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Abstract: The sea surface temperature (SST) front in the Gulf Stream (GS) extension region is important
to synoptic variations in atmosphere. In winter, large amounts of heat and moisture are released
from the SST front, modulating the baroclinicity and humidity of the atmosphere, which is important
for extratropical cyclones and atmospheric rivers (ARs). In this study, the variation of SST in the
North Atlantic in winters since 1981 is investigated using satellite and reanalysis datasets, and a
23-year (1997 to 2019) warming trend of SST in the GS extension region is detected. The increase
of SST is mainly distributed along the SST front, with more than 2 ◦C warming and a northward
shift of the SST gradient from 1997 to 2019. Connected with the SST warming, significant increases
in turbulent heat flux and moisture release into the atmosphere were found along the ocean front.
As a result, baroclinic instability, upward water vapor flux and AR occurrence frequency increased in
recent decades. Meanwhile, there was an increase in extreme rainfall along with the increase in AR
landfalling on continental Western Europe (especially in the Iberian Peninsula and on the northern
coast of the Mediterranean Sea).
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1. Introduction

The Gulf Stream (GS) extension region is a strong mid-latitude western boundary current with
a sharp ocean sea surface temperature (SST) front and active oceanic mesoscale eddies. In winter,
the sharp ocean front releases large amounts of heat and moisture into the atmosphere, anchors
surface wind convergence and precipitation bands, and affects the variation of extratropical cyclones
(ECs) [1–3].

The change in SST fronts in the GS extension region includes a meridional shift of the path,
adjustment of the SST gradient, and modification of the absolute SST values in the front region.
The meridional shift of the front influences the synoptic atmospheric variability by modifying the
low-level baroclinicity, poleward transport of moisture, and heat, resulting in a shift in storm tracks [4].
Comparative experiments on atmospheric models forced by high-resolution SST and smoothed SST
suggest that the increase in the SST gradient influences upper-level latent heat release and enhances
ECs [5]. The strength of the storm track was reported to be more sensitive to perturbations in absolute
SST value [6]. This was further proved by Vries et al. [7] simulating storms passing through SST fronts.
Their work suggests that the SST perturbation regulates surface latent heat flux, low-level baroclinicity,
and upper-level diabatic heating to affect the strength of storms. SST variation north of the front can
also change the land–sea contrast and air–sea stability, which is also important to surface storm track
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activities [8]. These works confirmed that a change in SST absolute value in the front region is more
important to EC’s strength than the SST gradient.

Closely related to ECs, narrow and long water vapor transport bands, known as atmospheric
rivers (ARs), are a major method of transporting water vapor and trigger of extreme precipitation in
mid-latitudes [9]. ARs are often identified in the warm sector of ECs, and some studies specifically
consider that ARs are portions of the EC system [10–13]. Due to their large amount of water vapor,
ARs can cause precipitation and flooding when making landfall, especially if the moist air is forced to
ascend in mountainous regions [14]. The north Atlantic ARs have a significant impact on severe rainfall
in Western Europe—for example, in the UK [15–17], Norway [18,19], and the Iberian Peninsula [20,21].
As for the factors influencing ARs, references suggest that remote large-scale circulations such as ENSO,
MJO, and NAO have a certain impact [20–23]. As for AR’s landfall and subsequent precipitation
extremes in Europe, local large-scale circulation, such as blockings, and the Aleutian Low have more
influence [24–27].

However, although many studies revealed the importance of ocean fronts on ECs, few referred to
their impact on ARs. Matthews et al.’s work [28] found an extremely strong AR related to a higher SST
than in other ARs assessed at their uptake locations. They also stressed that the warming in the North
Atlantic SST since 1902 has increased the chance of high humidity in ARs. As ARs are closely related
to ECs, we surmise that the change in GS fronts, which influences the storm track activity, will also
have an impact on ARs.

As for the changes in GS SST fronts, their meridional shift was revealed to be a stimulator of
the shift in storm tracks on an interannual time scale [4]. Another significant SST variation is the
century-long accelerated warming (since 1900) in the western boundary region, at a rate that far
exceeds the globally averaged surface ocean warming [29]. How about the status of the GS fronts
in recent decades? Do these variations of SST in the GS front influence AR activity in the North
Atlantic? Since 1981, high-resolution satellite data have increased the accuracy of SST observations.
High-resolution and quality-enhanced reanalysis datasets enabled us to study the narrow water vapor
transportation zone ARs. Using the NOAA OISST and ERA5 reanalysis datasets, we first evaluated
the change in SST values and its gradient in the Gulf Stream since 1981. Then the corresponding
variation in storm track and ARs was investigated. It is worth noting that as the main purpose of this
paper is to assess the effect of SST warming in the Gulf Stream extension region on ARs, we focus
on the increase of SST value in recent decades and its effect on atmosphere. This paper is laid out
as follows: In Section 2, the data and methods are provided. In Section 3, we show the warming of
SST in GS region over the past two decades. In Section 4, we investigate the increase in storm track
and ARs. The precipitation and its trend caused by ARs by landfall onto the European continent
will be discussed. We then examine vertical moisture transport, background instability, and moisture
divergence as an attempt to assess the mechanism between the warming SST and the increased AR
frequency. The discussion and conclusions are presented in Section 5.

2. Data and Methods

2.1. Data

In this paper, we use two sets of SST data, one from the NOAA OISST (Optimum Interpolation
Sea Surface Temperature) blended product, Version 2 [30], and the other from ERA5 reanalysis [31].
OISST data are available from 1981, with a 0.25◦ × 0.25◦ spatial resolution and daily temporal interval.
To compare with the OISST data, ERA5 reanalysis data were retrieved from the same period with
same resolution but with 6 h time intervals. The meteorological variables used in this paper (velocity,
precipitation, evaporation, surface latent and sensible heat flux, vertical integral of water vapor flux,
and mean vertically integrated moisture divergence, and so on) are from the ERA5 reanalysis with the
same resolution. A 2-15-day bandpass filter was applied to get the anomalies of meteorological variables
to calculate eddy kinetic energy (EKE) and upward water vapor flux <wQ> for synaptic variation.
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2.2. AR Detection

ARs are defined as “a long, narrow, and transient corridor of strong horizontal water vapor
transport that is typically associated with a low-level jet stream ahead of the cold front of an
extratropical cyclone” [32,33]. Vertically integrated water vapor transport (IVT) is often used to capture
ARs. Using vertical integral of eastward and northward water vapor flux from the ERA5 reanalysis,
we calculated IVT using the following formula [32,34]:

IVT =

√
(

1
g

∫ 300

1000
qudp)

2

+ (
1
g

∫ 300

1000
qvdp)

2

, (1)

where q is the specific humidity in kg, u is the zonal wind in ms−1, v is the meridional wind in ms−1,
and g is the acceleration due to gravity.

Then, IVT anomalies higher than 250 kg·m−1s−1, narrower than 1000 km, and longer than 2000 km
are captured and defined as an AR following [34,35]. This threshold is also the weakest AR scale
provided by Ralph et al. [36]. To concentrate on the ARs related to ECs in midlatitude, ARs whose center
is located south of 20◦ N are not considered. The AR-related precipitation is defined as precipitation
that occurred simultaneously and within the 20 km range of an AR.

2.3. Eady Growth Rate

According to the classic baroclinic theory, lower-level baroclinic instability can be effectively
measured by the Eady growth rate, which depends on the ratio between vertical wind shear and
Brunt-Väisälä frequency. This is a metric of ECs’ intensification potential [37]. We calculated the Eady
growth rate from the ERA5 reanalysis according to the formula provided by Hoskins and Valdes and
Shaman et al. [37,38].

2.4. Linear Trend and its Significance

The linear trends were calculated using a simple linear regression method, with the statistical
significance assessed using a Student’s t-test [39].

3. SST Warming in the GS Fronts

To examine the variation in SST in the GS front region in recent decades, both the OISST and ERA5
reanalysis datasets were used. As the influence of the SST front on the atmosphere is the strongest in
winter in this region, we chose the months from November to March (NDJFM) to study. Mean SST
and its gradient from OISST in winters from 1981 to 2019 are shown in Figure 1a, with a clear SST
front (with a gradient about 1–2 ◦C/100 km) stretching from Cape Hatteras toward the Grand Banks,
then turning north with the North Atlantic Current. The SST in ERA5 (Figure 1b) is identical to OISST;
thus we discuss the results mainly from OISST in the following sections. A highly turbulent heat flux
and evaporation zone was found along the warm sector of the ocean front (Figure 1c,d), suggesting that
the ocean in winter provides large amounts of heat and moisture for the atmosphere. To further depict
the variation of SST in recent decades, we chose the region in the blue box in Figure 1a (35◦ N–45◦ N,
72◦ W–56◦ W) to get the temporal variation of SST from 1981 to 2019. This region is characterized as
having a high SST gradient and strong turbulent heat flux, which was reported to be important to the
atmosphere [3]. To emphasize the decadal change in SST, the daily data were averaged in the winter
months (NDJFM) to get the value of each year in Figure 2.
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Figure 1. Mean sea surface temperature (SST) gradient across the front between 1981 and 2019 in 
winter months (November to March, NDJFM) in the Gulf Stream extension region from (a) NOAA 
OISST (Optimum Interpolation Sea Surface Temperature) (°C / 100 km) and (b) ERA5 SST (°C / 100 
km). (c) Mean turbulent heat flux during 1981‒2019 (W / m2). (d) As in (c) but for evaporation 
(mm/d). Contours are mean SST during 1981‒2019. The blue box in (a) marks the region (35 °N‒45 
°N, 72 °W‒56 °W) used to calculate the regional averaged SST time series in Figure 2. The green line 
shows the section used to plot the SST profile in Figure 2. 

The variation of averaged SST in that region is shown in Figure 2a. With the help of linear 
regression, we noticed that the decadal trend after 1997 is much higher than before 1997. Between 
1981 and 1997, the trend of SST from both datasets was near zero and failed to pass the 95% 
significance test. After 1997, the SST in both datasets showed a significant decadal increase, with a 
slope of about 0.8 ± 0.5 °C per decade. This accelerated warming trend after 1997 has far exceeded 
the centurial warming in the GS region since 1900 (1.02 ± 0.37 °C per century), which was revealed 
by Wu et al. [29] (see Table 1 in their study). The pattern of this SST trend from 1997 to 2019 is shown 
in Figure 3. The increase of SST is mainly distributed along the GS extension, with a maximum of 
over 2 °C in the 23 years in the ridge of the SST front. There were also weak SST warming in the 
south of the GS, and in the Labrador Sea, Norwegian Sea, and Mediterranean Sea. Northeast of the 
Grand Banks, a decrease of SST is located where one branch of the GS flows north‒northeastward, 
and it is known as the North Atlantic Current. It is interesting that the positive-in-south and 
negative-in-northeast pattern of this trend resembles the SST tripole mode that appeared in the 
decadal time scale [40]. The difference is that the SST trend in this paper features significant maxima 
along the SST fronts. 

Figure 1. Mean sea surface temperature (SST) gradient across the front between 1981 and 2019 in winter
months (November to March, NDJFM) in the Gulf Stream extension region from (a) NOAA OISST
(Optimum Interpolation Sea Surface Temperature) (◦C/100 km) and (b) ERA5 SST (◦C/100 km). (c) Mean
turbulent heat flux during 1981–2019 (W/m2). (d) As in (c) but for evaporation (mm/d). Contours are
mean SST during 1981–2019. The blue box in (a) marks the region (35◦ N–45◦ N, 72◦ W–56◦ W) used to
calculate the regional averaged SST time series in Figure 2. The green line shows the section used to
plot the SST profile in Figure 2.

The variation of averaged SST in that region is shown in Figure 2a. With the help of linear
regression, we noticed that the decadal trend after 1997 is much higher than before 1997. Between 1981
and 1997, the trend of SST from both datasets was near zero and failed to pass the 95% significance
test. After 1997, the SST in both datasets showed a significant decadal increase, with a slope of about
0.8 ± 0.5 ◦C per decade. This accelerated warming trend after 1997 has far exceeded the centurial
warming in the GS region since 1900 (1.02 ± 0.37 ◦C per century), which was revealed by Wu et al. [29]
(see Table 1 in their study). The pattern of this SST trend from 1997 to 2019 is shown in Figure 3.
The increase of SST is mainly distributed along the GS extension, with a maximum of over 2 ◦C in the
23 years in the ridge of the SST front. There were also weak SST warming in the south of the GS, and in
the Labrador Sea, Norwegian Sea, and Mediterranean Sea. Northeast of the Grand Banks, a decrease
of SST is located where one branch of the GS flows north-northeastward, and it is known as the North
Atlantic Current. It is interesting that the positive-in-south and negative-in-northeast pattern of this
trend resembles the SST tripole mode that appeared in the decadal time scale [40]. The difference is
that the SST trend in this paper features significant maxima along the SST fronts.
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Figure 2. (a) Time series of SST (solid line) averaged in the region (35 °N–45 °N, 72 °W‒56 °W) from 
1981 to 2019 (°C), with linear trend lines from a regression (dashed line). Red is for NOAA OISST and 
black is for ERA5-SST. The values of the trend (± one standard error) are annotated. The linear trend 
of 1997‒2019 arise significant at the 95% confidence level (Trend 2 and Trend 4). Trends before 1997 
(Trend 1 and Trend 3) did not pass the significance test. (b) SST profile along 64 °W in 1997 (black) 
and 2019 (red) from NOAA OISST (°C). (c) As in (b) but for SST gradient (°C / 100 km). (d) SST 
profile along 64 °W averaged in 1985‒1994 (black) and 2005‒2012 (red) from NOAA OISST (°C). (e) 
As in (d) but for SST gradient (°C / 100 km). (f) SST profile along 64 °W averaged in 1985‒1994 (black) 
and 2005‒2012 (red) from the NWARC dataset (°C). (g) As in (f) but for SST gradient (°C / 100 km). 

Figure 2. (a) Time series of SST (solid line) averaged in the region (35◦ N–45◦ N, 72◦ W–56◦ W) from
1981 to 2019 (◦C), with linear trend lines from a regression (dashed line). Red is for NOAA OISST and
black is for ERA5-SST. The values of the trend (±one standard error) are annotated. The linear trend
of 1997–2019 arise significant at the 95% confidence level (Trend 2 and Trend 4). Trends before 1997
(Trend 1 and Trend 3) did not pass the significance test. (b) SST profile along 64◦ W in 1997 (black) and
2019 (red) from NOAA OISST (◦C). (c) As in (b) but for SST gradient (◦C/100 km). (d) SST profile along
64 ◦W averaged in 1985–1994 (black) and 2005–2012 (red) from NOAA OISST (◦C). (e) As in (d) but for
SST gradient (◦C/100 km). (f) SST profile along 64 ◦W averaged in 1985–1994 (black) and 2005–2012
(red) from the NWARC dataset (◦C). (g) As in (f) but for SST gradient (◦C/100 km).
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Figure 3. (a) Increase of OISST SST from 1997 to 2019 (°C). (b) As in (a) but for OISST SST gradient 
(°C / 100 km). (c) As in (a) but for turbulent heat flux (W / m2). (d) As in (a) but for evaporation (mm 
/ d). Contours are mean SST between 1997 and 2019 (°C). Black dots mark the region in which the 
trend passed the 95% significance level. 

With the warming of the SST along the GS, the SST gradient increased in the north and 
decreased in the south of the front, showing a northward shift (Figure 3b). To show more clearly the 
shift of the gradient, we compared in Figure 2b the OISST in 1997 with that in 2019 along the section 
64°W (where the largest SST trend is located). Compared with the SST in 1997, the SST in 2019 
significantly increased north of 40 °N (the increase is higher than 2 °C), with a northward shift of its 
gradient (Figure 2c). Considering the northward migration of the GSNW in recent years [41], we 
assume the increase of the SST in GS region is due to the northward shift of SST gradient in recent 
decades. Along with the warming along the GS front, a significant increase of surface turbulent heat 
flux and evaporation from 1997 to 2019 was observed, stretching along the GS and all the way to the 

Figure 3. (a) Increase of OISST SST from 1997 to 2019 (◦C). (b) As in (a) but for OISST SST gradient
(◦C/100 km). (c) As in (a) but for turbulent heat flux (W/m2). (d) As in (a) but for evaporation (mm/d).
Contours are mean SST between 1997 and 2019 (◦C). Black dots mark the region in which the trend
passed the 95% significance level.

For the post-1997 warming of SST in the GS front, there are also some clues in the northward
shift of the Gulf Stream north wall (GSNW), using the 15 ◦C isotherm at 200 m depth as the definition.
In Seidov et al.’s work [41], GSNW at individual longitude 65◦ W (the green line in their Figure 4c)
has a northward migration trend after 1997, indicating a warming in this region. Similar northward
migration can also be found in GSNW at longitudes west of 55◦ W, but not in those further east.
To stress the warming in the GS front, and to evaluate the reliability of the OISST data, we compared the
same temporal mean of OISST with NWARC (Northwest Atlantic Regional Climatology) SST from the
high-resolution (1/10 degree) in situ data provided by Seidov et al. [42] (Figure 2d,f). Although they have
coarser resolution, the OISST data agree with the NWARC SST in that the SST increased (mostly in the
front region) in 2005–12 compared with 1985–94 along the section across the front on 64 ◦W. The increase
of gradients near 41◦ N in 2005–12 in the two datasets agree with each other, too (Figure 2e,g). This gives
us confidence in both the OISST data and the recent warming in the front.

With the warming of the SST along the GS, the SST gradient increased in the north and decreased
in the south of the front, showing a northward shift (Figure 3b). To show more clearly the shift of
the gradient, we compared in Figure 2b the OISST in 1997 with that in 2019 along the section 64◦W
(where the largest SST trend is located). Compared with the SST in 1997, the SST in 2019 significantly
increased north of 40◦ N (the increase is higher than 2 ◦C), with a northward shift of its gradient
(Figure 2c). Considering the northward migration of the GSNW in recent years [41], we assume
the increase of the SST in GS region is due to the northward shift of SST gradient in recent decades.
Along with the warming along the GS front, a significant increase of surface turbulent heat flux and
evaporation from 1997 to 2019 was observed, stretching along the GS and all the way to the Labrador
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Sea and the southern coast of Greenland (Figure 3c,d). The turbulent heat flux increased over 100 W/m2

during the 23 years, which accounts for one-third of its mean. This suggests that the SST warming
has induced a large amount of heat and moisture into the atmosphere. According to the literature,
this might induce an increase in the strength of the storm track [6,8]. In the next section, we will
investigate the trend in storm track activity and AR frequency, to evaluate the effect of the warming
SST on the atmosphere.
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Figure 4. (a) Mean eddy kinetic energy (EKE) on 300 hPa during 1997–2019 (m2/s2). (b) As in (a) but
for IVT (kg·m−1s−1). (c) As in (a) but for AR occurrence frequency (%). (d) As in (a) but for total
precipitation (mm/d). Contours are the mean SST between 1997 and 2019 (◦C). The frequency is defined
as the number of days with an AR divided by the total number of days in winter on each grid.

4. Increased Storm Track Activity and AR Frequency

To investigate the effect of the warming SST in the GS front on storm track and ARs, firstly we
checked the mean state and the trend of EKE and IVT in the North Atlantic. We used the meridional
wind component derived from 6-h ERA5 data after 2–15-d bandpass filtering to represent the EKE
of synoptic variations. The maximum EKE region is distributed along the GS front, spread toward
the eastern coast of the Atlantic (Figure 4). The mean value (about 150 m2s−2 on the GS front) and
the pattern of EKE agree with former studies [24,43,44]. There is a significant positive EKE trend over
the GS front and along the North Atlantic Current. The EKE increased about 20–30 m2s−2 in 23 years,
which is over 10% of the mean, indicating the locally strengthened and eastward expansion of the
storm track in the North Atlantic (Figure 5a). This local strengthening is consistent with the theory of
Booth et al. and Small et al. [6,8] that the strength of the storm track is more sensitive to SST value.
The eastward expansion of the storm track agrees with former results from numerical experiments
with CESM1 in Ciasto et al. [45]. In their Figure 4, the VV200 response in RCP85 (2080–99) displays an
increase in the downstream storm track in the experiment with SST difference (the pattern is positive
south of 50◦ N and negative north of 50◦ N), similar to our SST trend.
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Figure 5. (a) Increase of EKE on 300 hPa during 1997–2019 (m2/s2). (b) As in (a) but for integrated
water vapor transport (IVT) (kg·m−1s−1). (c) As in (a) but for AR frequency (%). (d) As in (a) but for
precipitation (mm/d). Contours are the mean SST between 1997 and 2019 (◦C). Black dots mark the
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The time mean IVT is mainly distributed south of the SST front, along the southern edge of the
storm track (Figure 4b). This is reasonable because high IVT filaments (ARs) are mostly distributed at
the southeastern part of an EC as they are generally related to the low-level jet stream ahead of the cold
front [24,33]. From the 6 h vertical integral of eastward and northward water vapor flux, we calculated
AR frequency using the AR detection method in Section 2. We detected a total of 13,000 + ARs (from the
data with 6 h intervals) in the North Atlantic region in 1997–2019. The maximum AR frequency was
over 10% of the total temporal period (Figure 4c). The maximum frequency was mainly in the south
of the GS front and consistent with the IVT maximum. The pattern of AR frequency agrees with
former studies [23,46–48]. The distribution of a large precipitation zone in mean state (spread along
the warm sector of the front, Figure 4d) agrees with the maximum AR frequency, suggesting a close
relationship between ARs and rainfall. We noted that there are high-precipitation regions spread along
the northern and eastern boundaries of the North Atlantic (for example, the coast of Greenland, Iceland,
and continental Western Europe), which might be related to the landfall of ARs in these regions.

The maximum increase of IVT and AR frequency are mainly located along the GS axis (Figure 5b,c),
suggesting an increase in AR occurrence and strength. During the 23 years, IVT increased 60 kg·m−1s−1

at the maximum, which is one-quarter of the mean, while the AR frequency increased 6% at the
maximum, which is half of the mean, suggesting a significant influence of the warming SST on IVT
and AR occurrence. The precipitation is also very sensitive to SST warming (Figure 5d). The increased
rainfall originates from the GS front, spreads along the AR migration pathway, and influences Western
Europe and Greenland. A positive trend in extreme rainfall in Western Europe in winters from 1950 to
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2008 was reported by Łupikasza [49] using precipitation records from meteorology stations. Is this
increase of extreme rainfall related to the intensified landfall of ARs?

Landfalling is the main way for ARs to influence a continent. Most extreme precipitation events
in Western Europe are reported to be related to landfalling ARs [17,21,46,50]. When a vapor-rich AR
with lower-tropospheric moist neutrality and strong horizontal winds encounters mountainous terrain,
the AR is forced upwards, at which point orographic enhancement of rainfall can occur, producing
extreme precipitation events and catastrophic flooding [10]. In this work, we detected 6900+ landfalling
Ars in 1997–2019, almost half of the total ARs detected in the North Atlantic. A high frequency of
landfalling of ARs mainly occurs on the Western European continent, such as on the Scandinavian
Peninsula and Iberian Peninsula (Figure 6a).

Atmosphere 2020, 11, 1109 9 of 15 

 

winters from 1950 to 2008 was reported by Łupikasza [49] using precipitation records from 
meteorology stations. Is this increase of extreme rainfall related to the intensified landfall of ARs? 

Landfalling is the main way for ARs to influence a continent. Most extreme precipitation events 
in Western Europe are reported to be related to landfalling ARs [17,21,46,50]. When a vapor-rich AR 
with lower-tropospheric moist neutrality and strong horizontal winds encounters mountainous 
terrain, the AR is forced upwards, at which point orographic enhancement of rainfall can occur, 
producing extreme precipitation events and catastrophic flooding [10]. In this work, we detected 
6900+ landfalling Ars in 1997‒2019, almost half of the total ARs detected in the North Atlantic. A 
high frequency of landfalling of ARs mainly occurs on the Western European continent, such as on 
the Scandinavian Peninsula and Iberian Peninsula (Figure 6a). 

 
 

Figure 6. (a) Mean AR landfalling frequency during 1997‒2019 (%). (b) As in (a) but for landfalling 
AR related rainfall (mm/d). (c) Ratio of landfalling AR-related precipitation to total precipitation 
(%). (d) Increase of landfalling AR frequency (%). Contours are mean SST between 1997 to 2019 (°C). 
Black dots mark the region in which the trend passed the 95% significance level. The blue box in (d) 
shows the region (10 °W‒20 °E, 35 °N‒44 °N) used to calculate the regional averaged precipitation in 
the Iberian Peninsula and the Mediterranean Sea region. 

The landfalling AR-related rainfall is shown in Figure 6b. The heavy rainfall is mainly located 
on the western coast of Europe and southern coast of Iceland, in agreement with former studies 
(such as Waliser and Guan, and Mattingly et al. [46,51]). Compared with the total rainfall, 
AR-related precipitation contributes almost half of the total (Figure 6c), which agrees with the 
findings of Lavers and Villarini [52]. From Figure 6d, after 1997, the frequency of landfalling ARs 
increased, primarily in the Atlantic in 30‒20 °W and in Western Europe. We noticed a significant 
increase in landfalling AR occurrence in the Iberian Peninsula and the Mediterranean Sea over the 23 
years. To inspect the relationship between total rainfall and AR-related rainfall, the variations of the 
two, averaged in the Iberian Peninsula and the Mediterranean Sea region (the blue box in Figure 6d), 
are plotted in Figure 7a. Although the averaged total rainfall does not have a significant trend 

Figure 6. (a) Mean AR landfalling frequency during 1997–2019 (%). (b) As in (a) but for landfalling
AR related rainfall (mm/d). (c) Ratio of landfalling AR-related precipitation to total precipitation
(%). (d) Increase of landfalling AR frequency (%). Contours are mean SST between 1997 to 2019 (◦C).
Black dots mark the region in which the trend passed the 95% significance level. The blue box in (d)
shows the region (10◦ W–20◦ E, 35◦ N–44◦ N) used to calculate the regional averaged precipitation in
the Iberian Peninsula and the Mediterranean Sea region.

The landfalling AR-related rainfall is shown in Figure 6b. The heavy rainfall is mainly located
on the western coast of Europe and southern coast of Iceland, in agreement with former studies
(such as Waliser and Guan, and Mattingly et al. [46,51]). Compared with the total rainfall, AR-related
precipitation contributes almost half of the total (Figure 6c), which agrees with the findings of Lavers
and Villarini [52]. From Figure 6d, after 1997, the frequency of landfalling ARs increased, primarily
in the Atlantic in 30–20◦ W and in Western Europe. We noticed a significant increase in landfalling
AR occurrence in the Iberian Peninsula and the Mediterranean Sea over the 23 years. To inspect
the relationship between total rainfall and AR-related rainfall, the variations of the two, averaged in
the Iberian Peninsula and the Mediterranean Sea region (the blue box in Figure 6d), are plotted in
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Figure 7a. Although the averaged total rainfall does not have a significant trend between 1997 and
2019, the landfalling AR-related precipitation has a significant positive trend of 0.08 mm/d/decade
in that region. From 1997 to 2019, with the increase in the landfalling AR frequency, the proportion
of landfalling AR-related rainfall over the total increased about 5% (Figure 7b), while the AR-related
extreme rainfall (higher than 95th percentile) increased even more (5–10%). This proved the importance
of AR’s landfalling on extreme precipitation in Western Europe.
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Figure 7. (a) Time series of precipitation (solid line) averaged in region (35◦ N–44◦ N, 10◦ W–20◦ E)
from 1997 to 2019 (mm/d), with linear trend from regression (dashed line). Red is for AR related rainfall
and black for total rainfall. The values of the trend (±one standard error) are annotated. Trend 2 (red) is
significant at the 90% confidence level while Trend 1 (black) did not pass the significance test. (b) Red
lines: ratio of AR-related rainfall to total rainfall; black lines: ratio of AR-related 95% extreme rain to
total 95% extreme rain (%). Trend 2 (red) is significant at the 80% confidence level, while Trend 1 (black)
is significant at the 90% confidence level.

The former analysis demonstrates that the warming of SST in the GS front resulted in increased
AR frequency along the front, triggering more landfalling ARs and more extreme precipitation on the
Western European coast. By what mechanism did the increased SST in the GS region intensify the AR
activity in the Atlantic?
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From the literature, we know that the SST front releases heat and water vapor into the
atmosphere and influences the surface convergence of wind, along with the baroclinicity in the
lower atmosphere [1,3]. Evidence suggests that increased atmospheric moisture enhances the intensity
of AR-related precipitation [53]. To investigate the effect of the increased SST on baroclinicity
and atmospheric moisture, we examined the vertically integrated moisture divergence (VIMD),
then calculated the Eady growth rate and upward water vapor flux (<wQ>) (Figure 8). The Eady
growth rate (also called the Eady index) depends on the ratio between the vertical wind shear and
Brunt-Väisälä frequency [38], which combines the wind shear and static stability into a single measure
of lower-level baroclinic instability. Consistent with this theory, the maximum of the Eady growth rate
is distributed along the SST front. From 1997 to 2019, the Eady growth rate also showed a positive
trend along the GS front (Figure 8b), indicating the effect of the warming SST on baroclinic instability.
This increased instability also explains the local strengthening of the storm track over the GS front
(Figure 5a).
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Figure 8. Left column is the temporal mean during 1997–2019 of (a) Eady growth rate at 850 hPa
(10−1 day−1), (c) upward water vapor flux <wQ> at 850 hPa (Pa/s g/kg), (e) mean vertically integrated
moisture divergence (kg·m−2s−1). The right column is for the same variables as the left but for their
increase (b,d,f). Contours are mean SST between 1997 and 2019 (◦C). Black dots mark the region in
which the trend passed the 95% significance level. Arrow vectors in (e) are the mean vertical integrated
water vapor flux (kg·m−1s−1).
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As the forming of ARs is related not only to ECs but also to moisture, we also checked the upward
water vapor flux (<wQ>). From Figure 8c, we see that the water vapor flux maximum is distributed
along the warm sector of the GS front, which is related to the strong evaporation, wind convergence,
and vertical flow over the front. There is a significant positive trend of water vapor flux along the GS
axis (Figure 8d), showing that the increased SST increases the baroclinic instability and the moisture
content in the atmosphere (which agrees with Jia et al. [54]). VIMD is a parameter with a positive value
for moisture diverging and a negative value for concentrating. In an AR, VIMD is mainly negative
because of the convergence. The pattern of VIMD and its trend is shown in Figure 8e,f. The mean
vertical integrated water vapor flux generally flows from southwest to northeast, with a divergence
south of the GS front and convergence north of it. This is because of a larger air-sea temperature
difference over the warm sector of the SST front, which enhances evaporation, while the cold sector of
the front induces condensation. The negative VIMD along the continental coasts indicates rainfall in
these regions, in agreement with the precipitation trends in Figure 4d. The trend of VIMD is negative
along the GS front, which is a result of the increased AR occurrence. We also noticed negative VIMD in
the Mediterranean Sea region, in agreement with the increased precipitation related to ARs.

Thus, with the increase in SST, baroclinic instability and vertical moisture transport increased
along the front. The increased moisture release served as an increased source of water vapor for the
ARs, which likely explains why warming in GS induces intensified AR frequency.

5. Discussion and Conclusions

The sea surface temperature (SST) front in the Gulf Stream (GS) extension region is important to
synoptic variations in atmosphere. In winter, large amounts of heat and moisture are released from
the SST front, modulating the baroclinicity and humidity in the atmosphere, which is important to
extratropical cyclones and atmospheric rivers (ARs). Wu et al. [29] recovered a post-1900 surface ocean
warming rate over the path of western boundary currents that is two to three times faster than the
global mean surface ocean warming rate. In this study, even faster warming along ocean fronts in the
GS extension region from 1997 to 2019 was revealed, based on the satellite and reanalysis datasets.
The maximum of the warming trend was along the GS front, with an over 2 ◦C increase over the
23 years and an increased and northward-shifted SST gradient.

Connected with the SST warming trend, significant increases along the GS front were also found
from 1997 to 2019 for turbulent heat flux, evaporation, precipitation, and vertical moisture flux fields.
The increased heat and moisture in the atmosphere from the ocean front resulted in increased low-level
baroclinicity and stronger water vapor transport, which enhanced storm activity and frequency of
ARs in the North Atlantic. As a result, the frequency of landfalling ARs on the Western European
coast was significantly increased and resulted in increased extreme precipitation events. Especially in
the region of the Iberian Peninsula and on the northern coast of the Mediterranean Sea, AR-related
extreme rainfall constituted 5–10% more of the total rain in the 23 years.

In this paper, the main purpose was to assess the effect of the increased SST in the GS extension
region on atmosphere. What we were most concerned with was the increase in storm activity and AR
occurrence frequency linked with the SST warming in the front region. We didn’t consider the patterns
of decadal or climatology variation of large-scale SST in the North Atlantic. Our results can serve as
proof of those numerical experiments that claim the sensitivity of storms track to SST fronts. To explain
more clearly the mechanism by which the warming in the SST fronts can influence AR landfall and
heavy rain in Western Europe, a detailed analysis based on numerical experiments is needed, which is
beyond the scope of this paper.
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