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Abstract: Urbanization is a key determinant of fine particulate matter (PM2.5) pollution variability.
However, there is a limited understanding of different urbanization factors’ roles in PM2.5 pollution.
Using satellite-derived PM2.5 data from 2002 to 2017, we investigated the spatiotemporal evolution
and the spatial autocorrelation of PM2.5 pollution in the Yangtze River Delta (YRD) region. Afterwards,
the impacts of three urbanization factors (population urbanization, land urbanization and economic
urbanization) on PM2.5 pollution were estimated by a spatial Durbin panel data model (SDM).
Obtained results showed that: (i) PM2.5 pollution was larger in the north than in the south of YRD;
(ii) Lianyungang and Yancheng cities had significant increasing trends in PM2.5 pollution from 2002 to
2017; (iii) the regional median center of PM2.5 pollution was observed in the Nanjing city, with gradual
shifting to the northwest during the 16-year period; (iv) PM2.5 pollution showed significant and
positive spatial autocorrelation and spillover effect; (v) population urbanization contributed more to
the increase in PM2.5 pollution than land urbanization, while economic urbanization had no significant
impact. The present study highlights the impacts of three urbanization factors on PM2.5 pollution
which represent valuable and relevant information for air pollution control and urban planning.

Keywords: urbanization; PM2.5; spatial Durbin panel data model; spillover effect; Yangtze River Delta

1. Introduction

Fine particulate matter (PM2.5) mostly originates from anthropogenic activities such as construction,
traffic, industrial production, cooking, waste incineration, biomass burning, etc. [1,2]. With small
diameter and strong toxicological properties, PM2.5 can easily enter into the human body and induce
cardiovascular and respiratory diseases [3–5]. Moreover, high levels of PM2.5 reduce atmospheric
visibility and disturb the earth’s radiative balance [6,7]. Recently, numerous urban areas in China
have suffered frequent heavy PM2.5 pollution [8]. For instance, two large-scale and long-lasting haze
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episodes affected central and eastern China between January and December 2013 [9]. These PM2.5

pollution episodes have resulted in severe impairments of human health and economic growth in
China, thus gaining worldwide attention.

Urbanization, a complex and dynamic process characterized by population migration, urban
expansion, landscape change and economic development [10,11], is considered to be closely associated
with air quality [12–15]. The aggregation of the population in urban areas (i.e., population urbanization)
may result in intensive human activities and huge energy consumption generating massive pollution
emissions and deteriorating air quality [16,17]. Meanwhile, during the expansion of built-up areas
(i.e., land urbanization), natural lands (e.g., forest land and grassland) are transformed into urban
construction lands that may impair the air purification ability of the ecosystem and may contribute to
the accumulation of particulate matter [18–20]. However, urban expansion also has a dilution effect on
pollutants because high-pollution enterprises are often forced to transfer their activities from the urban
core to fringe areas [21]. Economic growth (i.e., economic urbanization) affects the PM2.5 concentration
in different ways. On one hand, economic development will cause a rise in productive activities while
the production with low energy efficiency will often cause massive emissions of air contaminants [22].
On the other hand, the booming economy can provide financial support for environmental governance
and technological innovation as well as raising people’s environmental protection awareness, which in
return lowers the risk of haze [23–25]. Hence, the various forms of urbanization can have different
roles in PM2.5 pollution and it is thus critical to detect the multiple impacts of different urbanization
factors on PM2.5 pollution.

Several approaches, including ordinary least squares (OLS) method [26–28], correlation
analysis [29,30], input-output analysis [31–33], quantile regression [34–36], geographically weighted
regression [37–39] and geographic detector model [40], have been used to detect the impact factors of air
pollution. However, the aforementioned methods overlook the spillover effects of air pollutants. In fact,
owing to the effect of atmospheric circulation, the PM2.5 pollution in a particular city may influence the
PM2.5 concentrations in nearby cities, which is defined as the spillover effect [41]. Recently, spillover
effects were analyzed by using the spatial regression models that add spatial lag or (and) error items in
the analyses of the driving forces of air pollution [41–45]. For example, in China, Liu et al. [41] employed
the spatial Durbin model (SDM) to examine the factors behind air pollution at the prefecture-level in
2014. Subsequently, Du et al. [45] applied the same model to detect the effects of different urbanization
levels on PM2.5 pollution at the county-level in 2000 and 2010. However, only cross-sectional data were
used in these studies. The panel data provide more information, degrees of freedom, sample variability
and less collinearity when compared to cross-sectional data [46]. Thus, the spatial regression models
based on the panel data can provide more reliable results than the spatial regression models based on
the cross-sectional data [47].

Yangtze River Delta (YRD) is a fast urbanizing region in China that experienced severe haze
pollution in recent decades. Concerning the variation of PM2.5 concentration in the YRD, Yun et al. [48]
used the geographic detector model to detect the impact factors at three time points. In addition,
Yang et al. [49] used a traditional spatial panel data model to examine how PM2.5 pollution responded
to urbanization. However, the aforementioned studies limited the analysis at the cross-sectional data
or only considered the impact of urbanization from a single dimension [48,49]. Moreover, both studies
overlooked the spillover effect of atmospheric pollutants.

The present study combined the panel data and spatial regression models with the focus on
different roles of three urbanization factors (population urbanization, land urbanization and economic
urbanization) in PM2.5 pollution in the YRD during the period 2002–2017. The primary objectives are
to: (i) illustrate the spatiotemporal evolution of PM2.5 pollution; (ii) examine the possibilities of spatial
autocorrelation for PM2.5 pollution; and (iii) investigate the impacts of different urbanization factors
on PM2.5 pollution with a suitable spatial panel data model.
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2. Data and Methods

2.1. Study Area

The YRD (27.20◦N–35.33◦N, 114.90◦ E–123.17◦ E) is located in eastern China (Figure 1a). According
to the “Outline of the integrated regional development of the Yangtze River Delta”, there are 41 cities
in the area, including 13 cities in Jiangsu Province, 11 cities in Zhejiang Province, 16 cities in Anhui
Province, and Shanghai city (Figure 1b; Table S1). The YRD covers approximately 357,282 km2 with
a population of 223 million in 2017. The area has diverse relief, from plains and deltas in the north and
east to low hills and mountains in the south and west. Affected by the monsoon climate, the YRD has
abundant precipitation and four distinct seasons. During the 2002–2017 period, the YRD has grown
rapidly in urban population, built-up area and gross regional product with annual growth rates of
3.49%, 5.74% and 11.25%, respectively. However, along with the accelerated urbanization, the YRD has
been plagued by heavy PM2.5 pollution [50]. Consequently, there is a pressing need to explore the
impacts of urbanization on PM2.5 pollution for guiding the atmospheric pollution governance.
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Figure 1. Study area: (a) location of the Yangtze River Delta (YRD) in China; (b) the 41 cities of the
YRD (full names of the cities are listed in Table S1). The administrative boundary layer with a scale
of 1:250,000 was obtained from the Data Center for Resources and Environmental Sciences, Chinese
Academy of Sciences [51].

2.2. Data

Firstly, the overall spatial pattern and dynamics of PM2.5 pollution were analyzed at the pixel-level.
Then, we examined the spatial dependence of PM2.5 pollution by spatial autocorrelation analysis and
explored the impacts of urbanization on PM2.5 pollution by spatial regression analysis, both of which
were conducted at the city-level. Accordingly, the pixel-level and city-level annual PM2.5 data were
prepared for further analyses (more details in Section 2.2.1). Regarding the impacts of urbanization on
PM2.5 pollution, we mainly focused on three common forms of urbanization: population urbanization,
land urbanization and economic urbanization. These urbanization forms can be expressed by the
ratio of urban population, the ratio of urban built-up area and per capita gross regional product,
respectively [11]. For the purpose of reducing omitted variable bias, we also considered secondary
industry, vegetation coverage, precipitation and wind speed in spatial regression analysis [41,52].
Table 1 lists the specific definitions of all variables, while data sources for the PM2.5 concentration and
the seven explanatory variables are presented in Sections 2.2.1 and 2.2.2, respectively.
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Table 1. Description of the variables.

Variable Abbreviation Definition Unit

PM2.5 PM Concentration of PM2.5 µg/m3

Ratio of urban population PU Urban population/total population %
Ratio of urban built-up area LU Urban built-up area/city area %

Per capita gross regional product EU Gross regional product/total population 104 Yuan
Secondary industry SI Secondary industry output/ gross regional product %
Vegetation coverage NDVI Normalized differential vegetation index n.a.

Precipitation Prec Annual precipitation mm
Wind speed Wind Annual average wind speed m/s

2.2.1. PM2.5 Data

The annual PM2.5 dataset at a grid resolution of about 1 km was obtained from the Dalhousie
University Atmospheric Composition Analysis Group for the period 2002–2017 [53]. The PM2.5 data
were produced by integrating multiple types of information, including satellite retrievals, simulations,
and ground measurements [54–56]. The dataset has relatively high accuracy (R2 = 0.81) [54] and was
widely used at different spatial scales [12,16,57]. For the analyses of the spatiotemporal evolution of
PM2.5 pollution at the pixel-level, the original gridded PM2.5 data (a resolution of 1 km) was employed.
For the analyses of spatial autocorrelation and spatial regression at the city-level, the mean PM2.5

values for each city were calculated based on administrative boundaries.

2.2.2. Urbanization and Other Factors

Data for seven explanatory variables for the period 2002–2017 were gathered from multiple
sources. Urbanization and industrial information that includes the ratio of urban population, the ratio
of urban built-up area, per capita gross regional product and secondary industry, were collected from
the China City Statistical Yearbook (2003–2018) [58]. Notably, the per capita gross regional product data
were converted to constant 2002 prices (Chinese Yuan) using GDP deflator [59]. The annual normalized
differential vegetation index (NDVI) data with a 1 km spatial resolution, reflecting vegetation growth
and coverage, were provided by the Data Center for Resources and Environmental Sciences, Chinese
Academy of Sciences [51]. The annual precipitation and average wind speed from meteorological
stations in and around the YRD were derived from the China Meteorological Data Service Center [60].
The original meteorological measurements were interpolated to 1 km grid using the inverse distance
weighting method in order to generate continuous surfaces of precipitation and wind speed [40].
In addition, NDVI, precipitation and wind speed were averaged within administrative boundaries for
each city.

2.2.3. Variables Selection

For the spatial regression analysis in Section 2.3.4, all variables, including PM, PU, LU, EU, SI,
NDVI, Prec and Wind (See Table 1 for their full names and descriptions) were appropriated natural
logarithmic forms to reduce the potential heteroscedasticity (Table S2). In addition, variance inflation
factors (VIF) were calculated for the seven explanatory variables. Obtained VIF values are less than 10
(Table S3), thus suggesting that the explanatory variables exhibit no multi-collinearity [61,62].

2.3. Methods

2.3.1. Trend Analysis

The nonparametric Mann–Kendall test is powerful in identifying the significant trend in time
series data [63–66] and the nonparametric Sen’s slope estimator [67,68] provides a robust estimate of
the slope. Compared with the parametric approaches, nonparametric approaches are distribution
free, less affected by outliers, and hence more applicable for time series analysis [69,70]. In this study,
the Mann–Kendall and Sen’s slope tests were used to identify trends in PM2.5 time series from 2002 to
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2017. Firstly, for each pixel, we performed the Mann-Kendall test to detect whether the PM2.5 time
series has a significant trend. If the p-value is less than 0.05, the corresponding trend is considered
significant [71]. Then, the slope values of the PM2.5 data were calculated by performing Sen’s slope test
in order to indicate the direction and the magnitude of the temporal changes in PM2.5 concentration.
The two tests were performed by using the trend package in R software (version 3.2.2, R Foundation
for Statistical Computing, Vienna, Austria).

2.3.2. Standard Deviation Ellipse Analysis

We employed the standard deviation ellipse (SDE) method to depict the spatial pattern changes
of PM2.5 pollution during 2002–2017. Three basic parameters of the SDE, including median center,
long-short axis ratio and azimuth, were used to measure the dispersion and directional tendencies of
elements in our study [72]. The median center is the point that has a minimum sum of distances to all
the elements, thus identifying the location where the elements are most concentrated [73]. Accordingly,
the change in the median center can reflect the overall moving trace of elements. The long and short
half axes illustrate the primary and secondary distribution direction of the elements. The long-short
axis ratio (i.e., the ratio of the lengths of the long axis to the short axis), an indicator describing
the shape of an ellipse, can determine whether the elements are densely distributed in a certain
direction or evenly distributed in the ellipse. The smaller the value, the less probability the elements
are concentrated in a certain direction [74]. The azimuth, which ranges from 0 to 180 degrees, refers to
the angle deviating clockwise from the north direction to the long axis direction, revealing the leading
direction of elements [75]. The SDE analysis was performed by using the median center and directional
distribution tools in ArcGIS software (version 10.2, ESRI Inc., Redlands, CA, USA).

2.3.3. Spatial Autocorrelation Analysis

Spatial autocorrelation means that the nearby observations of a variable tend to be positively
or negatively correlated [76]. To examine the necessity of constructing spatial regression models,
we assessed the spatial autocorrelation of PM2.5 pollution in the YRD using global Moran’s I [77].
The Moran’s I ranges from−1 to 1: a) when 0 < Moran’s I < 1, it denotes a positive spatial autocorrelation
and a clustering pattern of PM2.5 pollution, b) when −1 < Moran’s I < 0, it denotes a negative spatial
autocorrelation and a dispersion pattern of PM2.5 pollution and c) when Moran’s I = 0, it denotes a
random spatial distribution. The p-value reflects the significance level and additional details about
this method can be found in the literature [78,79]. In this study, the global Moran’s I of PM2.5 pollution
for each year between 2002 and 2017 was estimated based on the inverse distance spatial weight
matrix [80,81] by employing the spatial autocorrelation tool in ArcGIS software (version 10.2, ESRI Inc.,
Redlands, CA, USA).

2.3.4. Spatial Regression Analysis

To cope with the potential spatial dependence in PM2.5 pollution among the cities, we considered
three types of spatial regression models when analyzing the impacts of urbanization on PM2.5

pollution [82]. The first model is the spatial lag model (SLM), which includes a spatially lagged
dependent variable and hypothesizes that the PM2.5 pollution in the city i is influenced by the PM2.5

pollution in the neighboring cities [83]. In our case, the SLM model can be established as follows:

lnPMit = β1lnPUit + β2lnLUit + β3lnEUit + β4lnSIit + β5lnNDVIit
+β6lnPrecit + β7lnWindit + ρWlnPMit + µi + ξt + εit

(1)

where β1, β2, . . . , β7 represent the seven regression coefficients of the explanatory variables; ρ denotes
the spatial autoregressive coefficient measuring the intensity of spatial dependence in PM2.5 pollution
among cities; W stands for the spatial weight matrix, which is the inverse distance spatial weight
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matrix in this case; µi and ξt correspond to spatial effect and time effect, respectively. εit is a normally
distributed random error terms.

The second model is the spatial error model (SEM), which contains a lagged error term and
hypothesizes that the errors in neighboring cities are likely to interact. It can be constructed as follows:

lnPMit = β1lnPUit + β2lnLUit + β3lnEUit + β4lnSIit + β5lnNDVIit
+β6lnPrecit + β7lnWindit + µi + ξt + φit
φit = λWφit + εit

(2)

where φit represents the spatial autocorrelation error term; λ is the spatial autocorrelation coefficient of
the error term.

The third model is the spatial Durbin model (SDM), which incorporates both the spatially lagged
dependent variable and explanatory variables, considering not only the spatial dependence of the
dependent variable but also that of the explanatory variables [84,85]. It can be defined as follows:

lnPMit = β1lnPUit + β2lnLUit + β3lnEUit + β4lnSIit + β5lnNDVIit + β6lnPrecit
+β7lnWindit + θ1WlnPUit + θ2WlnLUit + θ3WlnEUit + θ4WlnSIit
+θ5WlnNDVIit + θ6WlnPrecit + θ7WlnWindit + ρWlnPMit + µi + ξt + εit

(3)

where θ1,θ2, . . . ,θ7 refer to the spatial lag coefficients of the explanatory variables.
Several model tests help to select an appropriate spatial regression model. Following the standard

approach proposed by Elhorst [86], the spatial regression analysis starts with a non-spatial model
estimated by OLS. Afterwards, the Likelihood ratio (LR) joint significance test can be performed in
order to determine whether the model should control for spatial fixed or time fixed effects [86]. In this
study, the random effect was not considered because the analysis focuses on the population rather
than the sample [87]. Then, the Lagrange multiplier (LM) tests and Robust LM tests can be used
to investigate whether there exist spatial interaction effects in dependent variables or errors. If the
result justifies the existence of the spatial interaction effect, the SDM model is recommended to be
established [85]. In this case, to access whether the SDM can be degraded into SLM or SEM, the Wald
and LR tests should be carried out. By contrast, if there are no spatial interaction effects, the spatial
regression model should not be selected.

The above spatial models can be estimated by the maximum likelihood (ML) method. Notably,
since the SLM and SDM involve spatial lags of the dependent variable, the coefficients of explanatory
variables (i.e., β1, β2, . . . , β7) in the two models could not represent the marginal effect [83]. Therefore,
direct and indirect effects coefficients should be further estimated. In this study, the direct effect refers
to the impact on PM2.5 pollution of the city i resulted from a change in an explanatory variable of
the city i. The indirect (spillover) effect illustrates the cumulative impacts on PM2.5 pollution caused
by changes in an explanatory variable of other cities. The sum of the two effects is the total effect.
More details about the estimation of the direct and indirect effects can be found in LeSage and Pace [85].
The spatial regression analysis was performed in the MATLAB software (version R2016a, MathWorks
Inc., Natick, MA, USA).

3. Results

3.1. Spatial Pattern of PM2.5 Pollution

The distinct spatial variation in the 16-year mean (from 2002 to 2017) PM2.5 concentrations in the
YRD is presented in Figure 2. It can be noticed that the PM2.5 concentrations in the larger part of YRD
(83.57%) exceeded the World Health Organization (WHO) Interim target-1 (35µg/m3), thus suggesting
severe haze pollution in this region. The maximum, average and minimum PM2.5 concentrations
were 74.87 µg/m3, 49.15 µg/m3 and 19.24 µg/m3, respectively. Overall, it can be noticed that PM2.5

pollution is heavier in the north than in the south. The extremely high PM2.5 concentrations (>65 µg/m3)
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were concentrated in Xuzhou (XZ), Suzhou (SuZ), Huaibei (HB), Bozhou (BZ) and Fuyang (FY) cities,
accounting for 4.91% of the YRD area. In contrast, relatively low PM2.5 concentrations (<25 µg/m3)
were noticed mainly in Lishui (LS) and Wenzhou (WZ) cities, accounting for only 2.36% of the area.

Atmosphere 2018, 9, x FOR PEER REVIEW  7 of 19 

 

concentrations (< 25 μg/m3) were noticed mainly in Lishui (LS) and Wenzhou (WZ) cities, accounting 
for only 2.36% of the area. 

 
Figure 2. The 16-year mean PM2.5 values in the YRD from 2002 to 2017. 

3.2. Trends of PM2.5 Concentrations 

The significance levels (i.e., p-values) and slopes of the trends in PM2.5 concentrations were 
calculated by methods mentioned in Section 2.3.1. Figure 3a shows the p-values of the upward (slope 
> 0) and downward (slope < 0) trends, while Figure 3b shows the slopes of the trends. The results 
showed that approximately 16.12% and 0.98% of the study area had significant (p < 0.05) upward and 
downward trends, respectively (Figure 3a). The north and central YRD were characterized by 
upward trends with larger parts of Lianyungang (LYG) and Yancheng (YC) cities having the greatest 
concentration growth (slope > 1.2) at a high significance level (p < 0.01) (Figure 3b). Xuzhou (XZ), 
Huai'an (HA), Yangzhou (YZ) and Taizhou (TZ) cities also witnessed the significant increase in PM2.5 
concentration with slope values exceeding 0.9 in larger parts of these cities. By contrast, downward 
trends were noticed in the south YRD with most slopes being not significant (p ≥ 0.05). Only a few 
parts of the Lishui (LS) and Quzhou (QZ) cities illustrated significant (p < 0.05) decrease (slope < 0) in 
PM2.5 concentration. 

 

Figure 2. The 16-year mean PM2.5 values in the YRD from 2002 to 2017.

3.2. Trends of PM2.5 Concentrations

The significance levels (i.e., p-values) and slopes of the trends in PM2.5 concentrations were
calculated by methods mentioned in Section 2.3.1. Figure 3a shows the p-values of the upward
(slope > 0) and downward (slope < 0) trends, while Figure 3b shows the slopes of the trends. The results
showed that approximately 16.12% and 0.98% of the study area had significant (p < 0.05) upward
and downward trends, respectively (Figure 3a). The north and central YRD were characterized by
upward trends with larger parts of Lianyungang (LYG) and Yancheng (YC) cities having the greatest
concentration growth (slope > 1.2) at a high significance level (p < 0.01) (Figure 3b). Xuzhou (XZ),
Huai’an (HA), Yangzhou (YZ) and Taizhou (TZ) cities also witnessed the significant increase in PM2.5

concentration with slope values exceeding 0.9 in larger parts of these cities. By contrast, downward
trends were noticed in the south YRD with most slopes being not significant (p ≥ 0.05). Only a few
parts of the Lishui (LS) and Quzhou (QZ) cities illustrated significant (p < 0.05) decrease (slope < 0) in
PM2.5 concentration.

Figure 4 demonstrates the four standard deviational ellipses of PM2.5 pollution in 2002, 2007, 2012
and 2017. In addition, Table 2 displays the basic parameters of the ellipses. The median center of
the pollution was found in northwestern Nanjing city (Figure 4), moving from 118.63◦ E and 31.87◦

N in 2002 to 118.50◦ E and 32.01◦ N in 2017 (Table 2). The moving directions and the rates of the
median center in the three five-year intervals could be computed according to its coordinates (Table 2).
From 2002 to 2007, the median center moved to the northwest at a speed of 2.8 km/year. Afterwards,
it shifted slowly to the southeast at a speed of 1.8 km/year during the period 2007–2012. From 2012 to
2017, the median center shifted quickly towards the northwest at a speed of 3.2 km/year. The shapes of
a series of ellipses indicated that PM2.5 pollution was clustered mainly in the “southeast-northwest”
direction (Figure 4). The long-short axis ratio reduced gradually from 1.604 to 1.545 during the period
2002–2017 (Table 2), reflecting that the directionality of the PM2.5 pollution was weakened and that the
dispersion of pollution decreased in the long axis direction (i.e., “southeast-northwest”) and expanded
in the short axis direction (i.e., “northeast-southwest”). Furthermore, the azimuth changed only slightly
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from 143.58◦ to 143.97◦ (Table 2), which indicated that the leading direction of PM2.5 concentrations
had no distinct change.
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Table 2. Median centers, long-short axis ratios and azimuths of the standard deviational ellipses in
2002, 2007, 2012 and 2017.

Year Longitude of the
Median Center (◦)

Latitude of the
Median Center (◦)

Long-short Axis
Ratio Azimuth (◦)

2002 118.63 31.87 1.604 143.93
2007 118.50 31.94 1.602 143.58
2012 118.55 31.87 1.591 144.31
2017 118.50 32.01 1.545 143.97
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3.3. Spatial Autocorrelation Analysis

Table 3 presents the global Moran’s I values of PM2.5 pollution during the period 2002–2017.
Obtained values were positive and significant (p < 0.01), suggesting positive spatial autocorrelation in
PM2.5 pollution. Additionally, the Moran’s I exhibited an upward trend in general, with values 0.242
in 2002, 0.316 in 2010, and 0.292 in 2017, thus showing a strengthening spatial clustering trend in PM2.5

pollution. Accordingly, the spatial regression models should be considered in the subsequent analysis.

Table 3. Global Moran’s I values of PM2.5 pollution over the YRD during the period 2002-2017.

Year Moran’s I Year Moran’s I

2002 0.242 *** 2010 0.316 ***
2003 0.245 *** 2011 0.279 ***
2004 0.225 *** 2012 0.252 ***
2005 0.246 *** 2013 0.276 ***
2006 0.280 *** 2014 0.279 ***
2007 0.266 *** 2015 0.281 ***
2008 0.242 *** 2016 0.300 ***
2009 0.264 *** 2017 0.292 ***

Note: *** p < 0.01.

3.4. Spatial Panel Regression Analysis

3.4.1. Results of Model Tests

Table 4 reports the results of the spatial diagnostic tests for non-spatial regression models.
The results of the LR joint significance tests provided evidence about the existence of the spatial fixed
effects (1370.892, p < 0.01) and time fixed effects (722.186, p < 0.01). This indicated that the panel
data model including both the spatial and time effects was a suitable choice. Regarding the type of
spatial regression model, as demonstrated in the first four rows (Table 4), the LM tests and Robust
LM tests were statistically significant (p < 0.05) for all the model specifications. This result implies
that the spatial interaction effects in both dependent variables and error terms could not be neglected.
Thus, by following the general-to-specific approach, we established the SDM model with spatial and
time fixed effects and subsequently implemented the Wald and LR tests. As highlighted in Table 5,
all statistics of Wald and LR tests were significant at 1% level, which verified the superiority of SDM
over SLM and SEM. Accordingly, the SDM model under the spatial and time fixed effects was chosen
to describe the data, and the subsequent analysis was based on it.

Table 4. Results of spatial diagnostic tests for non-spatial panel models.

Test Pooled
OLS

Spatial Fixed
Effects Time Fixed Effects Spatial and Time

Fixed Effects

LM (lag) 885.512 *** 1642.571 *** 319.747 *** 303.322 ***
LM (error) 1241.314 *** 1688.130 *** 141.319 *** 250.414 ***

Robust LM (lag) 4.637 ** 102.611 *** 241.033 *** 74.353 ***
Robust LM (error) 360.439 *** 331.666 *** 62.606 *** 21.445 ***

LR joint significance test
for spatial fixed effect 1370.892 ***

LR joint significance test
for time fixed effect 722.186 ***

Note: ** p < 0.05, *** p < 0.01.
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Table 5. Results of Wald and LR tests for the spatial Durbin model under the spatial and time fixed effects.

Test Wald Test
(SDM Versus SLM)

LR Test
(SDM Versus SLM)

Wald Test
(SDM Versus SEM)

LR Test
(SDM Versus SEM)

Statistics 89.839 *** 84.280 *** 112.479 *** 103.978 ***

Note: *** p < 0.01.

3.4.2. Estimation Results

The SDM model was fitted with the maximum likelihood (ML) estimator by considering the spatial
and time fixed effects (Table 6). The spatial autoregressive coefficient ρ is highly significant (p < 0.01)
with a value of 0.867, thus indicating a strong link between the PM2.5 pollution in neighboring cities.

Table 6. Results of the SDM model under the spatial and time fixed effects.

Variable Value Variable Value

lnPU 0.105 ** W×lnLU 0.546 ***
lnLU 0.055 * W×lnEU −0.322
lnEU −0.028 W×LnSI 0.408 ***
LnSI 0.043 * W×lnNDVI −1.928 ***

lnNDVI −0.209 * W×lnPrec −0.007
lnPrec −0.024 W×lnWind 0.490

lnWind −0.326 ρ 0.867 ***
W×lnPU 1.405 *** R2 0.970

Note: * p < 0.1, ** p < 0.05, *** p < 0.01; W×lnPU, W×lnLU, W×lnEU, W×LnSI, W×lnNDVI, W×lnPrec, W×lnWind
denote the spatial lags of lnPU, lnLU, lnEU, LnSI, lnNDVI, lnPrec and lnWind, respectively.

Due to the feedback effect, the spatial regression coefficients cannot truly illustrate the marginal
effects of urbanization, secondary industry, NDVI, precipitation and wind speed. Hence, we further
computed the direct, indirect and total effects of each variable on PM2.5 pollution (Table 7). Four variables
(i.e., lnPU, lnLU, lnSI and lnNDVI) showed significant total effects with the coefficients of 4.084, 2.182,
1.379 and −5.988, respectively. For the direct effect, lnPU had the largest significant positive coefficient
(0.310), followed by lnLU (0.149) and lnSI (0.116), suggesting that every 1% increase in lnPU, lnLU and
lnSI will directly increase lnPM by 0.310%, 0.149%, and 0.116% in the local city, respectively. In contrast,
lnNDVI, lnPrec and lnWind had negative direct effects with the respective coefficients of −0.541, −0.031
and −0.283, thus implying that NDVI, precipitation and wind speed exerted direct negative impacts
on PM2.5 pollution. By considering the indirect effect, lnPU, lnLU and lnSI showed significant and
positive indirect effects. Specifically, every 1% growth in these three variables in nearby cities can
increase lnPM by 3.774%, 2.033% and 1.263% in the local city, respectively. Moreover, lnNDVI had
a considerable high negative and significant indirect effect (−5.447). For the lnEU, which represented
the economic urbanization, neither the direct effect nor the indirect effect was significant.

Table 7. Direct, indirect and total effects of the seven explanatory variables.

Variable Direct Effect Indirect Effect Total Effect

lnPU 0.310 *** 3.774 *** 4.084 ***
lnLU 0.149 *** 2.033 *** 2.182 ***
lnEU −0.079 −1.245 −1.324
LnSI 0.116 *** 1.263 *** 1.379 ***

lnNDVI −0.541 *** −5.447 *** −5.988 ***
lnPrec −0.031 ** −0.223 −0.254

lnWind −0.283 ** 1.512 1.229

Note: *** p < 0.01.
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4. Discussion

4.1. The Impacts of Urbanization on PM2.5 Pollution

The present study highlighted the different impacts of the three forms of urbanization on PM2.5

pollution for the YRD during the study period (Table 7). Complying with the previous studies [41,45,88],
population urbanization played a dominant role in increasing PM2.5 pollution and land urbanization
was also a large contributor to PM2.5 pollution. Regarding economic urbanization, some studies argued
that it can lead to an increase in PM2.5 concentration [12,47]. However, it showed a negative and
insignificant impact on PM2.5 levels in the YRD. Based on our results, the underlying mechanisms that
different forms of urbanization impact PM2.5 pollution are illustrated in Figure 5.
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Population urbanization describes the migration of the population from rural areas to urban areas,
mainly impacting PM2.5 pollution in two ways. On one hand, the urban population agglomeration
is usually accompanied by high demands for new housing, public infrastructures and private cars,
which will inevitably raise energy consumption [12]. The growing energy consumption contributes to
increased exhaust emissions, thereby enhancing air pollution. On the other hand, as the population
increases and the people’s living standards improve, large amounts of domestic waste are produced
in the urban area. The released aerosol particles due to the improper garbage disposal may further
increase PM2.5 concentration [10].

Land urbanization refers to the process of urban sprawl. The impact of land urbanization on
PM2.5 pollution may be explained in three aspects. Firstly, the larger the built-up area, the longer
the commuting distance for residents, which will increase the traffic flows [89]. As a consequence,
emissions from vehicles will contribute substantially to PM2.5 pollution. Secondly, the majority of the
natural land covers (e.g., forest land and grassland) are replaced by artificial surfaces during the land
urbanization process. Compared with artificial surfaces, forest and grass can purify the air through
obstructing and absorbing the particulate matter. Accordingly, land cover changes may weaken the
self-purification ability of urban ecosystems [18]. Lastly, the high-rise and high-density buildings can
hinder the dilution and dispersion of air pollutants [90].
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Economic urbanization can be regarded as the process of economic growth. It influences PM2.5

pollution from opposite directions. For one thing, rapid economic growth can induce more production
activities that leads to increased pollution emissions [45]. For another thing, economic urbanization
is usually accompanied by the increased energy efficiency, improved industrial technologies and
raised public environmental awareness, which can alleviate air pollution. Consequently, the final
statistically insignificant direct and indirect effect coefficients of economic urbanization in the YRD
may be attributed to the dual effects of economic urbanization. Liu et al. [41] also found that per capita
GDP had no significant influence on air quality.

4.2. The Impacts of other Factors on PM2.5 Concentrations

In addition to urbanization factors, we have introduced the secondary industry, NDVI, precipitation
and wind speed into our model to reduce the omitted variable bias. The results showed that the
secondary industry enhanced PM2.5 levels (Table 7), which is in accordance with a previous study [47].
That is because the secondary industry, especially heavy industry and real estate, consume large amounts
of energy and generates high concentrations of atmospheric pollutants. Vegetation coverage (Table 7),
represented by NDVI, is able to partially absorb and block particulate matter [6], which contributed
to the decline in PM2.5 concentrations. Additionally, precipitation and wind speed played important
roles in mitigating the local PM2.5 pollution (Table 7) as precipitation can remove the particles by wet
deposition while wind facilitates the dispersion of particles [91].

4.3. Policy Implications

The findings from this empirical study contributed to the development of policy implications
with the aim to alleviate PM2.5 pollution.

Firstly, the spillover effect of PM2.5 pollution implies that inter-regional cooperation is necessary
for preventing, mitigating and controlling air pollution. Accordingly, an information sharing system
should be established at the regional level with the aim to provide the information related to air quality
monitoring, pollution emissions and emergency response to air pollution accidents [92]. Meanwhile,
unified environmental laws and regulations should be formulated and implemented to restrict the
transfer of pollution among cities [12].

Secondly, governments should emphasize on the popularization of non-fossil fuel energy and
citizen’s environmental awareness. As demonstrated by the results, the growth in urban population
and built-up area contributed substantially to the energy consumption and air pollutant emissions,
thereby increasing PM2.5 concentration. Hence, it is crucial to reduce coal consumption and encourage
the usage of clean energy [88]. In addition, enhancing green consumption, promoting the use of
public transportation and advocating garbage classification can increase the public’s awareness of air
protection [11].

Finally, attention should be devoted to industrial structure and urban planning. It is urgent to
close the highly polluting industry, transform the traditional industries with advanced technologies
and to encourage the development of green industry [12]. In addition, the impacts of vegetation
coverage, precipitation and wind speed on PM2.5 concentration should not be overlooked. To reduce
the risk of air pollution exposure, urban planning measures should be adopted that include designing
urban ventilation corridors, allocating large scale green space in the downwind direction of pollution
source and arranging suitable tree species in the street [93].

4.4. Limitation

This present study has a few limitations. Firstly, the used socioeconomic data employed were
derived based on the administrative boundaries, which may, to a certain extent, impact the estimation
results. To more accurately characterize urbanization, grid data (e.g., satellite-derived nighttime light
data and population data) should be considered in the follow-up studies. Secondly, the analysis was
conducted at the annual time scale with the emphasis on detecting the impacts of urbanization on
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PM2.5 pollution. Accordingly, the influencing mechanisms of precipitation and wind speed on air
pollution could not be revealed completely and it would be beneficial to perform the spatial regression
analysis on shorter time scales (e.g., day, month and season).

5. Conclusions

The present study analyzed the spatiotemporal evolution of PM2.5 pollution at the pixel-level in
the YRD from 2002 to 2017. Then, the spatial autocorrelation of PM2.5 pollution among the 41 cities in
the study domain was examined. Finally, we investigated the impacts of different urbanization factors
(population urbanization, land urbanization and economic urbanization) on PM2.5 pollution at the
city-level. The key findings from this study are as follows:

• Distinct variation in the spatial pattern of the PM2.5 concentrations was identified in the YRD.
Approximately 83.57% of the YRD had mean PM2.5 concentrations higher than 35 ug/m3

(WHO Interim Target 1). The pollution was more severe in the north than in the south part of
the YRD.

• The significant and largest increasing trends in PM2.5 pollution was noticed in Lianyungang and
Yancheng cities. However, the regional median center of the PM2.5 pollution was located in the
Nanjing city and was gradually shifting to the northwest during the research period.

• The positive spatial autocorrelation and spillover effect of PM2.5 pollution were verified by the
global Moran’s I values and the SDM model, respectively, thus suggesting that the prevention and
control of air pollution should rely on inter-regional cooperation.

• Population urbanization, land urbanization, secondary industry and NDVI exerted significant
impacts on PM2.5 pollution. Population urbanization had the largest positive total effect, followed
by land urbanization and secondary industry, while NDVI showed a negative total effect.
No significant effect was detected for economic urbanization.

In general, we have noticed that the impact mechanisms of different forms of urbanization on
PM2.5 pollution varied. The investigation of these impact mechanisms can help policymakers and
urban planners in developing measures to abate air pollution.
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