrared data and compare the results to those of
the state-of-the-art method of cloud-motion prediction, the variational optical flow (VOF) method,
and two well-known deep-learning models, namely, the convolutional long short-term memory
(ConvLSTM) and GRU. The Multi-GRU-RCN model predicts intra-hour cloud motion better than the
other methods, with the largest peak signal-to-noise ratio and structural similarity index. The results
prove the applicability of the GRU-RCN method for solving the spatiotemporal data prediction
problem and indicate the advantages of our model for further applications.

Keywords: cloud motion prediction; deep learning; gated recurrent unit; convolutional long
short-term memory; satellite cloud image

1. Introduction

Recently, cloud-motion prediction has received significant attention because of its importance
for the prediction of both precipitation and solar-energy availability [1]. Research has shown that
the prediction of the short-time motion of clouds, especially of convective clouds, is important for
precipitation forecasts [2-7]. Since most models of solar variability [8,9] and of solar irradiation [10-12]
require cloud motion velocity as the main input, accurate cloud motion estimation is also essential
for the intra-hour forecast of solar energy [13-16]. The difference between weather forecasts and
solar forecasts is that the latter are usually conducted in a shorter time window (less than one hour).
Otherwise, cloud-motion prediction is essentially similar in these two fields. Because the temperature
of clouds is lower than that of the ground, clouds can be identified from infrared (IR) satellite
images (with wavelengths of 10.5 to 12.5 um) in which the intensity of IR radiation is correlated with
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temperature [1,17]. Therefore, cloud motion can be estimated from a given sequence of IR images for
weather forecasting [18] or intra-hour solar forecasting.

Nevertheless, cloud motion is a complex phenomenon involving nonrigid motion and nonlinear
events [19], and predicting it remains challenging. Several methods have been proposed for the
prediction of cloud motion; most of them are correspondence-based approaches. In general, cloud
motion vectors (CMVs) are obtained by first locating salient image features, such as brightness gradients,
corners, cloud edges, or brightness temperature gradients [20,21], and subsequently tracking these
features in successive images with the assumption that they do not change significantly over a short
interval. CMVs can be obtained from data collected by sky-imaging devices, such as whole-sky imagers
(WSlIs) [22], or by satellites. CMVs derived from WSI data are used for short-term forecasts (less than
20 min) in the local spatial area [11], whereas CMVs obtained from satellite images are commonly
utilized to find the global atmospheric motion and the climate status of a large area [21,23]. Adopting a
similar concept to CMVs, Brad and Letia [19] developed a model combining a block matching algorithm
(BMA) and a best candidate block search, along with vector median regularization, to estimate cloud
motion. This method divides successive images into blocks, restricting the candidate list of blocks to
a predefined number, while in the full search BMA, the best match is found between the two blocks
of successive frames in a full domain. Based on the idea of block matching, Jamaly and Kleissl [24]
applied the cross-correlation method (CCM) and cross-spectral analysis (CSA) as matching criteria on
cloud motion estimation. Additional quality-control measures, including removing conditions with
low variability and less-correlated sites, can help to ensure that CSA and CCM reliably estimate cloud
motion. Nevertheless, CCM can lead to relatively large errors because the assumption of uniform
cloud motion does not hold in the presence of cloud deformation, topographically induced wind-speed
variations, or a changing optical perspective [25]. This is a common problem for other block matching
methods as well.

One approach to overcoming the challenges brought by variations in cloud motion is to compute
the CMV of every pixel. Chow et al. [26] proposed a variational optical flow (VOF) technique to
determine the subpixel accuracy of cloud motion for every pixel. They focused on cloud motion
detection, and did not extend their work to prediction. Shakya and Kumar [27] applied a fractional-order
optical-flow method to cloud-motion estimation and used extrapolations based on advection and
anisotropic diffusion to make predictions. However, their method is not an end-to-end method of
cloud-motion prediction.

Since the CMV is computed by extracting and tracking features, ameliorating feature extraction
is another approach to improving performance. The deep convolutional neural network (CNN) [28]
has proved able to extract and utilize image features effectively; it has achieved great success in
visual recognition tasks, such as the ImageNet classification challenge [29]. Methods based on deep
CNN have been introduced to cloud classification [30,31], cloud detection [32], and satellite video
processing [33] in recent years. Although deep CNN has performed excellently when dealing with
spatial data, it discards temporal information [34] that provides important clues in the forecasting
of cloud motion. A prominent class of deep neural network called recurrent neural network (RNN)
could learn complex and compound relationships in the time domain. However, the simple RNN
model lacks the ability to backpropagate the error signal through a long-range temporal learning.
Long short-term memory (LSTM) [35] was proposed to tackle this problem and this model is widely
used in the solar power forecasting field [36,37]. Recent deep-learning models trained on videos
have been used successfully for captioning and for encoding motion. Ji et al. [38] formulated a video
as a set of images and directly applied deep CNN on the frames. Zha et al. [39] extended deep
2-D CNN to deep 3-D CNN and performed a convolutional operation on both the spatial and the
temporal dimensions. Donahue et al. [40] combined convolutional networks with LSTM and proposed
long-term recurrent convolutional network (LRCN). LRCN first processes the inputs with CNN and
then feds the outputs of CNN into stacked LSTM. This method created a precedent on a combination
of CNN and RNN regarded as recurrent convolutional network (RCN). Unlike previous proposals that
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focused on high-level deep CNN “visual percepts”, the novel convolutional long short-term memory
(ConvLSTM) network proposed by Shi et al. [41] has convolutional structures in both the input-to-state
and state-to-state transitions to extract “visual percepts” for precipitation now-casting. Ballas et al. [42]
extended this work and proposed a variant form of the gated recurrent unit (GRU). They captured
spatial information using an RNN with convolutional operation and empirically validated their
GRU-RCN model on a video classification task. GRU-RCN has fewer parameters than ConvLSTM.

Since both the input and output of a cloud-motion forecast are spatiotemporal sequences,
cloud-motion prediction is a spatiotemporal-sequence forecast problem for which GRU-RCN would
seem well suited. However, Ballas et al. [42] focused on video classification, which is quite different
from our forecast problem. Given the input video data, the output of their model is a number that
depends on the class of the video; in our problem, the output should have a spatial domain as well.
We need to modify the structure of the GRU-RCN model and apply it directly on the pixel level.

Moreover, there exists another challenge in the cloud motion prediction problem: new clouds
often appear suddenly, at the boundary. To overcome this challenge, our model includes information
about the surrounding context in which each small portion of the cloud is embedded; this was not
considered in previous methods.

In this paper, we suggest the use of deep-learning methods to capture nonstationary information
regarding cloud motion and deal with nonrigid processes. We propose a multiscale-input end-to-end
model with a GRU-RCN layer. The model takes the surrounding context into account, achieves
precise localization, and extracts information from multiple scales of resolution. Using a database
of FenYun-2G IR satellite images, we compare our model’s intra-hour predictions to those of the
state-of-the-art variational optical-flow (VOF) method and three deep learning models (ConvLSTM,
LSTM, and GRU); our model performs better than the other methods.

The remainder of this paper is organized as follows: Section 2 introduces the GRU-RCN model.
Section 3 describes the data we used and the experiments we conducted. Section 4 presents the
results, as well as briefly describes the other methods with which the GRU-RCN model was compared.
Section 5 discusses the advantages and disadvantages of our model and our plans for future work.
Section 6 provides our concluding remarks.

2. Methodology

2.1. Deep CNN

Deep CNN s [28] have been proven to extract and utilize image features effectively and have
achieved great success in visual recognition tasks. Regular neural networks do not scale well to full
images because, in the case of large images, the number of model parameters increases drastically,
leading to low efficiency and rapid overfitting. The deep-CNN architecture avoids this drawback.
The deep CNN contains a sequence of layers, typically a convolutional layer, a pooling layer, and a
fully connected layer. In a deep CNN, the neurons in a given layer are not connected to all the neurons
in the preceding layer but only to those in a kernel-size region of it. This architecture provides a certain
amount of shift and distortion invariance.

2.2. GRU

A GRU [43] is a type of RNN. An RNN is implemented to process sequential data; it defines a
recurrent hidden state, the activation of which depends on the previous state. Given a variable-length
sequence X = (x1,xy,...x), the hidden state i of the RNN at each time step ¢ is updated by:

hy = ¢(he—q, xt), 1)

where ¢ is a nonlinear activation function.
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An RNN can be trained to learn the probability distribution of sequences and thus to predict
the next element in the sequence. At each time step ¢, the output can be represented as a distribution
of probability.

However, because of the vanishing-gradient and exploding-gradient problems, training an RNN
becomes difficult when input/output sequences span long intervals [44]. Variant RNNs with complex
activation functions, such as LSTMs and GRUs, have been proposed to overcome this problem. LSTMs
and GRUs both perform well on machine-translation and video-captioning tasks, but a GRU has a
simpler structure and lower memory requirement [45].

A GRU compels each recurrent unit to capture the dependencies of different timescales adaptively.
The GRU model is defined by the following equations:

Zt = G(szt + uzht—l)/ (2)
re = o(Wexy + Uphy_q), 3)
h = tanh(Wxy + U(r; © 1)), )
hy = (1 —z¢)h—g + zehy, ®)

where © denotes element-wise multiplication; W, W,, W, and U, U,, U, are weight matrices; x; is
current input; /;_1 is the previous hidden state; z; is an update gate; ; is a reset gate; o is the sigmoid
function; h; is a candidate activation, which is computed similarly to that of the traditional recurrent
unit in an RNN; and /; is the hidden state at time step t.

The update gate determines the extent to which the hidden state is updated when the unit
updates its contents, and the reset gate determines whether the previous hidden state is preserved.
More specifically, when the value of the reset gate of a unit is close to zero, the information from
the previous hidden state is discarded and the update is based exclusively on the current input of
the sequence. By such a mechanism, the model can effectively ignore irrelevant information for
future states. When the value of the reset gate is close to one, on the other hand, the unit remembers
long-term information.

2.3. GRU-RCN

In this section, we will introduce the GRU-RCN layer utilized in our model. A GRU converts input
into a hidden state by fully connected units, but this can lead to an excessive number of parameters.
In cloud imaging, the inputs of satellite images are 3-D tensors formed from the spatial dimensions
and input channels. We regard the inputs as a sequence X = (x1,x,...x;); the size of the hidden state
should be the same as that of the input. Let H, Wid, and C be the height, width, and number of the
channels of input at every time step, respectively. If we apply GRU on inputs directly, the size of both
the weight matrix W and the weight matrix U should be H x Wid x C.

Images are composed of patterns with strong local correlation that are repeated at different spatial
locations. Moreover, satellite images vary smoothly over time: the position of a tracked cloud in
successive images will be restricted to a local spatial neighborhood. Ballas et al. [42] embedded
convolution operations into the GRU architecture and proposed the GRU-RCN model. In this way,
recurrent units have sparse connectivity and can share their parameters across different input spatial
locations. The structure of the GRU-RCN model is expressed in the following equations:

2 = o(Wex} + UL *h_y), (6)
rh=o(Whex) + ULhl_,), @)
I = tanh(Wxl + U+ (L onl_))), )

M= (1-z)H_ + 2, )
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where * denotes convolution and the superscript I denotes the layer of the GRU-RCN; the weight
matrices W/, WL, Wl and U, UL, UL are 2-D convolutional kernels; and 1! = h(i, j), where KL (i, j) is a
feature vector defined at the location (i, j).

With convolution, the sizes of W/, Wé, W£ and U/, Ué, Ul, are all K1 X Ky X C, where K7 X K5 is
the convolutional-kernel spatial size (chosen in this paper to be 3 X 3), significantly lower than that
of the input frame H x Wid. Furthermore, this method preserves spatial information, and we use
zero padding in the convolution operation to ensure that the spatial size of the hidden state remains
constant over time. The candidate hidden representationﬁi(i, j), the activation gate z.(i, j), and the
reset gate ri(i, j) are defined based on a local neighborhood of size K; X K3 at the location (3, j) in
both the input data xi and the previous hidden state hi_l. In addition, the size of the receptive field
associated with hi(i, j) increases with every previous timestep hi_l, hi_z ... as we go back in time.
The model implemented in this paper is, therefore, capable of characterizing the spatiotemporal pattern
of cloud motion with high spatial variation over time.

2.4. Multi-GRU-RCN Model

In this section, we will introduce the model structure of Multi-GRU-RCN. Ballas et al. [42] focused
on the problem of video classification and therefore implemented a VGG16 model structure in their
paper. However, this does not fit our problem well: we need to operate on the pixel level directly.
The model structure of Shi et al. [41] consists of an encoding network as well as a forecasting network,
and both networks are formed by stacking several ConvLSTM layers. In their model, there is a single
input, and the input and output data have the same dimension. We modified this model structure
and proposed a new one, which can extract information from the surrounding context. The model
structure is presented in Figure 1.

Input

(Small !j:>GRU-RCN EN o — Copy-i---+--i-» GRU-RCN —>.
Region) :

Batch

L ) .
Normalization ] oAt —F—VConvolutlon(lxl)I:> Output

Input : [ 4 :
: Batch Max : ! Batch
Ei > ¥ > —» -+Copyi-» - —
(Carze : GRURCH Normalization Pooling | ! pys GRURCH Normalization

Encoding Forecasting

Figure 1. Outline of the multi-gated recurrent unit (GRU)-recurrent convolutional network (RCN) model.

There are multiple inputs in this model, and the input from each small region has the same center
as the input from a larger region. The input from the small region has the same dimension as the output,
while the input from the large region has four times as much area. We consider the region that is
included in the large region but excluded in the small region as the surrounding context. The purpose
of utilizing multiple inputs from different regions is to enrich the information with the surrounding
context. Like the model of Shi et al. [41], our model consists of an encoding part and a forecasting
part. In addition to stacked GRU-RCN layers, batch normalization [46] was introduced into both the
encoding and forecasting parts to accelerate the training process and avoid overfitting. When utilizing
input from a large region, we used a max pooling layer to reduce the dimension and improve the
ability of the model to capture invariance information of the object in the image. The initial states of the
forecasting part are copied from the final state of the encoding part. We concatenate the output states
of the two inputs and subsequently feed this into a 1 X 1 convolutional layer with ReLU activation to
obtain the final prediction results.
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3. Experiment and Data

3.1. Experimental Setup

In this paper, we used a set of satellite data from 2018. For computational convenience, we first
normalized the data to the range 0 to 1. We randomly selected data from 200 days as training data,
data from 20 days as validation data, and data from another 20 days as test data. Because each image
was too large (512 x 512 pixels) for training, we divided it into small patches, and set the patch sizes at
64 X 64 pixels and 128 x 128 pixels. Every 64 X 64 patch was paired with a 128 x 128 patch (the 64 x 64
patch being in the center region of the 128 x 128 patch). Thus, each 512 x 512 frame was divided
into 16 pairs of patches. The patches were at the same location but across consecutive time steps.
Because the average velocity of cloud motion in the training dataset is 14.35 m/s according to the FY-2G
Atmospheric Motion Vector data, about 81.05% of the pixels in each patch can be tracked in the next
time step’s patch at the same location.

The data instances were partitioned into nonoverlapping sequences, each of which is n frames
long. For each sequence, we used the first n — 1 frames as input to predict the last frame. For example,
the first sequence implements frames 1 to nn — 1 to predict frame #, and the second sequence implements
frames n 4 1 to 2n — 1 to predict frame 2n. To select the exact value of 1, we designed a pretraining
process. For each value of 1 between 2 and 10, we set the batch size to 32 and randomly selected 100
batches from the training dataset. We trained the model using these batches of data and computed the
average mean squared error (MSE) among all batches and the running time. The results are presented
in Figure 2.

1800
—— Average MSE Running Time
700 - —— Minimum MSE 1600
600 A 1400
500 - H1200
=]
Qo
) 5]
2 400 L1000 &
N
= [5)
300 A 800 E
200 A F 600
100 A 400
0 . . . . . . . , : 200
2 3 4 S 6 7 8 9 10
Number

Figure 2. Results of average mean squared error (MSE), minimum MSE, and running time utilizing
different values for the frame number 7.

As seen in Figure 2, the running time increases almost linearly with the increase in n. The average
MSE evidently falls as n increases from 2 to 6 but thereafter remains almost constant. The minimum
MSE (i.e., the minimum batch MSE among all batches), however, is not very sensitive to the value of n.
This indicates that when # is larger than 6, the running time increases as n increases, but this does not
lead to a reduction in the MSE. Therefore, the value n = 6 was chosen for the experiments reported in
this paper. The satellite collected data every hour; therefore, there were 12,800 cases in the training
dataset, 1280 cases in the validation dataset, and 1280 cases in the test dataset.
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The outline of the GRU-RCN layer is demonstrated in Figure 3. The output of the encoder will be
implemented in the decoder for the production of the final output. We trained the GRU-RCN model
by minimizing the MSE loss using backpropagation through time (BPTT) with a learning rate of 1073.
The kernel size of the convolutional structure in our GRU-RCN layer was set to 3 x 3.

Output

t-5

Figure 3. Outline of the gated recurrent unit (GRU)-recurrent convolutional network (RCN) layer
applied to cloud-image prediction over time. Cloud images were obtained from the FY-2G IR1 database.

3.2. Test Benchmark

The performance of the proposed method was determined by two metrics: the peak signal-to-noise
ratio (PSNR) [47] and structural similarity (SSIM) index [48]. PSNR is a widely used metric for
evaluating the accuracy of algorithms. This metric indicates the reconstruction quality of the method
used. The observed value at the prediction time step is not of practical relevance. Information regarding
future events is not involved in the generation of the forecast satellite image; however, it still serves as a
useful benchmark. The signal here was taken to be the observed value, whereas the noise was the error
of the forecast image. The PSNR between the observed image f and predicted image ¢ was defined as

PSNR(f/ g) = 10 logl()(Imaxz/MSE(f/g))/ (10)

where I = 28 — 1is the maximum pixel intensity. MSE(f, g) is the mean squared error between
the observed and predicted image, defined as:

N
MSE(f, 8) = 5 ). (i-80* a
i=1

where N is the number of pixels in the satellite image.
For a smaller MSE, the PSNR will be larger, and, therefore, the algorithm accuracy will be higher.
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SSIM is a quality assessment method used to measure the similarity between two images. It was
proposed under the assumption that the quality perception of the human visual system (HVS) is
correlated with structural information of the scene. Therefore, it considers image degradations as
perceived changes in structural information, while PSNR estimates image degradations based on error
sensitivity. The structural information is decomposed into three components: luminance, contrast,
and structure. The SSIM between f and g is defined as:

SSIM(f, &) = I(f, g)e(f, &)s(f, 8), (12)

where I(f, ), c(f, g), and s(f, g) are the luminance comparison, contrast comparison, and structure
comparison between f and g, respectively:

2prpg +c1
I(f, = — 13
(f, 8) PR (13)
20704+ C
fOg T2
_ il 14
C(f/ g) Uf2+(jg2+C1, ( )
B Gfg+C3
s(f, g) = ojog T e’ (15)

where ¢ and g are the averages of f and g, oy are the variances of f and g, 0, is the covariance of f
and g, and ¢y, ¢, and c3 are positive constants to stabilize the division with a zero denominator.
Besides, we also considered the mean bias error (MBE) as a supplementary metric. Although the
value of MBE could not indicate the model reliability because the errors often compensate each other,
it could show the degree to which the method underestimates or overestimates the results. With the
purpose of exhibiting the degree more intuitively, the MBE was calculated as a percentage and the
MBE between f and ¢ was defined as
i 100%, (16)
fi

1 N gi
MBE(f, g) = = )|
i=1

z|

3.3. Data

FY-2, the first Chinese geostationary meteorological satellite, was launched on 31 December
2014, and positioned above the equator at 105° E. With the Stretched Visible and Infrared Spin Scan
Radiometer (S-VISSR) on board, FY-2 can observe the Earth’s atmosphere with high temporal and
spatial resolutions. The IR1 channel (10.3~11.3 um) China land-area images are obtained hourly for the
spatial range 50° E~160° E, 4° N~65° N. The size of each image is 512 x 512 pixels, and the spatial
resolution of each pixel is 13 km in both the north-south and east-west directions. The intensity of the
pixels is 0~255. The relationship between the intensity count and brightness temperature is negative
but not linear. An image instance of FY-2 is depicted in Figure 4.
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Figure 4. FY-2G IR1 China land-area image, produced at 12 a.m. on 1 March 2017.

4. Results and Analysis

One epoch is one training cycle through the entire training dataset. The models described in the
previous sections were trained on the training dataset for 50 epochs and evaluated on the validation
dataset after every epoch. The MSE loss is presented in Figure 5.

1200 -

Training
Validation

1000 +

800 1

600 1

Loss

400 -

200

0 10 20 30 40 50
Epoch

Figure 5. Mean squared error (MSE) loss in model training and validation.

In Figure 5, it is apparent that the MSE loss declined dramatically in the first 10 epochs; thereafter,
the decline rate gradually decreased, and the MSE loss eventually converged to a lower level. When the
training time was over 40 epochs, the loss was relatively small compared to that within the first 10.
Despite the fluctuation of the validation loss, the integrated trend continued to decline, which indicates
that the model was not overfitting. Thus, the training procedure was effective and converged to a quite
satisfactory result.
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We then randomly selected 20 days from 2018 as the test dataset, on which we compared our
method (Multi-GRU-RCN) with the VOF technique, ConvLSTM, LSTM, and GRU. For the VOF
algorithm, we used the method of Chow et al. [26], which minimizes the objective function by using
brightness constancy and global smoothness as model assumptions to realize VOF. We set the size of the
input patches as 128 x 128 and the size of the output patches as 64 x 64 to produce comparable results
with Multi-GRU-RCN. For ConvLSTM, we adopted the model structure of Shi et al. [41], setting the
kernel size at 3 x 3 for convolution. The input frame had the same size as the output frame. For LSTM
and GRU, we deployed five frames to predict the next frame. Because LSTM and GRU cannot extract
spatial information, we treated every pixel in a frame as an independent sample; thus, there were
4096 samples in a frame. All the experiments were carried out with NVIDIA Tesla T4 GPU. It takes
7.78 h to train the GRU model, 9.44 h to train the LSTM model, 12.29 h to train the ConvLSTM model,
and 13.96 h to train the Multi-GRU-RCN model. There is no training process of the VOF method. In the
test process, it requires 2.57, 3.65, 3.72, 4.28, and 4.73 s to predict one frame with the VOF method,
GRU model, LSTM model, ConvLSTM model, and Multi-GRU-RCN model, respectively.

The MBEs predicted by VOF, GRU, LSTM, ConvLSTM, and Multi-GRU-RCN are 0.50%, 1.47%,
1.64%, —0.51%, and 0.45%. The nearly zero MBEs illustrate that none of these methods under or over
forecast and no postprocessing steps are needed to calibrate the results. Quantitative results in terms of
PSNR and SSIM over the test dataset are summarized in Table 1. The results shown in Table 1 confirm
that Multi-GRU-RCN achieves the most promising results on both PSNR and SSIM metrics over the
entire test dataset among these methods. To be specific, compared with ConvLSTM, Multi-GRU-RCN
achieves a performance gain by 4.11% on PSNR and 2.60% on SSIM. In order to investigate the results in
detail, we calculated the average PSNR and SSIM over the total 64 test samples for each day. The PSNR
and the SSIM results using VOF, GRU, LSTM, ConvLSTM, and Multi-GRU-RCN on the test data for
each day are compared in Figures 6 and 7, respectively.

Table 1. Comparison of Variation Optical-flow (VOF), Gated Recurrent Unit (GRU), Long Short-term
Memory (LSTM), Convolutional Long Short-term Memory (ConvLSTM), and Multi-Gated Recurrent
Unit (GRU)-Recurrent Convolutional Network (RCN) on the test dataset (highest measures are in bold).

Method PSNR SSIM
VOF 22.98 0.41
GRU 24.49 0.66
LSTM 24.58 0.66
ConvLSTM 28.45 0.77
Multi-GRU-RCN 29.62 0.79
40
B VOF W LSTM B Multi-GRU-RCN
351 Bam GRU mEE ConvLSTM

PSNR

01/02 01/31 02/02 05/02 05/27 06/05 06/09 06/17 07/01 07/03 07/07 07/08 07/12 08/18 10/28 11/24 12/13 12/14 12/15 12/25
Date

Figure 6. Peak Signal-to-noise Ratio (PSNR) when applying five different methods to the test data for
various days.
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Em VOF mEE LSTM BN Multi-GRU-RCN
0.9 s GRU B ConvLSTM

SSIM

01/02 01/31 02/02 05/02 05/27 06/05 06/09 06/17 07/01 07/03 07/07 07/08 07/12 08/18 10/28 11/24 12/13 12/14 12/15 12/25
Date
Figure 7. Structural Similarity (S55IM) when applying five different methods to the test data for
various days.

According to Figures 6 and 7, the forecast results of these methods were consistent in terms of each
metric. For instance, the PSNRs and SSIMs of the five methods were the highest on 2 February, which
means that all four methods performed the best on the data of that day. Based on the forecast results,
the Multi-GRU-RCN method consistently outperformed the other four methods during the whole
computational time. The VOF was the worst-performing method on the test data. Multi-GRU-RCN and
ConvLSTM had quite similar performance in terms of both MSE and PSNR values but Multi-GRU-RCN
performed slightly better. The MSE of Multi-GRU-RCN forecasts on the test dataset was 72.93, which
means that the average intensity difference per pixel between ground truth and prediction was 8.54
(a satisfactory result, given that the intensity range was 0~255).

To show the results more intuitively, we randomly picked three input sequences from the test
dataset: May 2 between 0 and 5 am, January 31 between 6 and 11 pm, and July 7 between 6 and
11 am. Figure 8 shows the predictions of the next hour produced by VOF, GRU, LSTM, ConvLSTM,
and Multi-GRU-RCN. The PSNRs predicted by VOF are 22.99, 23.01, and 22.91; those predicted by
GRU are 23.92, 24.63, and 23.50; those predicted by LSTM are 23.98, 24.61, and 23.42; those predicted
by ConvLSTM are 28.40, 28.50, and 27.67; and those predicted by Multi-GRU-RCN are 29.66, 30.37,
and 29.86. The PSNR values predicted by Multi-GRU-RCN are consistently larger than those of the
other methods, which indicates that its predictions are more accurate. This result also agrees with
the difference between the ground truth and prediction. Even though the predictions by VOF have
sharper outlines, the predictions by Multi-GRU-RCN have better accuracy. When a cloud appears
at the edge of the prediction domain, Multi-GRU-RCN can predict it better than VOE. This proves
that some of the complex spatiotemporal patterns in the dataset can be learned by the nonlinear and
convolutional structure of the network. The model also performs well at predicting nonstationary
processes, such as inversion and deformation, whereas VOF does not: in the VOF prediction for such
situations, an abrupt change of intensity between adjacent pixels occurs at the bottom of the image.
Multi-GRU-RCN gives a better prediction result without a blocky appearance.
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Figure 8. Three examples of satellite image and prediction results are shown in (a)—(c), respectively.
In each panel, the first horizontal row shows the input sequence and the ground truth; the second
horizontal row displays the predictions of five different methods; and the third horizontal row shows
the difference between the prediction by each of the five methods and the ground truth.
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5. Discussion

The relationship of GRU, LSTM, ConvLSTM, GRU-RCN, and Multi-GRU-RCN is illustrated in
Figure 9. GRU is a simplification of LSTM by replacing the forget gate and input gate with the update
gate, and combining the cell state and hidden state. Embedded convolutional operation in the recurrent
unit, ConvLSTM, and GRU-RCN were implemented for spatial-temporal data and GRU-RCN has less
parameters than ConvLSTM. As the GRU-RCN model structure proposed by Ballas et al. [42] focused
on the video classification problem, we changed the model structure to adapt for the pixelwise cloud
motion prediction problem. We considered the ConvLSTM model structure proposed by Shi et al. [41]
as a reference, and replaced the ConvLSTM layer with the GRU-RCN layer. Besides, the surrounding
context was introduced into our model to enrich input information.

Add convolutional operation Add surrounding context
LSTM » ConvLSTM
lSimp]ify
; Add convolutional operation . Change structure .
GRU GRU-RCN » Multi-GRU-RCN

Figure 9. Relationship of Gated Recurrent Unit (GRU), Long Short-term Memory (LSTM), Convolutional
Long Short-term Memory (ConvLSTM), Gated Recurrent Unit (GRU)-Recurrent Convolutional Network
(RCN), and Multi-Gated Recurrent Unit (GRU)-Recurrent Convolutional Network (RCN).

In predicting cloud motion, both temporal and spatial information provide important clues.
Temporally, the current frame correlates with the previous frame; spatially, the intensity of a given
pixel correlates with those of the surrounding pixels. A GRU captures temporal information but
ignores spatial information; therefore, it underperforms when compared to the ConvLSTM model,
which captures both. However, in the ConvLSTM model, the input frame has the same shape as the
output frame: as a result of the convolutional operation and same-padding method, it loses boundary
information. In addition, the movement of the cloud is very complicated and cannot be determined by
looking at the current region exclusively; more information must be brought into the model. To improve
prediction accuracy, especially in the boundary region, we incorporated the surrounding context into
our new end-to-end model. The performance improvement of Multi-GRU-RCN is also contributed
to the model structure. For instance, in the experiment, we set the large region as the input and the
small region as the output for the VOF algorithm, while we conducted a control experiment with the
small region as both the input and output. The average PSNR and SSIM on the test dataset of the
control experiment is 22.69 and 0.41, which indicates that the introduction of the large region only
achieves a performance gain of 1.28% and 1.22% with the VOF algorithm. In the model structure
aspect, we exploited the max pooling layer for dimension reduction and improved ability of the
model to capture invariance information of the cloud while moving and fuse features from different
scales. In addition, the activation functions introduce non-linearity into the model [49]. Accumulation
of activation functions produces a promising model to learn sophisticated patterns. The essential
advantage of the end-to-end structure is that all the parameters of the model can be simultaneously
trained, making the training process more effective. The predictions of our model have consistently
higher PSNR and SSIM than those of other methods. The spatial and temporal patterns learned by
the model from the region of interest provides the fundamental of cloud motion. The utilization of
external information out of the region of interest enriched the model understanding of environmental
circumstances. This illustrates that utilizing information from both the internal and external region
reveals a more accurate pattern of cloud motion.

There are three possible explanations for the better performance of Multi-GRU-RCN over the VOF
algorithm. First, Multi-GRU-RCN can learn complex patterns during the training process. The clouds
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often seem to appear instantaneously, indicating that they either derive from outside or are suddenly
formed. If similar situations happened in the training dataset, Multi-GRU-RCN could learn these
patterns during the training process and subsequently provide reasonable predictions in the test
dataset. However, this could not be detected by the VOF algorithm. The second explanation is that
Multi-GRU-RCN is trained end-to-end for this task. The VOF algorithm is not an end-to-end model,
and it is difficult to find a reasonable way to update the future flow fields. The final reason is that
Multi-GRU-RCN can smooth a blocky appearance, whereas the predictions of VOF will have a blocky
appearance whenever there are abrupt changes in the motion vectors and therefore in the intensity
between adjacent pixels.

Although the proposed Multi-GRU-RCN can achieve promising intra-hour cloud motion
prediction, there are still limitations of this model. Compared with the VOF algorithm, the Multi-
GRU-RCN produces blur prediction. This property is associated with the MSE loss when training the
model. The future of the satellite cloud image is uncertain and by nature multimodal. When there are
multiple valid outcomes with equally possibility, the MSE loss aims to accommodate the uncertainty
by averaging all the possible outcomes, thus resulting in a blur prediction. Generative adversarial
networks (GANs) have emerged as a powerful alternative to enhance prediction sharpness. In the
future work, we will combine MSE loss with adversarial training loss to improve the visual quality of
the predictions. Besides, limited by the number of layers in the architecture, the model could not totally
eliminate the influence of interference, such as complex surface conditions. Li et al. [50] proposed
a multi-scale convolutional feature fusion method for the cloud detection method. Their research
confirmed that the usage of dilated convolutional layers and feature fusion of shallow appearance
information and deep semantic information helps to improve the interference tolerance.

In this paper, the current forecasting range was an hour. The extension of the forecast time will
convert the output from one frame to a sequence of frames. The weakness of the encoder-decoder
architecture is that it lacks the alignment of the input and output sequence. Bahdanau et al. [51]
proposed an attention mechanism utilizing a context vector to align the source and target inputs.
The context vector preserves information from all hidden states in encoder cells and aligns them with
the current target output. The attention mechanism allows the decoder to “attend” to different parts
of the source sentence at each step of output generation; this concept has revolutionized the field.
The introduction of the attention mechanism will address issues carried out in long-term horizon
prediction. Furthermore, we plan to implement more data sources to enrich the information in the
dataset and introduce data fusion techniques into the model improve the accuracy. Combining our
current research with the precipitation forecast problem also merits further research.

6. Conclusions

In this paper, we introduced deep-learning methods into the field of cloud-motion prediction.
This work is innovative, since traditional methods for cloud-motion prediction are mostly based on
block matching and linear extrapolation, neglecting the nonstationary process during cloud movement.
By formulating cloud-motion prediction as a spatial temporal data prediction problem, an end-to-end
model with GRU-RCN was developed. Inclusion of the surrounding context enriched the information
used. We tested this model’s applicability on the cloud images of the FY-2G dataset for intra-hour
prediction. Despite the relatively simple structure of our model, it can learn complex patterns
through the nonlinear and convolutional structure of the network and works well when predicting the
movement of clouds on a short timescale. This provides another example of the applicability of the
GRU-RCN method in dealing with spatiotemporal data and learning complex patterns of images.
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