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Abstract: Environmental epidemiological studies have consistently reported associations between
ambient particulate matter (PM) concentrations and everyday mortality/morbidity. Many urban
dwellers in Asia live in high-rise apartment buildings; thus, the pollutant concentrations of their
immediate outdoor environments are affected by the vertical distribution of pollutants in the
atmosphere. The vertical distributions of pollutants provide unique information about their sources
and dynamic transport in urban areas, as well as their relationship to people’s exposure at ground
level, while the vertical distributions of pollutants have rarely been considered in exposure assessment.
In the current study, PM concentrations (with aerodynamic diameters less than 1.0 µm (PM1), 2.5 µm
(PM2.5), and 10 µm (PM10)), nanoparticles, black carbon (BC), and particle-bound polycyclic aromatic
hydrocarbons (p-PAHs) were measured at different residential heights—6 m, 16 m, and 27 m—at Feng
Chia University near a popular night market in Western Taiwan. PM2.5 data were further adopted for
health risk estimations. In winter, the magnitude of PM1, PM2.5, and PM10 concentrations were 16 m >

6 m > 27 m; nanoparticle concentrations were 6 m > 27 m > 16 m; and BC and p-PAHs concentrations
were 27 m > 16 m > 6 m. In summer, PM1, PM2.5, and PM10 concentrations ranged from 6 m > 16 m >

27 m; nanoparticle concentrations were 6 m > 16 m; and BC and p-PAHs concentrations were from
27 m > 16 m. PM and constituents concentrations during winter were significantly higher in the
nighttime than those in daytime, and levels of PM1, PM2.5, and PM10 increased rapidly on 6 m and
16 m heights (but did not increase at 27 m) after 5 pm, whereas these trends became less significant in
summer. Health risk analysis for PM2.5 concentrations showed a decrease in lung cancer mortality
rate and an extended lifespan for residents living at 27 m. Overall, the current study investigated the
vertical profile of particulate matters and analyzed health impacts of PM2.5 at different residential
heights in urban area of Taiwan. As the distributions of PM and the constituents varied at different
residential heights, exposure and risk assessment of particle concentrations with multiple sizes and
various components at broader vertical heights should be further investigated.
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1. Introduction

As economic development increases, urban air quality decreases because of the increasing air
pollution produced by industries, automobiles, and other human activity-based emission sources.
In 2013, outdoor air pollution, especially outdoor particulate matter (PM), was classified as carcinogenic
to humans (Group 1) by the International Agency for Research on Cancer (IARC) of the World Health
Organization (WHO). Global air pollution reports showed that over 95% of the world’s population
lived in areas that exceeded the air quality guideline of PM with aerodynamic diameter less than
2.5 µm (PM2.5; fine particulate matter), and that nearly 60% lived in areas that did not meet even the
least stringent air quality target from WHO [1]. Air pollution from PM, ozone (O3), and household
burning of solid fuels might have contributed to 6.1 million deaths (11% of the global total) in 2016 [1].

In addition to the attention to the health hazards of particles with different sizes, the composition of
PM varies; it is formed through complex chemical reactions by different pollutants emitted from fossil
fuel power plants, industries, and automobiles. Black carbon (BC), polycyclic aromatic hydrocarbons
(PAHs), and heavy metals are also constituents of PM, which are mainly derived from traffic emissions,
activities of combustion, and anthropogenic as well as biomass burning emissions [2–4].

The health effects of exposure to PM have been getting great attention. A time-series analysis
showed that, in China, a 10 µg/m3 increase in PM2.5 levels was associated with 0.65%, 0.63%, and 1.38%
increases in non-accidental mortality, respiratory mortality, and circulatory mortality, respectively,
during 2005–2009 [5]. In Spain, the relative risks (RR) for an increase level of 25 µg/m3 in PM2.5 were
1.057 for all-cause mortality, 1.088 for circulatory mortality, and 1.122 for respiratory mortality [6].
Pope et al. reported that a 10 µg/m3 elevation of fine particulate in the United States was associated
with approximately 4%, 6%, and 8% increases in the risk of all-cause, cardiopulmonary, and lung
cancer mortality, respectively [7]. The toxicity potential of PM on respiratory health are in fact based
on their residence time in the different regions of the airway [8]. Pan et al. reported that long-term
exposure to PM2.5 and low-grade inflammation might lead to hepatic tumorigenesis and increase
the risk of liver cancer [9]. Moreover, exposure to PAHs would cause different impacts on human
health [10]. With long-term exposure, effects included skin, lung, bladder and gastrointestinal cancers,
DNA damage, cataracts, kidney and liver damage, gene mutation cell damaging, and cardiopulmonary
mortality [11–19]. As a result, the risks of exposure to PM2.5 and PAHs should be of great concern.

On the other hand, the vertical comparison of PM2.5 and PM10 (particulate matter with an
aerodynamic diameter less than 10 µm) concentrations were evaluated in previously reports [20–22].
Kalaiarasan et al. measured PM2.5 levels at various heights of two typical types of buildings, point
block configuration and slab block configuration, near a busy expressway in Singapore. For both
buildings, the highest concentration of PM2.5 was at the mid-floors, and the lowest was at upper
floors, which might be due to interception by tree leaves or the mixing effect by the inflow of clean
air from higher altitude. For point block and slab block, the health risk values at the mid and lower
floors suggested that occupants living in these floors experienced 1.62–1.81 and 1.28–1.34 times of risk,
respectively, compared to those living at the upper floors [21]. The vertical comparison of PM2.5 and
PM10 concentrations was also studied in Osaka, Japan [22]. The concentrations of samples collected
at 200 m were lower than those collected on the ground. In summer, the high concentration on the
ground might be because particles absorbed water when relative humidity (RH) was high. In winter,
the accumulation of particles might be due to stable meteorological conditions and vehicle exhaust
on the ground. Despite these findings, the previous studies were conducted in relatively high-rise
buildings, while most people in Taiwan lived at the height of life circumstances relatively lower than
the heights in the aforementioned studies. In fact, more than 52% of the buildings in Taiwan were
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less than 30 m height [23]. Therefore, it can be suspected that PM concentrations at different vertical
heights might vary in different seasons. The objectives of this study are to investigate the particle
distribution at different residential heights in different seasons, where the results will be further taken
into consideration for health risk assessment at different residential heights.

2. Materials and Methods

2.1. Field Measurement

Taichung is a special municipality located in central-western Taiwan. Metropolitan Taichung
covers an area of 2215 km2 and hosts a population of over 2.8 million people, making it the second
largest city on the island [24]. In recent years, the city ran into further climatic anomalies, reducing
the number of rainy days and increasing temperatures, providing the appropriate conditions for a
chain reaction to occur that contributes to a worsening of the air quality [25]. The field sampling
(including instrument collocation) was carried out during the summer and winter of 2014. Outdoor
air pollutant concentrations were measured on different floors in a building at Feng Chia University
in Taichung. There was a big night market about 100 m west of the building. Vertical sampling at
different residential heights was done simultaneously for 10 days from 23 February to 6 March, as well
as from 18 to 28 July 2014. Sampling was conducted from the balconies of 2nd floor (6 m), the 5th floor
(16 m), and the 8th floor (27 m). Before the vertical sampling began, three sets of identical instruments
were set up on the top floor for simultaneous measurement in order to compare and adjust the data
collected from the three identical instruments. Instrument collocation was performed for three days in
winter and in summer separately.

PM concentrations with aerodynamic diameters less than 1.0 µm (PM1), PM2.5, and PM10 were
measured using three portable aerosol monitors (model 1.108/1.109, Grimm, Ainring, Germany).
Nanoparticle (20–700 nm) levels were measured using three miniature diffusion size classifiers
(DiSCmini, Matter Aerosol, Wohlen, Switzerland). BC and particle-bound PAHs (p-PAHs) were
measured using three micro-aethalometers (model AE51, AethLabs, San Francisco, CA, USA) and
three photoelectric aerosol sensors (PAS 2200 CE and PAS 2000 CE, EcoChem Analytics, League City,
TX, USA). Temperature and RH were also collected simultaneously using three data loggers (HOBO
UX100-011A, Onset, MA, USA). All of the monitoring data were set to output data in 1 min.

2.2. Quality Control

Quality control procedures were performed each sampling day. In addition to the routine
calibration and maintenance of the instruments used in this study, the research staff performed essential
calibration for the instrument readings and flows before and after each monitoring. To ensure the
quality of data processing, Microsoft Excel (2010) was used for data management, descriptive analysis,
and to calculate health risks of pollutant exposures. Zero, negative, missing, and unreasonably high
and low values were excluded, as were continuous values in a range more than ten folds.

2.3. Data Analysis

Simple linear regression analysis was performed to compare concentrations obtained in field
collocation and vertical sampling. For a given pollutant, the coefficient of determination (R2) of
the identical instruments was determined. The ratio of means between collocating instruments was
applied as an adjustment factor to correct for the measured levels. After corrections were made for
the testing methods, intraclass correlation coefficients (ICC) were computed to verify the agreement
between the collocating measurements. The value of ICC > 0.75 indicates excellent reliability, 0.4 <

ICC < 0.75 indicates good reliability, and ICC < 0.4 indicates poor reliability for the comparison among
different instruments [26]. Additionally, paired t-tests were also used to investigate the concentration
differences between different residential heights during different seasons. Statistical analyses were
performed using JMP (version 5.0) and STATISTICA (version 7.1) software.
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In the current study, the elevated risks suggested by previous studies were adopted for estimating
the excess risk of lung cancer mortality rate for residents living on different floors with different PM2.5

exposures [7,27–31]. The PM2.5 levels measured at the height of 6 m were set as the baseline to calculate
the deviation of the mortality rate of lung cancer caused by PM2.5 exposures at different residential
heights. Excess lung cancer mortality rate and life expectancy change were calculated by Equations (1)
and (2), respectively:

Excess lung cancer mortality rate = Vertical deviation of PM2.5 concentration * 0.1 *
Elevated lung cancer risk per 10 µg/m3 increase of PM2.5 * Lung cancer mortality rate,

(1)

where the vertical deviation of PM2.5 concentrations (16 m, 27 m) was compared with the levels
measured at 6 m, the elevating lung cancer risk of 12% per 10 µg/m3 increase of PM2.5 was adopted
from Huang et al., and the lung cancer mortality rate in Taiwan was 60.59 per 100,000 in 2017 [30,32].

Life expectancy change = Vertical deviation of PM2.5 concentration * 0.1 * Loss of life
year per 10 µg/m3 increase of PM2.5 * 365,

(2)

where the vertical deviation of PM2.5 concentrations (16 m, 27 m) was compared with the levels measured
at 6 m, the loss of 0.61 life year per 10 µg/m3 increase of PM2.5 was adopted from Pope et al. [7,33].

As the excess mortality rate of lung cancer was estimated mainly by two factors—vertical PM2.5

concentrations and the RRs of lung cancer mortality in different studies—the software @Risk (version
7.6) was applied for evaluating the sensitivity of the risk estimation. PM2.5 concentrations in different
seasons (winter and summer) were combined together for annual analysis at different residential
heights, and the extreme high or low values out of 1% (±2.576 standard deviation) were excluded for
truncating the reliable results of PM data [34].

3. Results and Discussion

3.1. Collocation Comparison

Results of the collocation comparison were summarized in Table 1. For PM1, PM2.5, and PM10

measurements, R-squared and ICC values were all greater than 0.9 and 0.85, respectively, indicating
the measurement agreement between the identical sampling instruments were in high reliability.
The concentrations of nanoparticle, temperature, and RH also showed high ICCs in both winter and
summer. Meanwhile, for BC, one of the instruments presented poor reliability in summer (ICC less
than 0.4 for serial No. 580), as well as one p-PAHs instrument showed a poor ICC (serial No. 210 in
summer), as a result, the corresponding sampling data were excluded from further analyses.

Table 1. Results of collocation comparison.

Season Pollutant Instrument Serial No. R2 Adjustment Factor ICC 4

Winter PM10 086 vs. 098 0.96 1.33 0.97
050 vs. 098 0.93 1.53 0.94

PM2.5 086 vs. 098 0.98 1.29 0.99
050 vs. 098 0.93 1.83 0.91

PM1 086 vs. 098 0.99 1.31 0.99
050 vs. 098 0.99 2.17 0.85

Nanoparticle 485 vs. 444 0.86 1.70 0.91
443 vs. 444 0.94 0.85 0.96

BC 1 580 vs. 365 0.67 0.94 0.81
314 vs. 365 0.83 0.95 0.91

p-PAHs 2 234 vs. 102 0.58 1.77 0.76
210 vs. 102 0.56 1.64 0.75

Temperature 642 vs. 644 0.97 1.02 0.98
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Table 1. Cont.

Season Pollutant Instrument Serial No. R2 Adjustment Factor ICC 4

643 vs. 644 0.98 1.02 0.98
Relative humidity 642 vs. 644 0.99 0.99 1.00

643 vs. 644 0.99 1.00 1.00

Summer PM10 086 vs. 098 0.93 1.18 0.96
056 vs. 098 0.90 1.27 0.94

PM2.5 086 vs. 098 0.99 1.15 0.99
056 vs. 098 0.98 1.14 0.99

PM1 086 vs. 098 0.99 1.13 0.99
056 vs. 098 0.99 1.11 0.99

Nanoparticle 485 vs. 444 N.A. 3 N.A. 3 N.A. 3

443 vs. 444 0.99 0.71 0.98
BC 1 580 vs. 365 0.09 0.86 0.28

315 vs. 365 1.00 0.97 0.99
p-PAHs 2 234 vs. 102 0.37 1.52 0.61

210 vs. 102 0.11 1.16 0.25
Temperature 642 vs. 644 0.98 1.00 0.99

643 vs. 644 0.99 1.00 0.99
Relative humidity 642 vs. 644 0.99 0.99 0.99

643 vs. 644 0.98 1.00 0.99
1 BC: black carbon. 2 p-PAHs: particle-bound polycyclic aromatic hydrocarbons. 3 N.A.: not available due to
instrumental malfunction. 4 ICC: intraclass correlation coefficient.

3.2. PM Concentrations at Different Residential Heights in Different Seasons

The vertical concentrations of PM pollutants at different residential heights in winter and summer
are shown in Table 2 and Figure A1 in Appendix A. According to the Taiwan Environmental Protection
Administration’s (Taiwan EPA) Ambient Air Quality Standards, the 24 h standard value of PM10 is
100µg/m3 and the 24 h standard value of PM2.5 is 35µg/m3 [35]. Given this, the average concentrations of
PM2.5 at 6 m and 16 m in the winter exceeded the standard value in the current study for administrative
purposes. Current results of PM2.5 concentrations were comparable to the findings of previous research
in Taichung [36]. Comparing the monitoring data in different seasons, the levels of PM1, PM2.5, PM10,
nanoparticle, and BC were significantly higher in winter than those in summer. In winter, the vertical
concentrations of PM1, PM2.5 and PM10 were 16 m > 6 m> 27 m, and nanoparticle concentrations
were 6 m > 27 m > 16 m. For BC and p-PAHs concentrations, both were in range as 27 m > 16 m >

6 m, results of which were consistent as the finding in Beijing, China where the concentrations of BC
significantly correlated with those of PAHs [37]. In summer, the concentrations of PM1, PM2.5, and
PM10 were in range as 6 m > 16 m > 27 m, where the result of a decreasing trend with increasing height
was consistent with the concentration distribution of PM2.5 and its chemical compositions in Tianjin,
China [38]. Finally, BC and p-PAHs concentrations ranged from 27 m > 16 m.

The proportion of PM1 (or PM2.5) in PM10 at different heights were presented in Figure 1. The
similar ranges were found in both seasons for PM1/PM10 (between 45% to 65%) and PM2.5/PM10 (66%
to 77%), the results of which were comparable with the daytime averaged PM1 and PM2.5 contributing
51–60% and 66–67%, respectively, of PM10 at the roadside in Macao, China [39]. Furthermore, current
results indicated that the proportions of different size PM did not vary so much at different residential
heights, therefore the components of PM should play a critical role for health risk estimation.
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Table 2. Vertical PM concentrations at different residential heights in both seasons.

Pollutant
(Unit) Season N 3 6 m (2F) 4 16 m (5F) 4 27 m (8F) 4 Significant

Difference 6

PM10 Winter 9522 57.2 (36.5) 59.0 (37.1) 48.8 (21.9) 6 m vs. 16 m
(µg/m3) 6 m vs. 27 m

16 m vs. 27 m
Summer 13028 31.4 (114.4) 28.7 (16.6) 24.9 (14.8) 6 m vs. 16 m

6 m vs. 27 m
16 m vs. 27 m

PM2.5 Winter 9522 42.1 (29.9) 42.8 (30.2) 32.0 (15.2) 6 m vs. 16 m
(µg/m3) 6 m vs. 27 m

16 m vs. 27 m
Summer 13028 21.1 (16.0) 20.9 (14.4) 19.3 (13.7) 6 m vs. 16 m

6 m vs. 27 m
16 m vs. 27 m

PM1 Winter 9522 29.5 (21.9) 31.5 (23.5) 22.1 (10.4) 6 m vs. 16 m
(µg/m3) 6 m vs. 27 m

16 m vs. 27 m
Summer 13028 17.0 (15.0) 16.8 (13.0) 16.1 (13.1) 6 m vs. 16 m

6 m vs. 27 m
16 m vs. 27 m

Nanoparticle Winter 9522 26.6 (32.5) 23.5 (24.1) 24.0 (22.4) 6 m vs. 16 m
(ng/m3) 6 m vs. 27 m

16 m vs. 27 m
Summer 12658 13.1 (10.0) 11.0 (8.4) N.A. 5 6 m vs. 16 m

BC 1 Winter 9278 2.0 (1.8) 2.1 (1.6) 2.2 (1.8) 6 m vs. 16 m
(µg/m3) 6 m vs. 27 m

16 m vs. 27 m
Summer 525 N.A. 5 1.6 (1.1) 2.4 (2.2) 16 m vs. 27 m

p-PAHs 2 Winter 9522 7.1 (9.6) 7.2 (9.8) 7.7 (11.5) 6 m vs. 27 m
(ng/m3) 16 m vs. 27 m

Summer 482 N.A. 5 6.3 (3.9) 7.4 (13.2) No difference
1 BC: black carbon. 2 p-PAHs: particle-bound polycyclic aromatic hydrocarbons. 3 N: sample size. 4 mean (standard
deviation). 5 N.A.: not available due to instrumental malfunction. 6 p < 0.05.

3.3. Temporal Patterns of PM Concentrations at Different Residential Heights

In order to investigate the temporal variation of PM concentrations, the hourly averaged
concentrations within a day in winter and summer were calculated (as shown in Figures 2 and 3,
respectively). In winter, the levels of PM1, PM2.5, and PM10 at 27 m height were apparently lower
than those of the other floors, and the PM2.5 concentrations in the nighttime were higher than those
measured at daytime. Furthermore, after 5 pm, levels of PM1, PM2.5, and PM10 increased rapidly
on 6 m and 16 m heights, but did not increase at 27 m. These results indicated that people living
above 27 m might be exposed to less PM from local emission sources. Likewise, the concentrations of
nanoparticle presented a similar temporal distribution at different heights, suggesting a well-mixed
finer particle size distribution in vertical diffusion [40,41]. For p-PAHs, the concentrations rose at 8 am,
but did not considerably increase after 5 pm, results of which showed that emissions from vehicles
might be the major source for p-PAHs while the night market activities might be minor in this study.
Quang et al. have reported that particle number (PN) and PM2.5 concentration was influenced by
vehicle emissions and new particle formation around the building [42]. Concentrations of PN in size
range of < 30 nm and total PN increased (7–65% and 5–46%, respectively), while PM2.5 concentration
decreased (36–52%) with height.
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aromatic hydrocarbons.)
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Figure 3. Hourly averaged concentrations of particulate air pollutants at different residential heights in
summer. Vertical sampling at different residential heights was done simultaneously for 10 days from
18 to 28 July 2014. (Nano PM: nanoparticle; BC: black carbon; PAH: particle-bound polycyclic aromatic
hydrocarbons.)

In summer, PM2.5 concentrations in the daytime were more variable and higher than those at night,
which might be due to intense human activities, like vehicle emission, and suitable meteorological
condition in the daytime [38]. The concentrations of PM2.5 and PM10 were relatively high at 6 pm
and 10 pm on the 6 m height, while the pattern did not hold at the higher floors, which implied that
some coarser PM sources might exist near the ground. In addition, the temporal trend and levels of
nanoparticle were similar at different heights, except for those at 27 m in the night. BC and p-PAHs
concentrations showed varying fluctuations at different heights, especially for those at 27 m, which in
part might be attributed to the semivolatile characteristic of p-PAHs.

Figure 4 presented diurnal averaged concentrations of PM at different heights. In winter, PM1,
PM2.5, PM10, nanoparticle, BC, and p-PAHs were significantly higher in the nighttime than those in
daytime, whereas these trends became less apparent or even opposite in summer. As wintertime
temperature was lower than that in summer, especially at night, the height of atmospheric mixing
layer was closer to the ground surface, which resulted in a poor diffusion vertically and accompanied
with the accumulation of air pollutants in the night [43–45]. In contrast, the temperature variation
was less noticeable in summer; hence the diurnal differences of PM pollutants did not show statistical
significance. Using an unmanned aerial vehicle, Lu et al. showed that the PM2.5 concentrations at
300–1000 m altitude in morning flights were generally lower than those in afternoon ones, while the
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variations of PM2.5 in morning flights were much higher than those in afternoon ones [46]. Besides, in
a study of 31 Chinese provincial capital cities, the correlation coefficients between PM2.5 and nitrogen
dioxide (NO2) (or sulfur dioxide (SO2)) were either high or moderate based on data from 286 monitoring
sites [47]. Previous studies have also reported that PM2.5 was associated with PAHs, heavy metals, and
other gaseous pollutants, which implied that if the residents were exposed to high levels of PM2.5, they
might be exposed to other pollutants, such as NO2 and SO2, at the same time [1,20,48].
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Figure 4. Diurnal averaged concentrations of particulate air pollutants at different residential heights
in winter and summer. (Nano PM: nanoparticle; BC: black carbon; PAH: particle-bound polycyclic
aromatic hydrocarbons.)

3.4. Excess Lung Cancer Risk and Loss of Life by PM2.5 Exposure

As of today, the impact of season on the associations between air pollution and mortality were
found to vary in different researches [49,50]. We therefore combined all of the winter and summer data
for excess risk estimation. In the current study, the elevated risks reported by Pope et al. were first
adopted for estimating the excess risk, with the PM2.5 level at 6 m height serving as the baseline to
estimate life expectancy changes due to PM2.5 exposure at different heights [7,33]. As shown in Table 3,
people living at 16 m height might lose 4.5 days of their life as comparing with the life expectancy of
the residents living at 6 m height, and might also increase 0.15 per 100,000 for mortality rate of lung
cancer. Additionally, the residents living at 27 m might extend 86.8 days of their life and decrease
2.84 per 100,000 in mortality rate of lung cancer due to less PM2.5 exposures. Even though people in
Taiwan have relatively long lifespan, with a life expectancy of 80.39 years of age and the standardized
mortality rate of lung cancer 60.59 per 100,000 in 2017, the potential health risk from air pollution still
could not be neglected [32,51].

Table 3. Estimation of PM2.5-associated excess lung cancer mortality rate and life expectancy change.

Height PM2.5 Concentration
(µg/m3) 1

Excess Lung Cancer Mortality
Rate (per 1,000,000) 2

Life Expectancy Change
(Day) 2

6 m 27.9 - -
16 m 28.1 0.15 −4.5
27 m 24.0 −2.84 86.8

1 Averaged concentrations for summer and winter data. 2 Data at 6 m serving as the baseline.

The relationship between exposure to PM2.5 and lung cancer mortality had been documented
worldwide. For qualitative sensitivity analysis in discussing whether the quantitative relative risk or
PM2.5 levels is the more important factor in influencing PM2.5 exposure on lung cancer risk at different
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vertical heights, various associations between PM2.5 and lung cancer mortality were adopted from
results of previous studies [7,27–31]. In the United States (U.S.), Pope et al. have shown that the
elevation of 10 µg/m3 in PM2.5 concentration was associated with approximately an 8% increase for
lung cancer mortality, and a decrease of 10 µg/m3 of fine particulate matter was associated with an
estimated increase life expectancy of 0.61 ± 0.20 year [7,33]. Besides, the RRs of lung cancer mortality
with a 10 µg/m3 increase in PM2.5 concentrations were 1.20 (95% confidence interval (CI): 0.79, 1.82) in
Los Angeles, U.S. and 1.08 (95% CI: 1.07, 1.09) in China [29,52] A meta-analysis of 17 studies showed
that the RR of lung cancer per 10 µg/m3 increase in PM2.5 exposure was 1.09 (95% CI: 1.03, 1.15) in Asia;
in subgroup analyses for country, the mortality meta-estimate for developed countries was 1.14 (95%
CI: 1.06, 1.23), and for developing countries was 1.03 (95% CI: 1.00, 1.07) [30]. Other meta-analysis
studies also demonstrated comparable RRs of 1.09 (95% CI: 1.04, 1.14), 1.09 (95% CI: 1.06, 1.11), and
1.14 (95% CI: 1.07, 1.21) for lung cancer associated with PM2.5 [27,28,31]. Lately, the higher risk of lung
cancer with increased PM2.5 exposure was found to be more significant for female, and the carcinogenic
effects of PM2.5 have urban/rural differences as well as sex differences [53,54].

Results of qualitative sensitivity analysis showed that variations of vertical PM2.5 concentrations
were dominant for excess lung cancer risk estimation in different scenarios, which might be attributed
to the wide seasonal variation of vertical PM2.5 levels. Variation of PM2.5 at 16 m height as compared
to those at 6 m drove the final distribution of excess lung cancer risk at 16 m, accounting for 74.5%
of the variance, while the RRs of lung cancer from different studies accounted for 25.5% (Figure 5a).
At 27 m height, deviation of PM2.5 concentrations and the lung cancer RRs from different studies
explained 88.6% and 12.8% of the variance, respectively (Figure 5b). Findings of the current study
demonstrated that the representativeness of PM2.5 monitoring was crucial for estimating the relative
risk in alternative heights, and the lung cancer slope factor only had a relatively small influence on
the results. Therefore, how to acquire more detailed and representative concentrations at different
residential heights warrants further studies.
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As there is no known level of pollution exposure that is harmless, strategies to minimize daily
exposure are often impactful across a good range of settings. In Toronto, Canada, Zuraimi and Tan
reported that tighter building envelope, use of mechanical ventilation systems, and improved filtration
are key factors that reduce PM2.5 exposure and its impacts on population health [55]. In fact, the
indoor/outdoor ratios of PM concentration vary considerably due to the different-sized particles with
different emission rates, the cracks and leaks in the building envelope, and the air exchange rates [56].
A study in Durbin, Ireland suggested that increasing air exchange between the outdoors and indoors
during nighttime periods could flush out air pollutants [57]. Meanwhile, in the current study, as the
levels of PM pollutants were higher at night than in the day, the proposal might not be applicable
in Taiwan. Some qualified evidence supports individual actions to reduce cardiopulmonary health
risks from exposures to ambient air pollutants by staying indoors and limiting physical exertion
when air pollutant concentrations exceed levels associated with increased risk of acute and chronic
health problems [58,59]. Overall, based on the results of the current study, to minimize PM exposures,
personal strategies for people residing in urban areas below 16 m are to keep the windows closed and
stay indoors during the traffic rush hour of 8 am as well as the business hour of night market after 5
pm. Besides, keeping away from mobile sources during the traffic jam is advised in avoiding exposure
to p-PAHs.

4. Conclusions

The present study analyzed vertical distribution and health impacts of PM in urban residential
area of Taiwan. For vertical PM2.5 concentrations, the lowest levels were found at the height of 27 m as
compared to those at 6 m and 16 m. In winter, PM and the constituents concentrations were significantly
higher in the nighttime than those in daytime, and levels of PM1, PM2.5, and PM10 increased rapidly
on 6 m and 16 m heights (but did not increase at 27 m) after 5 pm, whereas these trends became
less significant in summer. Health risk analysis for PM2.5 concentrations showed a decrease in lung
cancer mortality rate and an extended lifespan for residents living at 27 m. Findings in the current
study highlight the needs to integrate more measurement data at broader residential heights, exposure
scenarios, and the behaviors of deploying window/door for future investigation.
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